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Abstract: This work presents the use of `1-regularization on the nonlinear formulation of
the Virtual Reference Feedback Tuning. When the controller has a substantial quantity of
parameters to be estimated, which tends to be the case in black-box nonlinear identification, the
least-squares method yields estimates with inadequate statistical properties. To handle that, the
use of `1-regularization on the controller estimation is proposed, reducing the variance and the
bias, as well as thresholding the unneeded controller parameters. In this paper three different
regularization methods are described and their algorithms are presented. For the purpose of
illustrating the main properties of these methods, two numerical examples are presented.
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1. INTRODUCTION

The control of dynamical systems is usually made through
the identification of the process, followed by the con-
troller’s design based on the model thus obtained and on
the performance requirements. In the Data-Driven (DD)
framework the ambition is to estimate a controller that
approximates the dynamical behavior of the process to a
specified Reference Model, without the intermediate step
of identifying a model (Bazanella et al., 2012).

In the midst of the DD methods, one of the most successful
is the Virtual Reference Feedback Tuning (VRFT) Campi
et al. (2002). This methodology is part of the direct
methods group, i.e. a single batch of input-output data
is requisite to tune the controller. Several extensions for
the VRFT have been researched and presented in the
literature: Lecchini et al. (2002) with a 2-degree of freedom
approach, Campestrini et al. (2011) to deal with Non-
minimum Phase (NMP) zeros of the plant, Campestrini
et al. (2016) which shows the MIMO case, and Campi
and Savaresi (2006) for the nonlinear scenario. In addition,
there is the iterative methods group, where the most
known and the pioneer is the Iterative Feedback Tuning
(IFT) Hjalmarsson et al. (1998). The must of iterative
methods is the sequence of experiments to improve the
controller’s parameters.

As a result of VRFT being a one-shot design and the
controller possessing a fixed configuration, the optimiza-
tion problem can be solved via the Least Squares (LS) or
the Instrumental Variables (IV) method. However, the fact
that theses methods display poor statistical properties is
a well-known fact, so that alternative approaches for the
optimization are still being sought Garcia and Bazanella
(2020).
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Consequently, as the estimates exhibits poor statistical
proprieties, the system’s closed-loop performance is di-
rectly affected. Hence, the method becomes less attractive
to be employed in real industrial applications where high
noise levels are present. Also, it is a well-known fact that
the majority of the systems show a nonlinearity, though
this aspect is often ignored in the control design.

Inside the DD community, there are fundamental stud-
ies about the design of nonlinear controllers aiming at a
closed-loop system with a linear behavior. These works
usually involve a considerable knowledge about the process
and the applied signal for achieving satisfactory estimates
Campi and Savaresi (2006). In Bazanella and Neuhaus
(2014), a new class of controllers is estimated through the
VRFT method: the rational and polynomial structures.
This rational structure is able to represent several real
systems, as it uses the previous input and output sig-
nals, however the algorithm used to estimate a rational
nonlinear system is a sequence of Least-Squares. Besides,
the work in Bazanella and Neuhaus (2014) produces a
controller with a complex structure, since it is does not
apply any `1-regularization technique.

In the DD framework, often there is very little - or no
- prior information on the process available. Under these
circumstances, an overparameterized controller structure
is required. Therefore, a new design tool is essential to
guarantee the best statistical proprieties possible. In the
linear monovariable - Single-Input Single-Output (SISO)
- context, the addition of the `2-regularization has been
discussed in Rallo et al. (2016); Formentin and Karimi
(2014), where authors include the regularization to reduce
the estimates covariance using instrumental variables and
enhance the system’s performance. Likewise, the work
Boeira (2018) presents a Bayesian perspective for the
multivariable VRFT method.

With these ideas in mind, this work’s main idea is to
exploit the `1-regularization to get better estimates on
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overparameterized controllers and yielding sparse ones.
The contributions of this paper are: comparing the already
proposed `1-regularization methods in the literature with
the one developed herein, analyze the noise effect and the
input signal on the estimates’ quality.

2. NONLINEAR VRFT

Given the following open-loop Single-Input Single-Output
(SISO) system

y(t) = Pu(t) +H(q)ε(t), (1)

where P is the nonlinear process, H(q) is the noise model,
y(t) and u(t) are the process’ input and output signals,
respectively, ε(t) is a zero-mean white noise signal with
variance σ2, and q is the forward-shift operator, i.e. qu(t) =
u(t + 1). The controller is linearly parameterized using
a linear class of controllers and a library of nonlinear
functions.

u(t) = C(v(t), ρ)

= ρTΦ(v(t)),
(2)

where v(t) = C̄(q)e(t), with C̄(q) being the linear part
of the controller, ρ is the parameters vector, and Φ(v(t))
is the regressor matrix formed by the library of nonlinear
function φ.

The Model Reference based design aims to solve the
following optimization problem

ρ∗ = arg min
ρ
Jy(ρ), (3)

Jy(ρ) , Ē[y(t, ρ)− yd(t)]2, (4)

where Ē[x(t)] = lim
N→∞

1

N

N∑
t=1

E[x(t)], and E[.] is the ex-

pected value. Jy(ρ) is the reference tracking performance
criterion, y(t, ρ) is the closed-loop system output signal
obtained with the controller C(v(t), ρ), whereas yd(t) is the
output collected through the ideal controller Cd(v(t)). Par-
ticularly, yd(t) = Td(q)r(t), Td(q) is the reference model
and r(t) is the reference signal. Hence, the ideal controller
is the one that achieves T (q, ρ) = Td(q). In other words,
r(t) is the input applied to the reference model that would
generate the measured output y(t).

Assumption 2.1. Matching condition - Cd ∈ C

∃ρ∗ : C(v(t), ρ∗) ≡ Cd(v(t), ρ) (5)

This condition is reciprocal with the assumption that the
system is in the model set.

The complexity of solving (4) is that it depends on the
unknown plant and it is a non-convex function. The VRFT
approach remodels this optimization problem by using the
Virtual Reference (VR). Firstly, a sufficiently rich signal
u(t) is applied to the plant and the output y(t) is measured,
then the virtual reference r(t) is determined as a result
of r(t) = T−1d (q)y(t). Figure 1 illustrates the experiment

and the mentioned signals. In this work, we propose an
extension of the linear signal, designated as v(t), through
a library of nonlinear functions defined as φ(v(t)) as in (6).

φ(v(t)) =

[ | | | | |
φ1(v(t)) φ2(v(t)) φ3(v(t)) ... φn(v(t−N))
| | | | |

]
(6)

P
y(t)e(t) u(t)+

−

r(t)

T−1d (q)

φ(.)C(q)

v(t)

Figure 1. Virtual reference feedback experiment.

Therefore, the VRFT goal is to solve the following opti-
mization problem

ρ∗ = arg min
ρ
JV R(ρ), (7)

JV R(ρ) , Ē[u(t)− C(v(t), ρ)]2

= Ē[u(t)− ρTΦ(v(t))]2.
(8)

The objective function shown in (8) has the same global
minimum as in (4), this is the foundation of the VRFT.
However, it can be solved through the known least-squares
(LS) method, as consequence of structure a controller
which is linear in parameters. The advantages of the VRFT
method are that it can be solved only using the measured
data; it is a direct method (only one batch of data are
needed).

In this paper we propose the use of a library of nonlinear
functions generated as a truncated Taylor series of the
ideal nonlinear function. Given that the process is un-
known, with little or no prior information about it, we do
not know a priori the appropriate order of the truncation
or which terms are necessary to obtain a good approxima-
tion. A high order controller with all terms of the Taylor
series present must then be assumed and some technique
can be applied to reduce the controller complexity, yielding
a sparse nonlinear controller.

3. VRFT WITH `1-REGULARIZATION

In this subsection is depicted the `1-regularization meth-
ods applied to identify the sparse controllers. The large
variance effect on the least-squares identification due to
large number of parameters is a well-known problem in
the system identification framework. In such situations
the estimated parameters may lead to a poor closed-loop
performance or even to an unstable closed-loop.

In the linear SISO and Multiple-Input Multiple-Output
MIMO VRFT backgrounds the `2-regularization has been
proposed to lower the variance compared to the Instru-
mental Variables (IV) method (Boeira and Eckhard, 2019)
(Formentin and Karimi, 2014) (Rallo et al., 2016), even
though the controller’s structure was not sparse. Herein,
the interest is to not only reduce the Mean Squared Error
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(MSE) per se, but also the number of identified parameters
- which will also imply a reduction of the variation for the
remaining parameters. In order to obtain this sparse con-
troller, it is recommended to include the `1-regularization
term and the `1 penalty term in the objective function
(8) Brunton et al. (2016). To delimit the `1-norm of the
parameters prompts a lower model complexity, therefore
decreasing the variance.

ρ∗Reg = arg min
ρReg

JV RReg(ρ), (9)

JV RReg(ρ) , JV R(ρ) + λ
P∑
j=1

|ρj | (10)

with λ being a scalar and entitled the regularization
parameter, and ρ ∈ Rn. The regularization parameter
weighs the `1 penalty, i.e. as λ→∞ ρ∗ → 0.

The point in question is how to solve (10) with the purpose
of reducing the MSE and the quantity of parameters. In
this work we address three different approaches to solve
(10): the well-known Least Absolute Shrinkage and Selec-
tion Operator (LASSO) (Tibshirani, 1996), the Sequential
Thresholded Least-Squares (STLS) (Brunton et al., 2016),
and the Sequential Thresholded Least-Squares 2 (STLS2),
the last being introduced in this work.

3.1 LASSO

LASSO is a famous method for regularizing the least-
squares using the `1-regularization achieving a sparse
solution. The algorithm to solve this problem (11) is
similar to the Alternating Direction Method of Multipliers
(ADMM) (Boyd et al., 2011).

min
∥∥u(t)− ρTΦ(t))

∥∥2
2

+ λ‖σ‖1
s.t. ρ− σ = 0

(11)

The ADMM algorithm is presented in (12),

ρk+1 = (ΦTΦ + ξI)−1(Φu+ ξ(σk − uk))
σk+1 = Sλ/ξ(ρk+1 + uk)
uk+1 = uk + ρk+1 − σk+1,

(12)

where Φ is the regressed data, ξ is the augmented La-
grangian parameter and S(.) is the soft thresholding oper-
ator (13).

Sλ(z) =

{
z − λ z > λ

0 |z| < λ
z + λ z < λ

(13)

The LASSO disadvantage is that it requires a considerably
computational effort to accomplish the solution. On the
other hand, employing the k-fold Cross Validation (CV)
provides a minimum variance and also a sparse estimate
(James et al., 2013).

3.2 Sequential Thresholded Least Squares

Concerning the computational endeavor and with the same
intention to find a sparse solution on overdetermined sys-

tems, the Sequential Thresholded Least Squares is pro-
posed in (Brunton et al., 2016) to identify model param-
eters of nonlinear dynamical systems. In this work, we
exploit the STLS to identity the controller’s parameters.

The STLS algorithm applied herein is presented below:

Algorithm 1 Sequential Thresholded Least-Squares

Data: Reference Model Td(q), controller structure C̄(q),
library φ, threshold λSTLS , measured data (u(t) and y(t)),
t = 1, ..., N
Result: Estimated parameters ρSTLS
Generate the virtual reference and the regressor matrix
r(t) = T−1d (q)y(t)
e(t) = r(t)− y(t)
v(t) = C(q)e(t)
Generate the regressor matrix using the library φ
Φ = [φ1(v(t)) φ2(v(t)) ... φn(v(t−N))]
Search for the small parameters
Initial guess: least-squares ρ = (ΦTΦ)−1ΦTu(t)
Determine the ρ indexes less than λSTLS
α = |ρ| ≤ λSTLS
Threshold the parameters
ρα = 0
Determine the ρ indexes greater than λSTLS
β = |ρ| > λSTLS
Regress the dynamics onto remaining terms
ρSTLS = (ΦTβΦβ)−1Φβu(t)

where α ∈ Rp, with p being the number of zero param-
eters and β ∈ Rq, with q being the number of nonzero
parameters.

3.3 Sequential Thresholded Least Squares 2

Finding an appropriate threshold in the STLS just de-
scribed is a critical task for which there seems to be no
firm guidelines in the literature. It is doubtful whether
such firm guidelines can ever be derived, since a single
threshold must be applied to parameters with hugely dif-
ferent units. Thus, it seems seem wiser to evaluate the
parameters whose net contribution to the objective func-
tion (8) is smaller than a threshold instead; specifically,
M∑
j=1

|ρjφj(t)| < λ. This is what we propose here, under the

name Sequential Thresholded Least Squares 2 (STLS2).

The (STLS2) algorithm is defined as follows:

4. NUMERICAL EXAMPLES

This section’s goal is to illustrate the efficiency of the `1
regularization methods compared do the least-squares.

4.1 Hammerstein System

The first case study is implemented with a Hammerstein
System, where the linear part of the open-loop process is
given by

G(q) =
0.2

q − 0.8
,

and the static nonlinearity is a
√
|.| and H(q) = 1
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Algorithm 2 Sequential Thresholded Least-Squares 2

Data: Reference Model Td(q), controller structure C̄(q),
library φ, threshold λSTLS2

, measured data (u(t) and y(t)),
t = 1, ..., N
Result: Estimated parameters ρSTLS2

Generate the virtual reference and the regressor matrix
r(t) = T−1d (q)y(t)
e(t) = r(t)− y(t)
v(t) = C(q)e(t)
Generate the regressor matrix using the library φ
Φ = [φ1(v(t)) φ2(v(t)) ... φn(v(t−N))]
Search for the small parameters
Initial guess: least-squares ρ = (ΦTΦ)−1ΦTu(t)
Determine the ρ indexes contribution less than λSTLS2

α = |ρjφj | ≤ λSTLS2

Threshold the parameters
ρα = 0
Determine the ρ indexes greater than λSTLS2

β = |ρ| > λSTLS2

Regress the dynamics onto remaining terms
ρSTLS = (ΦTβΦβ)−1Φβu(t)

The desired closed-loop performance chosen for the system
is given by the following transfer function

Td(q) =
0.3

q − 0.7
.

In the linear case, the ideal controller Cd(q) would be the
following

Cd(q) = [1.5 0.3]
î
1 1
q−1

óT
,

which is a Proportional-Integral (PI) controller. The con-
troller class C chosen is PI controller as well. In such
manner, the matching condition is met.

In the nonlinear case, it is clear that the ideal controller
would be PI in addition to the inverse of the nonlinearity
that is in the process, i.e. f(.) = (.)2. The expansion of
the linear signals vp(t) and vi(t) was made up to the third
order, thus generating 15 regressors vectors:

Φ = [vp(t) v2p(t) v3p(t) vi(t) v
2
i (t) v3i (t) vp(t)vi(t) ... v

3
p(t)v3i (t)] .

Thus the ideal controller would have the following param-
eters

ρT0 =
[
0 K2

p 0 0 K2
i 0 2KpKi 0

]T
= [0 2.25 0 0 0.09 0 0.9 ... 0]

T
,

so, the ideal controller would be

Cd(v(t)) = C(v(t), ρ) = ρT0 Φ(v(t)),

with vp(t) = e(t) and vi(t) =
1

q − 1
e(t).

The input signal u(t) employed to excite the plant was
a Pseudo Random Binary Signal (PRBS) multiplied by
the absolute value of a Gaussian noise with zero mean
and variance σ2 = 1, with N = 1500 samples. Besides,

the plant’s output is affected by a gaussian noise with
variance σ2

e = 1×10−4. Concerning the LASSO algorithm,
the MATLAB function lasso was used. The regularization
parameter λLASSO was calculated through the 10-fold
Cross Validation algorithm so that it would yield minimum
variance, and λSTLS = 0.05 and λSTLS2

= 20 (which
corresponds approximately to 1% of the contribution to
the objective function).

To evaluate the proposed technique, 100 Monte Carlo
simulations were run with distinct noise realizations. The
major objective of inserting the regularization on the
VRFT was to draw a better closed-loop performance. This
evaluation was done through the objective function Jy(ρ),
in addition to the sum of all the estimated zeros in each
Monte Carlo simulation.

Table 1 exhibits the average controller gains that should
be the nonzero parameters.

Table 1. Average Estimated Parameters

Regressor Ê(ρLS) Ê(ρLASSO) Ê(ρSTLS) Ê(ρSTLS2
) ρ∗

v2p 1.9895 2.1496 2.0576 2.2177 2.25

v2p 0.0818 0.0869 0.0858 0.0893 0.09

vp.vi 0.9595 0.8604 0.8769 0.9000 0.9

To evaluate the sparsity of the estimation along all the
Monte Carlo Simulations, we present Table 2, which con-
tains the number of estimated zeros by the four methods
and the ideal quantity as well.

Table 2. Total number of zeros

Method N0

LS 0

LASSO 661

STLS 640

STLS2 625

Ideal 1200

If now we turn to the interpretation of the objective
function, through Table 3 it is evident that all the regu-
larization methods surmount the classical VRFT with the
Least-Squares. The cost Ĵy(Ê(ρLS)) is 25% worst than the
minimum, while the LASSO achieves the minimum up to
three correct significant digits.

The estimate of this function is obtained through

Ĵy(Ê(ρ)) =
1

N

N∑
t=1

(y(t, ρ)− yd(t))2.

Table 3. Objective Function Estimation

Ĵy(Ê(ρLS)) 0.1586 × 10−3

Ĵy(Ê(ρLASSO)) 0.1268 × 10−3

Ĵy(Ê(ρSTLS)) 0.1325 × 10−3

Ĵy(Ê(ρSTLS2 )) 0.1286 × 10−3

Ĵy(ρ∗) 0.1265 × 10−3

Analyzing the boxplots in Figure 2, it is possible to confirm
that the `1-regularization methods decreased both the
variance and the bias of the estimate, with the LASSO
presenting the best results. If we draw the attention to the
STLS and STLS2 methods, they attained a worst variance
compared to the LASSO.
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Figure 2. Comparison of Jy(ρ̂) for the classical and Regu-
larized VRFT.

4.2 Continuous Stirred-Tank Reactor

This subsection presents another case study: the Continu-
ous Stirred-Tank Reactor (CSTR). (14) is a representation
of the CSTR.

P :

{
ẋ1(t) = −2x21(t) + (1− x1(t))u(t)
ẋ2(t) = x21(t)− x2(t)u(t),
y(t) = x2(t)

(14)

as in the last example, the noise model is H(q) = 1.

The desired closed-loop performance chosen for the system
is given by the transfer function

Td(q) =
0.0216(q + 0.8)

(q − 0.85)2
.

The selected controller class is a Proportional-Integral-
Derivative (PID)

C̄(q) =
î
1 1
q−1

q−1
q

ó
,

it is uncomplicated to conclude that Cd(q) /∈ C.
The expansion of the linear signals vp(t), vi(t) and vd(t) =

e(t)
q − 1

q
was made up to the second order, generating 23

parameters to be estimated.

The input signal u(t) applied into the plant is a sequence
of steps to yield an output y(t) in the range from 0.1
to 0.4. Furthermore, the plant’s output is affected by a
Gaussian noise with variance σ2 = 2.5 × 10−7. As with
the first example, we ran 100 Monte Carlo Simulations.
The regularization parameter λLASSO is calculated as
previously, the λSTLS is the average of ρLS for each noise
realization and λSTLS2

is the average of contribution to
the objective function for each noise realization as well.

Examining the Table 4, we can observe that the LASSO
method presented the best sparse identification, i.e. the
majority number of total zeros. After, the proposed
method STLS2 presents 1499 identified zeros which is near
to the LASSO.

Table 4. Total number of zeros

Method N0

LS 0

LASSO 1531

STLS 944

STLS2 1499

If now we turn to the interpretation of the objective
function, through Table 5 it is evident that all the regu-
larization methods surmount the classical VRFT with the
Least-Squares.

Table 5. Objective Function Estimation

Ĵy(Ê(ρLS)) 0.1625 × 10−4

Ĵy(Ê(ρLASSO)) 0.0905 × 10−4

Ĵy(Ê(ρSTLS)) 0.0305 × 10−4

Ĵy(Ê(ρSTLS2
)) 0.0422 × 10−4

Analyzing the boxplots in Figure 3, it is possible to confirm
that the `1-regularization methods decreased the variance,
with the LASSO presenting the best results. If we draw the
attention to the STLS and STLS2 methods, they attained
an excellent minimum, with the STLS2 overcoming the
STLS in terms of variance.

LS LASSO STLS STLS2

0

0.5

1

1.5

2

2.5

3

3.5

10
-5

Figure 3. Comparison of Jy(ρ̂) for the classical and Regu-
larized VRFT.

To illustrate the closed-loop performance in the designated
range, we show Figure 4. It can be seen that the regular-
ization methods performed better that the Least-Squares.

5. CONCLUSIONS

This paper present the implementation of the VRFT to
estimate sparse nonlinear controllers. The drawback of
using the classical VRFT with the Least Squares method
is that it is not able to find sparse solutions. Thus, we
presented three different `1-regularization methods, origi-
nally used in system identification, to estimate this solu-
tions using the data-driven controller design problem. The
regularization methods benefits were illustrated through
two different study cases, which showed that both the
variance and the bias have improved significantly, resulting
in much better closed-loop performance in most cases.
Future works will be focused on how to find an even more
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Figure 4. CSTR closed-loop performance.

sparse estimate and the application of the cross-validation
techniques in the STLS and STLS2 methods.

REFERENCES

Bazanella, A.S., Campestrini, L., and Eckhard, D.
(2012). Data-driven controller design: the H2 approach.
Springer Science & Business Media.

Bazanella, A.S. and Neuhaus, T. (2014). Tuning nonlinear
controllers with the virtual reference approach. IFAC
Proceedings Volumes, 47(3), 10269–10274.

Boeira, E.C. (2018). Sintonia De Controladores Multivar-
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