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Abstract: We assess the robustness qualities of unconstrained gain-scheduled Model Predictive
Control (MPC) algorithms for Linear Parameter Varying (LPV) systems. Herein, we generalise
finite-horizon robustness analyses of linear time-variant processes, describing the input-output
behaviour of the uncertainties through Integral Quadratic Constraints (IQCs). In our case, the
uncertainties arise due to the unavailability of the future scheduling variables, from the MPC
viewpoint. Accordingly, our analysis procedure computes closed-loop robust induced gains.

Resumo: Avaliamos a robustez de algoritmos irrestritos de Controle Preditivo baseados em
Modelo (MPC) aplicados para sistemas Lineares a Parâmetros Variantes (LPV). Generalizamos
resultados anteriores de análise de robustez de horizonte finito de processos lineares variantes no
tempo, descrevendo o comportamento de entrada-sáıda das incertezas por meio de Restrições
Quadráticas Integrais. Neste caso, as incertezas aparecem devido à indisponibilidade das
variáveis de agendamento futuras, do ponto-de-vista do controlador. O procedimento de análise
calcula os ganhos induzidos L2 e L2-a-Euclidiano para o sistema em malha fechada.

Keywords: Robustness analysis; Model Predictive Control; Linear Parameter Varying Systems;
Integral Quadratic Constraints; Dissipativity.

Palavras-chaves: Análise de robutez; Controle Preditivo baseado em modelo; Sistemas Lineares
a Parâmetros Variantes; Restrições Quadráticas Integrais; Dissipatividade.

1. INTRODUCTION

In this paper, we are interested in assessing the robustness
qualities of Model Predictive Control (MPC) schemes. As
argued by Allan et al. (2017), robust MPC is usually
synthesised with the use of terminal ingredients and con-
straints tightening, see e.g. (Santos et al., 2019). Never-
theless, there are no known algorithms for obtaining opti-
mal robust positively invariant terminal set for nonlinear
systems, which means that approximations are usually
needed, as state Köhler et al. (2020).

Instead of synthesising terminal ingredients, a different
approach is brought to focus: we provide a structured
robustness analysis tool based on Integral Quadratic Con-
straint (IQC) arguments in the context of MPC. The
toolkit is naturally in compass with the MPC framework,
since the IQCs imply in the dissipativity of a finite-horizon
quadratic cost function. Basically, if the MPC cost func-
tion dissipates w.r.t. the uncertainty description, the IQC
arguments hold and thus the closed-loop is ensured robust.

More specifically, our analyses are concerned with “gain-
scheduled” MPC algorithms. By this, we mean MPC al-
gorithms conceived for Linear Parameter Varying (LPV)

? This work has been supported by CNPq (304032/2019 − 0) and
ITEA3 European project (15016, EMPHYSIS).

models, but only taking into account the available schedul-
ing information at each sampling instant. A through re-
view on LPV MPC schemes is presented in Morato et al.
(2020), which highlights that gain-scheduled algorithms
are widely used (e.g. Hanema et al. (2017); Abbas et al.
(2018)), especially due to the unavailability of the LPV
scheduling parameters along future horizons.

We stress that the typical notions of robustness (e.g.
gain/phase margins) are insufficient for LPV systems. We
recall the argument from (Seiler et al., 2019): evaluat-
ing the stability of a gain-scheduled model can lead to
erroneous conclusions, since there exist unstable models
x(k + 1) = A(ρ(k))x(k) which are stable for frozen values
of ρ(k).

The analyses in this work are developed with regard
to the structure in Fig. 1: a nominal LPV prediction
model G with a state-feedback interconnection κ (the gain-
scheduled MPC), and a disturbance interconnection ∆,
which represents the prediction mismatches together with
possible nonlinearities and uncertainties upon G. As in
(Cisneros and Werner, 2018), we describe the predictive
controller as a parameter-dependent feedback gain, based
on the instaneous values of the scheduling parameter, i.e.
ρ(k). Furthermore, as in (Megretski and Rantzer, 1997),
we describe the input-output of ∆ with IQCs.

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 293 DOI: 10.20906/sbai.v1i1.2585



Figure 1. Interconnection Fu (Fl (G, κ) ,∆) of a nominal
prediction model G, a gain-scheduled MPC scheme κ,
and uncertainties ∆.

Considering this structure, the main contribution of this
paper is the extension and generalisation of the result from
(Seiler et al., 2019) to the context of LPV processes regu-
lated under gain-scheduled MPC. We use the time-varying
finite-horizon robustness analysis with IQCs in order to
provide the robust induced L2 and L2-to-Euclidean gains
of the closed-loop system Fu (Fl (G, κ) ,∆).

This paper is organised as follows. In Section 2, we pro-
vide the basic gain-scheduled MPC setup, the parameter-
dependent state-feedback gain, the nominal performance
requirements. In Sec. 3, the main result is presented: we
provide bounds on the induced L2 and L2-to-Euclidean
gains of the closed-loop system. We analyse these bounds
through dissipation inequalities and IQCs, which lead to
Difference Linear Matrix Inequality (DLMI) remedies. In
Sec. 4, we compute the finite-horizon robustness metrics
of a benchmark example (a buck-boost DC-DC converter
system). General conclusions are drawn in Sec. 5.

Notation: Rn×m and Sn denote the set of n × m real
matrices and n× n real, symmetric matrices, respectively.
[?] denotes a symmetric term that can be inferred from its

context. The finite-horizon LNp2 norm (ofNp steps) of a sig-

nal v : [0, Np] → Rn is ‖v‖2,[0,Np] :=

√∑Np
i=0 (v(i)T v(i)).

A bounded norm ‖v‖2,[0,Np] < +∞ implies in v ∈ LNp2 .
The index set N[a,b] represents {i ∈ N | a ≤ i ≤ b}, with
0 ≤ a ≤ b. The value of a given variable v(k) at time
instant k+ i, computed based on the information available
at instant k, is denoted v(k + i|k).

2. PRELIMINARIES: MPC SETUP AND NOMINAL
PERFORMANCE

2.1 Discrete-time LPV Process

Consider the following discrete-time LPV system G:

x(k + 1) =A(ρ(k))x(k) +B1(ρ(k))u(k) +B2(ρ(k))d(k) ,

y(k) =C(ρ(k))x(k) +D1(ρ(k))u(k) , (1)

where x ∈ Rnx represents the system states, u ∈ Rnu
denotes the control inputs, d ∈ Rnd stands for the distur-
bance inputs, y ∈ Rny are the outputs, and ρ ∈ P ⊂ Rnp
are the scheduling variables. The scheduling set P is com-
pact, convex and known. Through the sequel, we assume
that the model matrices A, B1, . . . , and D1 are bounded
affine 1 maps of the scheduling variables ρ. With regard
1 Other scheduling dependencies could be considered. We choose an
affine representation for notation simplicity only.

to Fig. 1, Eq. (1) does not yet include the uncertainty
variables v and w, which are defined in the sequel.

Note that ρ is only measurable at instant k and unknown
for any future instant k + i, with i ≥ 1. Nevertheless, we
assume that δρ(k + 1) = ρ(k + 1) − ρ(k) is bounded to a
known compact set δP. Note that considering bounded
rates of scheduling parameter variations is standard in
LPV research and practice (Jungers et al., 2011; Moham-
madpour and Scherer, 2012).

2.2 Quadratic Performance Cost

We consider that G is regulated by a state-feedback
predictive control scheme κ, as illustrated in Fig. 1. This
control scheme is synthesised in order to minimise a
quadratic performance cost function J along a prediction
horizon of Np steps, as detailed in (Morato et al., 2020).
This parameter-dependent finite-horizon cost function is
defined as follows, with ρi = ρ(k + i− 1):

Jk =

V (x(k+Np))︷ ︸︸ ︷
x(k +Np)

TP (ρNp)x(k +Np)

+

Np−1∑
i=1

[
x(k + i)

u(k + i− 1)
d(k + i− 1)

]T Q(ρi) 0 S
0 R(ρi) 0
ST 0 T

[ x(k + i)
u(k + i− 1)
d(k + i− 1)

]
︸ ︷︷ ︸

`(x(k+i),u(k+i−1),d(k+i−1))

.

We name V (x) the terminal offset cost and `(x, u, d) the
stage cost. P � 0, Q � 0, S, R, and T are weighting
functions Usually, d is not measurable along the future
horizon.

2.3 Nominal Gain-scheduled MPC

MPC works with a receding horizon paradigm: at each
instant k, Jk is minimised w.r.t. to a prediction model.
Since only ρ(k) is known (and the future values of ρ(k+ i)
are not), we consider a gain-scheduled approach, based on
nominal predictions, in the absence of disturbances and
uncertainties. This is, the prediction of the future variables
of G are made through Eq. (1) using ρ(k + i) = ρ(k),
and d(k + i − 1)) = 0,∀i ∈ N[1,Np−1]. Consider that
the MPC is unconstrained, for simplicity. Therefore, it
generates a parameter-dependent state-feedback control
u(k) = κ(ρ(k))x(k), as demonstrated in (Jungers et al.,
2011, Theorem 4.4) and (Cisneros and Werner, 2020,
Theorem 2). Through the sequel, we assume that κ(ρ(k)) is
known. In practice, this is a stabilising feedback gain κ(ρ)
found to ensure that the closed-loop dynamics (A(ρ) +
B1(ρ)κ(ρk)) are nominally stable for all ρ, ρk ∈ P.

2.4 Closed-Loop System

The closed-loop system Gπ := Fl(G, κ) derived from the
lower interconnection the LPV system G and the gain-
scheduled MPC κ in Fig. 1 implies in the following nominal
dynamics:

x(k + 1) =Aπ(ρk)x(k) +B2(ρk)d(k) ,

y(k) =Cπ(ρk)x(k) , (2)
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where ρk denotes the frozen value of the scheduling vari-
able at the sampling instant k. Nominal stability is verified
with regard to A(ρk) + B1(ρk)κ(ρk), for all ρk, as long
as the parameters remain constant along the prediction
horizon. For notation compactness, we use Aπ(ρ) and
Cπ(ρ) in order to indicate, respectively, A(ρ)+B1(ρ)κ(ρk)
and C(ρ) + D1(ρ)κ(ρk), being ρk the frozen value of the
scheduling variable ρ at instant k.

Nevertheless, as previously discussed, evaluating the ro-
bust stability of Gπ for fixed values of ρk can lead to
erroneous conclusions, since, in practice, the scheduling
parameters vary along time. Accordingly, we provide ro-
bustness assessments due to the variability of ρ(k + i)
in Sec. 3. Before that, in any case, present performance
metrics and some preliminary results.

2.5 Performance Metrics

As in (Seiler et al., 2019), we consider two specific finite-
horizon metrics: the induced L2 and L2-to-Euclidean gains
of Gπ. The first metric is as follows:

‖Gπ‖2,[0,Np] := sup

‖y‖2,[0,Np]

‖d‖2,[0,Np]

∣∣∣∣∣∣
x(k) = 0,
d 6= 0,

d ∈ LNp2

 .

As long as d ∈ LNp2 , this gain is finite for any finite predic-
tion horizon Np; the metric gives the maximal disturbance-
to-output energy ratio of the closed-loop system Gπ. Note
that Jk can be expressed in terms of ‖Gπ‖2,[0,Np] with
a proper choice of the MPC weights (Q,R, S, T ). Con-
sider ρi = ρ(k + i − 1). Let γ > 0 be given and take
a null terminal cost V (x). Then, with S = 0, T =
−γ2Ind , R = D1(ρi)

TD1(ρi), and Q = C(ρi)
TC(ρki) +

2C(ρi)
TD1(ρi)κ(ρk), it follows that Jk = ‖y‖22,[0,Np] −

γ2‖d‖22,[0,Np]. Accordingly, Jk ≤ 0,∀d ∈ LNp2 if and only

if ‖Gπ‖2,[0,Np] ≤ γ.

The L2-to-Euclidean gain of Gπ is well-defined since there
is no direct disturbance-to-output transfer in Eq. (2).
Hence, this metric provides the maximal output y at the

last instant of the prediction horizon due to d ∈ LNp2 .
Therefore, this gain can be used to compute the set of
states x(k+Np) reachable by disturbances of a given norm
from x(k). It is defined as follows:

‖Gπ‖E,[0,Np] := sup

‖y(k +Np|k)‖2
‖d‖2,[0,Np]

∣∣∣∣∣∣
x(k) = 0,
d 6= 0,

d ∈ LNp2

 .

The MPC cost Jk can also be given in terms of
‖Gπ‖E,[0,Np]. Consider ρi = ρ(k + i − 1). Let γ > 0

be given and take Q = R = S = 0, T = −γ2Ind and
P = CTπ (ρNp)Cπ(ρNp). Thus, it follows that Jk = ‖y(k +

Np|k)‖22 − γ2‖d‖22,[0,Np] and, thus, Jk ≤ 0,∀d ∈ LNp2 if and

only if ‖Gπ‖E,[0,Np] ≤ γ.

The set of reachable states from the initial conditions x(k)
can be given in terms of this induced norm:

Rβ :=
{
x(k +Np) : ‖d‖2,[0,Np] ≤ β

}
. (3)

Note that if Cπ(ρ) is an identity Inx and ‖Gπ‖E,[0,Np] ≤ γ,
then ‖x(k + Np|k)‖2 ≤ γ‖d‖2,[0,Np] and Rβ is contained
within a sphere of radius γβ, see the demonstration in
(Seiler et al., 2019).

2.6 A Bounded Real Lemma for LNp2 Sequences

Next, we provide a lemma that gives an equivalence
between the bounds of the MPC cost Jk and the existence
of a solution a Ricatti Differential Inequality (RDI). This
result is an extension of the induced L2 gain of LTV
systems in (Başar and Bernhard, 2008) to the finite-
horizon LPV case. In Seiler et al. (2019), one can find the
equivalence of the RDIs to Ricatti Differential Equations
(RDEs), but they will no be addressed in this paper.
Furthermore, we stress that there exist corresponding
conditions for Linear Time-Invariant (LTI) systems and
infinite-horizon performances.

Lemma 1. (Upper bound on Jk and RDI).
Let the MPC weights (P,Q,R, S, T ) be given with T ≺ 0.
Then, the following statements are equivalent:

(1) There exists a scalar ε > 0 s.t. Jk ≤ −ε‖d‖22,[0,Np],∀d ∈
LNp2 .

(2) There exists a scalar ε > 0 and a parameter-
dependent map Y : P → Snx such that Y (ρ(k +
Np − 1)) � P and the following RDI holds with
ρi = ρk + iδρ for all i ∈ N[1,Np−1], ρk, ρ−1 ∈ P and
δρ ∈ δP:

ATπ (ρi)Y (ρi)Aπ(ρi)− Y (ρi−1)

+(Q(ρi−1) + κT (ρk)R(ρi−1)κ(ρk))

−(Y (ρi−1)B2(ρi−1) + S)T−1(Y (ρi−1)B2(ρi−1) + S)T

� −εInx .

Proof 1. Apply a Schur complement over T ≺ 0 and
assume there exists a complementary scalar ε̆ > 0 s.t.:[

ATπ (ρi)Y (ρi)Aπ(ρi)− Y (ρi−1) Y (ρi−1)B2(ρi−1)
? 0

]
(4)

+

[
(Q(ρi−1) + κT (ρk)R(ρi−1)κ(ρk)) S

? T

]
≤ −ε̆Inx .

Let x(k) be a solution of the closed-loop LPV system Gπ,
departing form the initial condition x(0) = 0 and moving

due to the load disturbance d ∈ LNp2 . Consider the storage

function V (x) = xTY (ρ)x and use Q̆(ρi−1) = (Q(ρi−1) +
κ(ρk)TR(ρi−1)κ(ρk)). Left- and right-multiply Ineq. (4) by
[x(k+i) d(k+i)]T and its transpose, respectively, to obtain:

V (x(k + 1))− V (x(k)) + ε̆

[
x(k)
d(k)

]T [
x(k)
d(k)

]
(5)

+

[
x(k + i)
d(k + i)

]T [
Q̆(ρi−1) S
ST T

] [
x(k + i)
d(k + i)

]
≤ 0 .

Applying a sum over Ineq. (5) from sampling instants k to
k +Np − 1 yields:
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V (x(k +Np))− V (x(0)) + ε̆

∥∥∥∥[ xd
]∥∥∥∥2

2,[0,Np]

+

Np−1∑
i=1

[
x(k + i)

d(k + i− 1)

]T [
Q̆(ρi−1) S
ST T

] [
x(k + i)

d(k + i− 1)

]
≤ 0 .

Applying the boundary conditions Y (ρ(k +Np − 1)) � P
and x(k) = 0 implies in Jk ≤ −ε̆‖d‖22,[0,Np], which is a

valid bound for any d ∈ LNp2 . This concludes the proof.

Nominal performance of the gain-scheduled MPC is en-
sured if there exists a parameter-dependent Y (ρ) map
that satisfies the RDI in Lemma 1. Nevertheless, the sat-
isfaction of this inequality must hold for all scheduling
parameter variations. A simple option is to verify the RDI
over a sufficiently dense grid over δρ ∈ δP for each ρk
and, then, re-check it over a denser grid in this three
dimensional plane, see e.g. (Cisneros and Werner, 2020).

3. MAIN RESULT: ROBUSTNESS AND IQCS

As previously discussed, we consider a gain-scheduled
MPC synthesis, for which the feedback gain is parameter-
dependent on the instantaneous scheduling value, i.e.
u(k) = κ(ρk)x(k). Nevertheless, the scheduling parameters
vary along the prediction horizon, which means that the
nominal closed-loop model in Eq. (2) is only valid for
ρ(k + i) = ρk,∀i ∈ N[1,Np−1].

We consider the following uncertain model, which describe
the real system trajectories:

x(k + 1) =Aπ(ρk)x(k) +B2(ρ(k))d(k) + w(k) ,

y(k) =Cπ(ρ(k))x(k) , (6)

where v(k) = x(k), xw(0) = 0, and:

xw(k + 1) =Aπ(ρ(k))xw(k) +Aπ(ρ(k)− ρk)v(k) ,

w(k) =Cwxw(k) . (7)

Through the sequel, we refer to ∆ as uncertainty, since
it may encompass not only the model-process mismatches
along the prediction horizon Np, but other kinds of per-
turbations as well, such as memory-less nonlinearities,
delays, etc, see (Scherer, 2001). In compact notation, we
use G∆ := Fu(Gπ,∆). As in previous papers, we consider
that G∆ is well-posed, refer to (Megretski and Rantzer,
1997, Definition 1). We note that G∆ can be given in an
LPV state-space realisation as follows:

x∆(k + 1) =A∆(ρ(k))x∆(k) +B∆,1(ρ(k))w(k) (8)

+B∆,2(ρ(k))d(k) ,

v(k) =C∆,1x∆(k) +D∆,1,1(ρ(k))w(k)

+D∆,1,2(ρ(k))d(k) ,

y(k) =C∆,2x∆(k) +D∆,2,1(ρ(k))w(k)

+D∆,2,2(ρ(k))d(k) ,

where x∆ := [x , xw]T and w := ∆v. In our analyses, we
consider that ‖∆‖∞ ≤ 1. This bound can be satisfied by
an adequate choice of the matrices in Eq. (8). Note that
w is an uncertainty input to the system.

3.1 Integral Quadratic Constraints

In order to demonstrate robust stability of the intercon-
nection represented by G∆, we will use the IQC frame-
work from (Megretski and Rantzer, 1997), adapted to the
discrete-time LPV context. We use these constraints to
describe the input-output behaviour of the uncertainty
interconnection ∆. As in Seiler et al. (2019), we use a
time-domain representation of such IQCs, but we stress
that frequency-domain constraints could also have been
used, see e.g. Seiler (2014).

The IQC formulation is set upon the outputs z of an LTI
filter Ψ, which has null initial conditions and is fed by the
uncertainty-related variables v and w. We enforce an IQC
relationship over z, considering the dynamics along the
whole the prediction horizon Np. The filter dynamics are
as follows:

xψ(k + 1) =Aψxψ(k) +Bψ,1v(k) +Bψ,2w(k) ,

z(k) =Cψxψ +Dψ,1v(k) +Dψ,2w(k) . (9)

The IQC is defined as follows: Let ψ ∈ RHnz×(nv+nw)
∞ and

M : P → Snz . An operator ∆ satisfies the IQC denoted

I(Ψ,M) if the following inequality holds for all v ∈ LNp2
with the interconnection w := ∆v:

Np−1∑
i=0

z(k + i)TM(ρ(k + i))z(k + i)≥ 0 . (10)

Specifically, we say that ∆ ∈ I(Ψ,M) if ∆ satisfies Ineq.
(10). In the following subsection, we show the correspond-
ing IQC formulation for the case when ∆ represents only
the LPV model-process mismatches.

3.2 IQC for Prediction Uncertainties

Take ∆ with ‖∆‖∞ ≤ 1 as gives Eq. (7) with Cw = Inv
and and nv = nx. Since ρ(k + i) = ρk + iδρ(k) is a time-
varying real parameter, we use z := xψ, with xψ = xw(0).
Note that, for k = 0, we have no prediction errors since ρk
and ρ−1 are known. Accordingly, we obtain:

xw(k + 1) = (A(ρ(k) +B1(ρ(k)κ(ρk))xw(k) (11)

+ (A(ρ(k)− ρk) +B(ρ(k)− ρk)κ(ρk))x(k) .

In this case, since Aπ(ρ) is nominally stable for all ρ ∈
P, we can choose ∆ as an LPV filter. Let us define
Ψ := diag{Inx , Inx} and M(ρ(k + i)) := diag{m11(ρ(k +
i)) , −m11(ρ(k + i))} with m11 : P → R such that
m11(ρ(k + i)) := |ρ(k + i)| ≥ 0,∀i ∈ N[0,Np]. Then,
∆ ∈ I(Ψ,M). For further details, refer to (Megretski
and Rantzer, 1997, Section VI.A) and (Seiler et al., 2019,
Example 5).

We stress that the size of the prediction horizon Np
plays a key role in the uncertainty description, since
(ρ(k) − ρk) grows with Np. Note that ρ(k + i) − ρk =∑i
j=1 δρ(k+ j) ∈ iδP. This means that as the horizon size

Np increases, we should expect the uncertainty’s effect to
become more significant. This implies in less robustness
(larger induced L2 and L2-to-Euclidean gains for G∆, for
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instance). Also, it is reasonable to expect that as Np grows,
the robustness metrics should become closer to the worst-
case infinite-horizon result. In theory, we expect to obtain
limNp→+∞ ‖Gπ‖2,[0,Np] → ‖Gπ‖2.

Complementary, we point out that a thorough library of
IQCs is provided in (Megretski and Rantzer, 1997, Section
VI), for the most diverse kinds of uncertainty descriptions.
The discussions on different IQC characterisations pre-
sented in (Fetzer et al., 2017; Scherer and Veenman, 2018)
are also very welcome to elucidate the context.

3.3 Robust Induced Gains

We will proceed by analysing the robustness of G∆ using
the auxiliary filter Ψ. Thus, in the sequel, the uncertainty
description w := ∆v plays no role, but the focus is cast
over the dynamics z.

Firstly, we convert the dynamics of the uncertain model
G∆ (Eq. (6)) and the LTI filter Ψ (Eq. (9)), which yields:

xe(k + 1) =Ae(ρ(k))xe +Be(ρ(k))µ(k) , (12)

z(k) =Ce,1xe(k) +Deµ(k) ,

y(k) =Ce,2xe(k) ,

where xe = [xT , xTψ ]T , µ = [wT , dT ]T and matrices are:

Ae(ρ) =

[
A(ρ) +B(ρ)κ(ρk) 0

Bψ,1 Aψ

]
,

Be(ρ) =

[
I B2(ρ)

Bψ,2 0

]
,De(ρ) = [Dψ,2 0 ]

T
,

Ce,1(ρ) =

[
DT
ψ,1

CTψ

]T
,Ce,2(ρ) =

[
(C(ρ) +D1(ρ)κ(ρk)T

0

]T
.

The following Lemmas use the extended model in Eq. (12)
and Lemma 1 to provide the robust induced L2 and L2-
to-Euclidean gains of Fu(Gπ,∆).

Lemma 2. Robust Induced L2 Gain
Let G be an LPV system defined by Eq. (1), controlled by
a gain-scheduled MPC feedback gain κ(ρk) s.t. the closed-
loop dynamics Gπ = Fl(G, κ) are given by Eq. (6). Let

∆ : LNp2 → LNp2 be an uncertainty operator. Assume
Fu(Gπ,∆) is well-posed and ∆ ∈ I(Ψ,M). Consider that
there exists scalars ε, γ > 0 and a parameter-dependent
map Y : P → Snx+nψ such that condition Y (ρ(k + Np −
1)) � P and that the following inequality holds with
ρi = ρk + iδρ, for all i ∈ N[1,Np−1], ρk, ρ−1 ∈ P and
δρ ∈ δP:[

ATe (ρi)Y (ρi)Ae(ρi)− Y (ρi−1) Y (ρi−1)Be(ρi−1)
? 0

]
(13)

+

[
Q̃(ρi−1) S

? T

]
+ [?]

T
M [Ce1(ρi−1) De(ρi−1) ] ≤ −εI .

Then, it follows that ‖Fu(Gπ,∆)‖2,[0,Np] < γ.

Proof 2. The proof follows directly from (Seiler et al.,
2019, Theorem 6), converting the time-varying terms
into scheduling parameter dependencies. Furthermore, se-
lect Q(ρi−1) = Ce,2(ρi−1)TCe,2(ρi−1), S = 0, T =
−γ2diag{0nw , Ind}.

Lemma 3. Robust Induced L2-to-Euclidean Gain
Let G be an LPV system defined by Eq. (1), controlled by
a gain-scheduled MPC feedback gain κ(ρk) s.t. the closed-
loop dynamics Gπ = Fl(G, κ) are given by Eq. (6). Let

∆ : LNp2 → LNp2 be an uncertainty operator. Assume
Fu(Gπ,∆) is well-posed and ∆ ∈ I(Ψ,M). Consider that
there exists scalars ε, γ > 0 and a parameter-dependent
map Y : P → Snx+nψ such that condition Y (ρNp−1) � P
and that Ineq. (13) holds with ρi = ρk + iδρ, for all
i ∈ N[1,Np−1], ρk, ρ−1 ∈ P and δρ ∈ δP. Then, it follows
that ‖Fu(Gπ,∆)‖E,[0,Np] < γ.

Proof 3. This Lemma is a mere adaptation of the prior.
For such, select Q̃ = S = 0, T = −γ2diag{0nw , Ind} and
P = Ce,2(ρNp−1)TCe,2(ρNp−1).

Remark 1. Lemmas 2 and 3 provide parameter-dependent
RDI solutions that can be used to bound the induced L2

and L2-to-Euclidean gains of G∆. Other metrics can be
used by a proper selection of the matrices in Lemma 1.

4. BENCHMARK EXAMPLE

Consider the DC-DC Buck-Boost converter benchmark
model (Lazar et al., 2008):

A =

(
1 0.0541

−0.1033 0.9909

)
, B1(ρ) =

(
2.619− ρ2

0.24 + ρ1

)
,

(14)

ρ = (0.2273x1 , 0.119x2)
T

, B2 = Inx , (15)

being x1 the inductor current, x2 the output tension, u a
duty-cycle input signal, and scheduling parameter sets:

P :=
{
ρ ∈ R2 : |ρ1| ≤ γ1, |ρ2| ≤ γ2

}
.

δP :=
{
δρ ∈ R2 : |δρ1| ≤ 0.086, |δρ2| ≤ 0.025

}
.

The system operates subject to additive load disturbance
bounded to the box d ∈ D ⊂ R2 such that ‖d(k)‖ ≤
0.02,∀k. Our results were obtained with Matlab, Yalmip,
and SDPT3 in a 2.4 GHz, 8 GB RAM Macintosh com-
puter.

We use the gain-scheduled synthesis from (Cisneros and
Werner, 2020, Theorem 2) with unitary tuning weights
in order to obtain a parameter-dependent state-feedback
MPC gain. Likewise, we use an LQR solution with the
same tuning weights in order to obtain the infinite-
horizon correspondence. For this system, in closed-loop,
the infinite-horizon worst-case induced L2 gain is of 1.2,
while the induced L2-to-Euclidean gain is of 0.8.

With the aid of Lemmas 2 and 3, we compute the
induced robust gains (L2 and L2-to-Euclidean) of the
closed-loop system with the gain-scheduled MPC feedback
Fu (Fl (G, κ) ,∆), where ∆ represents the model uncer-
tainties that arise when using a frozen LTI prediction at
each sampling instant. These gains are presented in Fig.
2, which clearly indicates that the uncertainties increase
with the size of the horizon. We stress that this is quite
logical result, since the real scheduling trajectory ρ(k+ j)
further differs from the frozen trajectory ρ̂(k+ j) = ρk for
longer predictions (larger Np).

The induced L2-to-Euclidean gain also serves to compute
the set of reachable states x(k+Np) with y = x in Eq. (3).
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Figure 2. Induced Robust Gains.

Accordingly, consider a control horizon of Np = 10 steps.
Then, since ‖Gπ‖E,[0,Np] ≤ 0.8 (see Fig. 2) and ‖d‖ ≤ 0.2,
there exists a terminal set Rβ which contains all possible
reachable states due to these disturbances.

Considering fifty random disturbance sequences at four
different initial conditions x(0) := [±0.5,±0.5]T , Fig. 3
depicts the phase-plane state trajectories converging to
the origin. The terminal values x(Np) are marked with
bold circled dots, while the reachable set of states Rβ is
represented as a blue disk with radius 0.16. Clearly, this
set indeed contains all terminal conditions x(Np), which
means that the computed induced robust gain is coherent.
In the context of MPC, this robustness metric can be used
to compute the region of attraction of the controller.

Figure 3. Closed-Loop system trajectories subject to ran-
dom bounded disturbances.

5. CONCLUSIONS

In this paper, we presented induced L2 and L2-to-
Euclidean robustness metrics for LPV systems controlled
under gain-scheduled unconstrained MPC algorithms. The
result is an extension of finite-horizon IQCs for LTV sys-
tems. The robust gains are shown to be valid trough a sim-
ple example. The same methodology is valid for invariant
systems subject to increasing, but limited, uncertainties.
For future works, the Lemmas presented herein will be
extended for the case of constrained MPCs.
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