










 

 

     

 

database and then ML methods embed make predictions 

about data window to check if there is an OFC or not. These 

ML methods can be trained by user, before simulation, with 

specified datasets in .csv extension or uses by default Pickle 

stored datasets. Besides that, a graphical model of simulation 

is plot to user and it offers the possibility to export graph, 

report on txt format and database query in .xlsx Excel 

readable extension.  

This integration is thought to data science methods on 

accessible software which can read .xlsx plans or inside 

excel. Although, MariaDB can be integrated to data science 

software in parallel to provide metrics about emulated 

process or data being acquired in real time. About benchmark 

simulation results, around DT method performance on flight 

simulation and OFCs identification, the summarized result 

for proposed scenarios is presented by table 8: 

Table 8.  DT Method Simulation Summarized Results. 

Scenario 

Control 

Signal 

Amplitude 

Sensor 

Signal 

Amplitude 

OFC 

Identified 
Accuracy 

Ideal 0.0075° 0.164° 10.00% 55.00% 

Normal 0.12° 0.50° 33.50% 44.00% 

Severe 33° 50° 56.25% 57.50% 

Stormy 1.29° 2.40° 64.25% 49.75% 

By analyzing table 8, it´s possible to check that as scenario 

goes to aggressive behavior the OFC identification 

percentage increases and accuracy deviates for each scenario 

keeping average in 51.56%.  

On table 8, it´s possible to check the accomplished 

requirements over IFAC´s benchmark, R.03 wasn´t reach 

because sometimes three periods of oscillation could not be 

identified and R.06 because lack of false alarms, only 4.75%. 

It can be improved by working on engineering characteristics, 

however this paper didn´t explore such features. 

6. CONCLUSION 

In conclusion, SS are fundamental tools for applying ML on 

industry 4.0 smart factories scenario, which requires 

intelligent decision making guided by data analytics or ML 

methods. This paper main objective has been reached by SS 

software development that can be download on GitHub by 

cloning the repository: https://github.com/marcelo-feliciano-

filho/TCC_MFF. Meanwhile, IFAC´s benchmark has been 

partially solved by it, however this paper´s main contribution 

isn´t only software development methods. It is to inspire 

future works to focus on data-driven maintenance and 

engineering characteristics to improve Decision Tree model 

hyperparameters or include more ML methods to software. 
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