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Abstract:
Bearing condition monitoring (BCM) and damage identification are usually performed by
vibration-based signals and supervised learning algorithms. However, this approach is impracti-
cal in many industrial facilities because some industrial motors are unable to provide access to
vibration-based signals or they are prevented from performing their functions under damaged
conditions. In this context, this work employs a density-based and fractal approach to extract
features from current-based signals. These features create an unlabelled database that feeds a
fuzzy c-means algorithm to perform BCM and the support vector machines to classify bearing
damages in an unsupervised learning approach. Tests with several bearing damages under various
load and speed conditions are reported, presenting promising results.

Keywords: Bearing fault diagnosis, Fuzzy c-means, Unlabelled learning.

1. INTRODUCTION

Electric motors are used in many industrial processes
due to their flexibility for a wide range of applications,
efficiency, and reliability even in severe environments.
According to recent estimates, these machines consume
70% of the electric energy demanded by the European
Union’s industrial sector (Cardoso, 2018).

Moreover, owing to the intrinsic characteristics, electrical
faults and mechanical damages occur on a regular basis,
resulting in reduced performance or interruption of pro-
duction processes. Indeed, according to studies conducted
by the Institute of Electrical and Electronics Engineers,
bearings damages are responsible for 40% of the defects
caused in electric motors (Cerrada et al., 2018).

The two categories of bearing damages are punctual and
distributed damages. Punctual damages arise on a delim-
ited bearing surface, presenting cracks, holes, scratches,
particles, pitting, material removal, impact points, or
others forms that cause impulsive mechanical vibrations
(Barcelos and Cardoso, 2021). Otherwise, distributed dam-
ages are exemplified by flushing, encrustations, material
degradation, corrosion, wear, brinelling, or other types
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of damages that spread a defect along the entire length
of the bearing’s raceways, causing continuous mechanical
vibrations (Cardoso, 1991).

The most common approach for conducting bearing condi-
tion monitoring (BCM) and damage detection is to input
the vibration-based data into a signal processing tech-
nique. After that, one may perform a feature extraction
method to build a labelled database, and applying a super-
vised learning algorithm to classify the bearing damages
(Moshrefzadeh, 2021).

However, most industrial facilities are unable to provide
a labelled database, because their machines are prevented
to operate under damaged conditions. Consequently, it is
also necessary to develop artificial intelligence approaches
that perform bearing damage classification with unlabelled
databases (Liu and Gryllias, 2020).

Furthermore, many industrial motors are unable to supply
vibration-based signals because they are located in inac-
cessible sites or their housings are inadequate to accommo-
date new devices. Besides, the vibration data acquisition
is costly, requiring the use of new sensors (e.g. accelerom-
eters) and devices to transduce, transmit, and process the
information (Neupane and Seok, 2020).

Otherwise, current-based data acquisition is remotely
available in most industrial electric motors because the
stator current is monitored for control, supply, and protec-
tion purposes. Also, the stator phases of electric motors are
typical multiple data sources, allowing information fusion
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approaches. Indeed, these advantages has attract more
attention for researches on BCM through current-based
signals in recent years (Leite et al., 2014).

The main disadvantage for current-based BCM are the
poor signal-to-noise ratio (SNR), information losses in the
magnetic field, saturation harmonics, electrical faults, and
interference (Barcelos et al., 2021). Moreover, conventional
signal processing techniques for denoising and extracting
information from vibration-based signals may work inad-
equately in current-based signals (Wang et al., 2021). In
summary, for the same signal processing technique, the
current-based BCM has less accessible information (e.g.,
indirect measure) and more feature extraction complexity
(e.g., poor SNR).

In this context, recent researches employs the α-stable
probability density function (α-SPDF) to extract features
from vibration-based signals (Hebda-Sobkowicz et al.,
2020). However, the most common approach to extract
density-based features from current-based signals is to fit
them into a Gaussian or other quasi-normal parametric
distributions, avoiding the computational efforts required
to fit the α-SPDF (Wodecki et al., 2021).

Indeed, due to the poor SNR, the current-based distribu-
tions from healthy and damaged bearings are similar to the
Gaussian distributions, within a log-likelihood test. As a
result, the BCM and feature extraction methods, employ-
ing α-SPDF into current-based signals is practically absent
in the literature. However, the non-Gaussian parameters
for the α-SPDF may fully represent the healthy and the
bearing damaged behavior for current-based signals, which
have dense and elongated tails (Puchalski and Komorska,
2018).

Therefore, this study fit the α-SPDF into current-based
distributions to extract non-Gaussian parameters. Fur-
thermore, this paper introduces a change of coordinates in
time domain, creating orbits to extract the fractal dimen-
sion (FD), which is a measure for the capacity to cover a
multidimensional space (Puchalski and Komorska, 2018).
A similar procedure that changes the time coordinates
can project the Fourier transform into delayed coordinates
(FTDC) to extract several non-conventional features.

These parameters, features, and measures are used to con-
struct an unlabelled database to input machine learning
algorithms that may perform classification in this context.
Some recurrent examples are the fuzzy c-means (FCM),
support vector data description, one-class neural networks,
one-class support vector classifiers, generative adversarial
networks, among others, that may perform positive unla-
belled learning (Barcelos and Cardoso, 2021). The intrinsic
characteristics of the FCM algorithm, such as adaptive
fuzzifiers, overlapping clusters, ellipsoidal shape, outlier
rejection, density-based approach, adaptive membership
functions, and many others, make the FCM suitable for
bearing damage identification (Li et al., 2018b).

As a result, this research’s contributions are stated as
follows: i) Introduce a novel feature extraction approach
from current-based signals to construct an unlabelled
database with the α-SPDF, FD, and FTDC measures; ii)
Develops a fuzzy c-means (FCM) algorithm to perform
BCM, while a support vector machine (SVM) perform

damage detection. The remainder of this paper start with
section 2, presenting the coordinate changes in time and
frequency domain, the FCM and SVM algorithms, and
α-SPDF distribution. Section 3 describes a database for
experimental tests, while section 4 explains the modeling
procedure and setup. Section 5 presents the results of the
SVM performance, and the conclusion is in section 6.

2. MATHEMATICAL FORMULATION

2.1 Embedding dimension

The time series x(t) of current-based signals can be con-
verted into circular trajectories, creating an orbit with
a fractal dimension (FD), while filling a space with in-
teger dimension D>FD. With this premise, the signal
x(t) is sampled in the discrete signal x(n), to build a D-
dimensional vector z(n) with time delay τ , as follows:

z(n, τ) = [x(n), x(n− τ), ..., x(n(−(D − 1)τ)] (1)

This procedure changes the coordinates representation of
x(n), unfolding all projections (Strogatz, 2018). In these
orbits, one can identify the outliers, the path of signals,
the eigenvalues, peaks, volume, and other measures that
offer insight about geometric characteristics. This research
develops the generalization of the Eq. 1 to minimize the
orbit overlapping. The parameters ai and exponents bi,
scales and provide a nonlinear transformation, as follows:

z(n, τ, a, b) = [a0x(n)b0 , a1x(n− τ)b1 ,

a(D−1)x(n− (D − 1)τ)b(D−1) ]
(2)

Different values of τ define a distinct nonlinear transfor-
mation between each pair of vectors, increasing compu-
tational efforts. Thus, the orbits in this research use the
same value of τ for each pair of vectors in the same time
series. The procedure to find the value of τ that unfolds the
projections of Eq. 2 is described in the following sections.

2.2 Mutual Information

The entropy of a random variable is an information theory
measure that quantifies the uncertainties associated with
variables. To calculate the entropy H(x), it is necessary to
consider the probability PX(xi), as follows:

H(x) = −
∑
i

PX(xi)logPX(xi) (3)

Furthermore, the Mutual Information MI can be defined
using joint probability functions, expressing the MI for
each pair of vectors as follows:

MI(xi;xj , τ) =
D−1∑
i=1

D∑
j=i+1

P (xi, xj)log

[
P (xi, xj)

P (xi)P (xj)

]
(4)

An average value of τ that minimizes the MI of the pairs
of vectors in Eq. 2, generates symmetric orbits.
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2.3 Renyi Dimension

The Eq. 3 was adapted by Renyi, using the exponents of
the probability to obtain the Eq. 5 that generalizes H(x).

Rq(x) =
1

1− q
log

(
n∑
i=1

PX(xqi )

)
(5)

When q → 1, Rq(x) = H(x), assuring that the entropy
H(x) is a particular case of Reny’s entropy. The Eq. 6
calculates the fractal dimension (FD) based on Renyi’s
entropy, as follows:

Dq = lim
∆x→0

1

q − 1

log
∑n
i=1 PX(xqi )

log(∆x)
(6)

In Maragos and Sun (1993), the authors explain how to
construct an algorithm to compute the Hausdorff fractal
dimension (DH) with the Eq. 6.

2.4 Box-Count Dimension

The Minkowski-Bouligand fractal dimension (DM ) em-
ploys the principle of Minkowski covers, which consists
of covering a boundary region with disks of area A(ε)
and radius ε. The Box-Count is a similar approach for
calculating the fractal dimension (DB), that uses a cover
of n-dimensional boxes with sides ε and a counter B(ε) to
sum the number of boxes as follows:

DB = 2− lim
ε→0

log B(ε)

log 1/ε
(7)

In continuous systems, DH , DB e DM are equivalent;
but, in discrete systems these dimensions depends on
computational issues and numerical approximations (So
et al., 2017). In this work, the DM is chosen as feature from
the orbits, however these three dimensions are computed
and contrasted to ensure computational convergence.

2.5 Alpha-stable Distribution

The α-SPDF describes a class of sub-Gaussian distribu-
tions of impulsive nature, with dense and elongated tail.
This distribution is parameterized in Eq. 8, where Cauchy,
Lévy, and Gauss distributions are particular cases.

ϑ(t) = exp{jδt− γ|t|α[1 + jβsgn(t)w(t, α)]} (8)

where

w(t, α) =

tan
απ

2
for α 6= 1

2

π
log|t| for α = 1

The α-SPDF has four parameters: i) Location δ ∈
[−∞,∞]; ii) Dispersion γ > 0; iii) Asymmetry β ∈ [−1, 1];
and iv) Exponent α ∈ (0, 2]. The parameter estimation
may be achieved by the maximum log-likelihood method
(Mittnik et al., 1999).

2.6 Peak Identification

A peak identification algorithm consists of monitoring the
moving mean of the time series and updating the standard
deviation to verify the positions that the signal exceeds
an adjustable threshold. In this work, after the peak
identification, the prominence Ip, width Iw, prominence
kurtosis Ipk, and width kurtosis Iwk are used as features.

2.7 Fuzzy C-Means

The fuzzy c-means (FCM) is a clustering algorithm that
allows a data point to belongs to several clusters (Li
et al., 2018a). The most recurrent approach is based on
the minimization of the objective function, as follows:

f(uij , cj) =
N∑
i=1

m∑
j=1

uζij ||xi − cj ||
2

under the constrains

m∑
j=1

uij = 1, 0 ≤
N∑
k=1

uij ≤ N

where N is a sample of feature vectors xi, m is the number
of clusters, uij is the grade of membership functions,
cj is the centroid, and ζ is a nonnegative fuzzifier that
determines the fuzziness between clusters. The Lagrange
approach minimizes the optimization problem as follows:

L(uij , cj , λi) =

N∑
i=1

m∑
j=1

uζij ||xi−cj ||
2 +

N∑
i=1

λi

( m∑
j=1

uij−1

)
where λ is a Lagrange multiplier. Whether ζ = 2, the
algorithm is the FCM, while ζ → 1, the behavior is close to
K-means algorithm. Moreover, this work proposes that the
parameter ζ change to ζi to compute adaptive fuzzifiers.
The functions to update the centers, Lagrange multipliers
and the membership functions are omitted for the sake of
brevity, but can be found in Liu et al. (2018).

Assuming that the data moves from the healthy cluster
to the bearing damaged cluster, it is possible to monitor
the healthy cluster center (c1), using moving means (MM)
and moving standard deviations (MSTD). Therefore, this
work takes the intervals of 10% (fast), 15% (regular), and
20% (slow) for the total amount of data to measure the
MM and MSTD. Fig. 1 presents 250 sequential samples of
a healthy bearing within 80 seconds.

On the left side, it is presented scatter plot of γ × FD,
where the center and the standard deviation are available.
On the right side, the FD series and γ parameter monitor
the center behavior.

The faster MM has the sensitivity to detect intermittent
outliers during transient changes. In Fig. 2, after 250
data points, the healthy bearing changes to a damaged
condition gradually. The MM detects anomalies in the FD
and γ parameter, while the persistence of the outliers alters
the slower MM permanently.
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Figure 1. Clustering and MM behavior of γ and FD.

Figure 2. The center transition monitored by γ and FD.

The transition from healthy signals to damaged bearing
signals creates a path from one cluster to another cluster.
Fig. 3 presents the same transition of Fig. 2 by the
viewpoint of each clusters.

Figure 3. The data transition from c1 to c2.

The first cluster (c1) is the healthy bearing condition, while
the c2 is the damaged bearing condition. The standard
deviation of each cluster limits the transient region, while
the persistence of outliers from a c1 viewpoint represents
the data migration from the healthy center. Fig. 4 presents
the MM, MSTD, and the data migration.

Figure 4. Data migration boundaries from c1 and c2
viewpoints.

From the c1 perspective, the cluster standard deviation
defines a border for the transition region, while the MSTD
(Slow Std + and Slow Std -) limits the region. From c2
perspective, there is a different border for the transition
region, represented by another straight line enclosing the
transition data points.

The slow MM and MSTD (yellow and purple) tracking the
data migration, creating a hyperplane on which a SVM
may distinguish clusters. In summary, the MM allows the
initialization of the clusters (c1) and (c2), while the MSTD
defines the data migration path. Furthermore, the nuclei
migration velocity and trajectory determine the bearing
damage trend.

2.8 Support Vector Machines

The SVM builds classification hyperplanes based on opti-
mum weight vector wo, establishing an optimization prob-
lem with Lagrange multipliers (λi) limited by a constant
V, as follows:

max
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjdidjxi
Txj

subject to
N∑
i=1

λidi = 0 0 ≤ λi ≤ V

where N is the size of an labelled database with variables
xi and label di. The optimal weight vectors wo and bias
bo are according to Eqs. 9 and 10:

wo =

N∑
i=1

λidixi (9)

bo = 1− wTo xi iff di = 1 (10)

The kernel xTi xj can be replaced by a product functions
k(x, x′). It is necessary that k(x, x′) be symmetrical, con-
tinuous, have eigenfunctions φ(x) and φ(x′) with positive
eigenvalues, and satisfy the Mercer’s condition (Haykin,
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2010). Assuming that k1 and k2 are kernels, the following
properties of Eq. 11 and 12 hold.

k(x, x′) = ηk1(x, x′) + k2(x, x′) for η ≥ 0 (11)

ks(x, x
′) = exp

(−||x− x′||2
2σ2

)
(12)

In this case, the SVM is a machine learning algorithm that
provide separation by kernels.

2.9 Uninorms

Uninorm is a set operator, which generalizes the T-norm
and S-norm of fuzzy set theory (Souza et al., 2018). A T-
norm is a mapping defined in T : [0, 1]n → [0, 1] which
must satisfy the following conditions:

• Comutativity: T (a, b) = T (b, a)
• Associativity: T (a, T (b, c)) = T (T (a, b), c)
• Monocity: T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d
• Identity: T (a, 1) = a

The dual form of T-norms are the S-norms, obtained by
the reversal operation, as follows:

S(a, b) = 1− T (1− a, 1− b) (13)

In Pedrycz (2006), the author explains that Commuta-
tivity, Associativity, and Monocity of T-norm persist for
S-norm, however, the Identity is S(a, 0) = a. Thus, the
Uninorm is an operator with neutral element g, as follows:

g ∈ [0, 1]→ R
{
g = 1 then U → T-Norm

g = 0 then U → S-Norm

A family of Uninorms is characterized by:

Tg ≡ T (
a

g
,
b

g
) and Sg ≡ S

(a− g
1− g

,
b− g
1− g

)

U(a, b, g) =


gTg if a, b ∈ [0, g)

g + (1− g)Sg if a, b ∈ [g, 1]

min or max (a,b) if otherwise

With the definitions of Uninorm, it is possible to construct
the operator Uni, as follows:

Uni(x, x′, g) =


gTg if xi ∈ [0, g)

g + (1− g)Sg if xi ∈ [g, 1]

max(x, x′) if g = [0, 0.5)

min(x, x′) if g = [0.5, 1]

The parameter g can change continuously, then the
Uni(x, x′, g) operator can assume intermediate values be-
tween the T-norm and S-norm. This work uses the product
T-norm and the respective S-norm, as follows:

Product

{
Tg(a, b) = a× b
Sg(a, b) = 1− (1− a)× (1− b)

The Uni(x, x′, g) operator can provide a scalar, and there-
fore, the properties described in Eq. 11 and 12 enable this
operator to scale a Gaussian kernel ks(x, x

′) according to:

k(x, x′, g) =
1

Uni(x, x′, g)
× ks(x, x′) (14)

In summary, the variation of the parameter g scale
ks(x, x

′) between the S-norm and T-norm of the input
variables. This work uses a SVM with a gaussian kernel to
perform classification, and the Uni operator (Uni-SVM) to
scale the gaussian kernel, improving the convergence in a
non-Boolean frame.

3. DATA DESCRIPTION

The validations of this work use the dataset developed
by the Chair of Design and Drive Technology, from the
University of Paderborn in Germany, which contains the
current-based signals from an electric motor with damaged
and healthy bearings (Barcelos et al., 2021). Table 1
describes this data set with the bearing damage location
(Inner Raceway - IR and Outer Raceway - OR) in the
second column.

The third column presents the damages, where an elec-
tric drilling machine (EDM) provides artificial damages,
a drilling machine produces the holes, and an electric
engraver (EE) makes the scratches. The others two types
of damages are pitting and indentations by plastic defor-
mations.

Table 1. The characteristics of the damages in
the bearings of the Paderborn time series

Serie Local Damage Severity Characteristic

KA01 OR EDM 1 single point
KA07 OR Drilling 1 single point
KA08 OR Drilling 2 single point
KA05 OR EE 1 single point
KA04 OR Pitting 1 single point
KA16 IR & OR Pitting 2 single point
KA22 OR Pitting 1 single point
KI16 IR Pitting 3 single point
KI17 IR Pitting 1 single point
KI18 IR Pitting 2 single point
KA30 OR Indentations 1 distributed
KB27 IR & OR Indentations 1 distributed
KB24 IR & OR Indentations 3 distributed
KI04 IR & OR Indentations 1 single point

The severity express the extension of each damage, rep-
resented on an increasing scale of the degree of damage
(1-low, 2-medium, 3-high). And finally, the fifth column is
the characteristic of the damages, as described in section
1. These time series and the healthy bearing K002, are
available at speeds of 900 rpm and 1500 rpm (N09 and
N15), with loading of conditions 0.1 Nm and 0.7 Nm (M01
and M07).

4. MODELING PROCEDURE

4.1 Feature extraction

In this work, the α-SPDF parameters for each time se-
ries in Paderborn database are determined by the log-
maximum likelihood fitting according to Mittnik et al.
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(1999). The MI(xi, xj , (τ + 1)) and MI(xi, xj , τ) ratios,
finds a local minimum to project each time series into
orbits (Eq. 2). Fig. 5 presents the K002 and KA16 orbits
with τ = 400 bytes in different load and speed conditions
(i.e. 1.56 ms).

Figure 5. The K002 versus KA16 orbits in N15M01 (black
and green), N09M07 (yellow and blue), and N15M07
(orange and light blue)

In these orbits, the peaks are evident, the projections are
unfolded, the angular difference in N09M07 condition is
caused by the motor speed, while the lower magnitude of
N15M01 is caused by the load conditions. Consequently,
the fractal dimension DM is determined for each orbit
using the algorithm established by Maragos and Sun
(1993).

The same approach that unfold orbits from time series can
be extended to Fourier transforms. In this case, the param-
eter τ from Eq. 2 is replaced by a frequency delay (θ) while
the MI minimization project the Fourier transform into
degenerate orbits with delayed coordinates (FTDC). Fig.
6 presents the FTDC for K002, KA04, KA16, and KA22
signals with ai = [1.00, 1.00, 1.00], bi = [1.10, 1.10, 1.10],
and θ = 120 bytes.

Figure 6. The FTDC projection for K002, KA04, KA16,
and KA22 under N15M07 conditions.

The axes x(ω) and x(ω−2θ) captures the general behavior,
dynamics and noises, while the plane x(ω)×x(ω−θ) over-
lap the harmonics associated with the damages, improving
intra-class separation. Fig. 7 presents the FTDC for all
time series in N15M07 condition.

Figure 7. The FTDC for all signals under N15M07 condi-
tions

The trio KI16, KI17, and KI18 have different severity for
the pitting damage, producing almost the same harmonics
with different magnitudes, which are mapped on distant
points over the support x(w). These patterns also happen
with the trio KA30, KB24, and KB27 for distributed
damages, which are scattered over the support, improving
intra-class separation.

Another relevant aspect for FTDC is that the K002 signal,
therefore without harmonics from damages, is mapped
close to the origin over the x(w) support. Otherwise,
the α-SPDF parameters and DM can perform extra-
class separation, improving the classifiers accuracy. Fig.
8 presents the parameter γ and the DM behavior for each
motor condition.

Figure 8. The DM and the γ parameter of N15M01 (blue),
N09M07 (orange), and N15M07 (gray) conditions.

The extra-class separation is evident in the γ × DM frame.
Indeed, the γ parameter alone can identify the damage
condition, while the DM can be associated with the load.
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4.2 Setup and configurations

The α-SPDF parameters, DM , the FTDC measures {x(ω),
max(x(ω− θ))}, and the features from the peaks are used
to construct the database. The FCM has five Gaussian
membership functions to perform the BCM and damage
detection, while the Uni-SVM classifies the damages. In
this case, the parameters g, bi, and ζi start at 0.500, [1.00,
1.00, 1.00], and 2.000 respectively, and they are updated
in 0.001 steps per epoch.

Since the bi parameters influence the orbit’s convexity,
they are updated only after the g and ζi parameters have
been set, reducing computational efforts and avoiding non-
convex optimization algorithms. In the supervised learning
approach, the training set contains 70% of data, while the
validation set contains 30% of data, with a stop criterion
of 0.005%. In the unlabelled learning, these parameters are
adjusted only after the cluster migration, and therefore the
training set is absent.

5. RESULTS

The parameters and features for the healthy bearing K002
are presented in Table 2. The FTDC measurements are
consistent over all load and speed conditions.

Table 2. Parameters and features of K002

N15M01 N09M07 N15M07

α 2.000 1.999 1.999
β 0.933 ± 0.024 0.031 ± 0.081 0.300 ± 0.051
γ 0.688 ± 0.011 1.246 ± 0.068 1.270 ± 0.030
δ -0.019 ± 0.020 -0.017 ± 0.016 -0.024 ± 0.019
Ip 0.112 ± 0.2276 0.116 ± 0.303 0.117 ± 0.389
Ipk 144.841 ± 8.325 265.950 ± 6.121 171.547 ± 3.127
Iw 3.181 ± 22.038 3.324 ± 29.718 2.993 ± 22.251
Iwk 191.554 ± 1.890 304.880 ± 1.587 192.523 ± 1.796
DM 1.293 ± 0.030 1.213 ± 0.010 1.216 ± 0.003
FTDC (0.248, 2.731) (0.246, 2.748) (0.244, 2.752)

A relevant observation is that the magnitude of α < 2.000
and β 6= 0 or 1 defines a sub-Gaussian PDF. Indeed,
only the N15M01 condition can be properly fitted into a
Gaussian distribution with a reduced relative error, while
the others loading and speed conditions properly typify
sub-Gaussian distributions. The average of the parameters
and features from the damaged bearings are presented in
Table 3.

Table 3. Parameters and features from the
damaged bearings

N15M01 N09M07 N15M07

α 1.999 1.999 1.999
β 0.064 ± 0.807 -0.038 ± 0.314 0.086 ± 0.463
γ 0.642 ± 0.028 1.171 ± 0.028 1.234 ± 0.020
δ -0.021 ± 0.023 -0.031 ± 0.026 -0.035 ± 0.029
Ip 0.114 ± 0.210 0.118 ± 0.289 0.116 ± 0.375
Ipk 145.789 ± 8.379 259.349 ± 6.005 174.514 ± 3.219
Iw 3.193 ± 22.089 3.342 ± 29.632 3.019 ± 22.426
Iwk 191.249 ± 1.905 304.039 ± 1.645 191.640 ± 1.702
DM 1.294 ± 0.036 1.222 ± 0.007 1.222 ± 0.004

Comparing the results from Table 2 and Table 3, the
parameter β is sensitive to load and speed, the features Ipk
and γ may discriminate the classes, while theDM increases

when the damages occur. Since the FTDC output an intra-
class measure for several types of bearings, the average
of these outputs is an equilibrium point in the support
(e.g., a mass center), without physical meaning. In this
context, an adequate description of FTDC measurements
in N15M07 condition is introduced in Fig 7. Moreover, the
N15M01 and N09M07 conditions produce a similar pattern
and therefore are omitted for the sake of brevity.

In summary, the FTDC measurements improve the classi-
fiers accuracy, increasing the number of quasi-orthogonal
vectors available in this database. Consequently, Fig. 9
present the Uni-SVM classifications in supervised learning
context to verify the FTDC behavior, considering random
signals (i.e., number of clusters) from the Paderborn data
set.

Figure 9. The Uni-SVM accuracy with FTDC (blue) and
without FTDC as feature (orange).

In this case, when the number of clusters remains less than
four (i.e., three damages), the Uni-SVM algorithm achieves
100% of accuracy. Furthermore, the empirical boundary for
this approach is eight clusters, and therefore the following
experiments are performed in this condition. The Uni-
SVM accuracy for labelled and unlabelled databases are
presented in Table 4.

Table 4. The Uni-SVM peformance with la-
belled and unlabelled databases.

Labelled Unlabelled Uni(x, x’,g)

N09M07 68.37% 65.05% 1.000
92.99% 84.45% 0.235
96.37% 91.89% 0.159

N15M01 74.53% 70.20% 1.000
92.32% 85.52% 0.210
94.24% 92.12% 0.120

N15M07 82.45% 78.86% 1.00
95.00% 90.35% 0.282
96.39% 93.55% 0.162

When the kernel Uni(x, x’, g) is set to 1.000, the Uni-SVM
behaves like a Gaussian SVM. However, scaling the Uni-
kernel to 1/0.16 provide the highest accuracy for N09M07
and N15M07 conditions, while the N15M01 condition is
better classified at 1/0.12. Moreover, the identification of
eight clusters is an unusual situation, since most studies
with current-based signals will distinguish three or four
bearing damages.
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6. CONCLUSION

This work proposes an innovative method for bearing con-
dition monitoring, using a density-based approach, fractal
dimension, and the Fourier transform into delayed coor-
dinates from current-based signals. The FCM algorithm
create clusters to identify bearing damages, while the Uni-
SVM perform classification. The FTDC measures improve
intra-class separation, while the fractal dimension and the
α-SPDF parameters improve extra-class classification.

The fuzzy c-means algorithm allows a fast convergence
of the SVM, selecting the most appropriate data points
to perform classification. Indeed, with these approaches
and techniques, the classification accuracy achieves 100%
for four clusters. Moreover, tests performed with eight
clusters in labelled and unlabelled databases reach 96%
and 93% of accuracy in N15M07 condition, respectively.
The main advantage of this method is the capability to
perform current-based bearing condition monitoring and
damage detection without any prior knowledge of the
bearing dimensions, damage location, severity, or damage
type.

As a suggestion for future work, is the application of
another method of extracting non-conventional features,
for comparison purposes with the proposed in this work.
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