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Abstract: This work focuses on the hierarchical control structure composed of model predictive
control (MPC) and real-time optimization (RTO) layers. Here, a zone tracking-oriented infinite
horizon MPC strategy with optimizing targets defined by RTO is proposed. This strategy
must comply with eventual unreachable targets and unmeasured disturbances. Consequently,
its domain of attraction must be enlarged in order to circumvent infeasibility conditions. This
is achieved by imposing terminal equality constraints solely on non-stable states, artificial
equilibrium points and softening the bound-type constraints on states with suitable slack
variables. Finally, a case study based on an unstable reactor is used to demonstrate the properties
of the proposed strategy and the role of the terminal ingredients in the domain of attraction.
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1. INTRODUCTION

The two-layer hierarchical control schemes are often used
to provide plantwide optimization (Scattolini, 2009). In
this scheme, an upper layer defines economic targets and
pinpoints to the lower layer responsible for tracking them.
The former can be designed as an RTO (Real-Time Opti-
mization) based on a rigorous static model of the system.
The latter can be an MPC (Model Predictive Control)
based on an approximated dynamic model.

The difference between the design of each layer, uncer-
tainties in the system, and unmeasured disturbances can
make targets defined by RTO unreachable, which can yield
an infeasible solution from the MPC controller (Marchetti
et al., 2014). Then, the challenge in the upper layer is to
maintain the model updated and tackle uncertainties. One
strategy that recently has been used to deal with this issue
is to use transient measurements in RTO updates (Krish-
namoorthy et al., 2018; Santos et al., 2021). Furthermore,
the MPC layer must comply with the desired operating
conditions while maintaining both stabilizing properties
and the feasibility of the resulting optimization problem,
even in the presence of disturbances. Therefore, the chal-
lenge here is to enlarge the MPC domain of attraction
to tackle infeasible solutions while solving the associated
optimization with a lower computational burden in a short
time frame.

Another ingredient to provide additional degrees of free-
dom for the controller is implementing a zone-tracking
MPC strategy, in which the output targets are decision
variables of the optimization problem (González and Od-
loak, 2009; Ferramosca et al., 2010). Its integration within

the hierarchical control architecture is achieved by im-
posing RTO evaluated targets on inputs (González and
Odloak, 2009; Martins and Odloak, 2016). Furthermore,
the stabilizing properties are commonly provided by ter-
minal constraints as an invariant positive set. However,
such a task can be tricky for small-scale systems and
intractable for large-scale systems. Aiming at the MPC
for the tracking case, Ferramosca et al. (2009) included an
artificial steady-state mechanism that tracks such targets,
in addition to collapsing the terminal set into a terminal
equality constraint enforcing all states to be at this steady-
state at the end of the control horizon. However, if the
control horizon is small, the strategy becomes infeasible.
Krupa et al. (2019) enlarged this domain of attraction,
especially for problems with a small control horizon, by
applying parameterized periodic signals to track the de-
sired reference in both inputs and outputs at the expense
of increasing the number of decision variables.

An alternative approach is to design soft terminal equal-
ity constraints solely for integrating and unstable states
with suitable slack variables. Santoro and Odloak (2012);
Martins and Odloak (2016) developed stabilizing DMC-
type (Dynamic Matrix Control-type) control strategies
with zone control with these terminal ingredients. Their
solution improves the feasibility of the control law because
when disturbances excite the system, these slacks can
tackle possible infeasibility issues. However, if unstable
states are present, the stabilizing properties are only guar-
anteed when such slack variables are zeroed.

It is noteworthy that the challenge addressed is to mini-
mize the conflict between enforcing both stabilizing prop-
erties and the feasibility of the optimization problem.
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From this perspective, Santana et al. (2020) proposed two
ingredients to enlarge the domain of attraction: (i) enforce
solely non-stable states to be at an artificial steady-state
at the end of the control horizon, through a terminal
equality constraint, and (ii) soften the states bounds with
slack variables, allowing to better accommodate unmea-
sured disturbances. The control law can simultaneously
provide both stabilizing properties and feasibility of the
optimization problem, even for a small control horizon. It
is proposed here to design an MPC strategy with zone con-
trol, including the ingredients mentioned above, to enlarge
the domain of attraction, suitable to track targets defined
by an RTO layer. The optimization problem includes an
artificial steady-state, output targets, and slacks as addi-
tional decision variables.

This work is organized as follows. Section 2 presents the
proposed MPC strategy with zone control and optimizing
targets, presenting its stabilizing properties, as well as
ingredients to enlarge the domain of attraction. Section
3 presents a case study that explores the characteristics
of the controller. Finally, Section 4 offers some concluding
remarks.

2. CONTROL DESIGN

Consider a system described by the following linear model
description:

x̂(j + 1) =Â · x̂(j) + B̂ · u(j), (1)

where x̂(j) ∈ R(nx̂×1) is the state vector at time step

j, u(j) ∈ R(nu×1) is the input vector, Â ∈ R(nx̂×nx̂) is

the state matrix, and B̂ ∈ R(nx̂×nu) is the input matrix.
Equation (1) can be converted into the velocity form
(González et al., 2008), in order to design an offset free

control law, by considering

[
x̂(j)

u(j − 1)

]
∈ R(nx̂+nu×1) as

an augmented state vector:

x(j + 1) =A · x(j) +B ·∆u(j), (2)

y(j) =C · x(j), (3)

where x(j) ∈ R(nx×1) is the augmented state vector at
time step j, being nx = nx̂ + nu, ∆u(j) ∈ R(nu×1)

is the vector of input increments, y(j) ∈ Rny×1 is the

output vector, A =

[
Â B̂
0 I

]
∈ R(nx×nx) is the state

matrix, B =

[
B̂
I

]
∈ R(nx×nu) the input matrix, and

C =
[
Ĉ 0

]
∈ R(ny×nx) the output matrix. Ĉ is the output

matrix related to (1).

The Jordan decomposition of the state-space model is
applied to classify states in stable and non-stable, i.e. inte-
grating or unstable modes (with or without multiplicities)
by using z = W · x:

z(j + 1) =

[
J s 0
0 Jns

]
· z(j) +W ·B ·∆u(j), (4)[

J s 0
0 Jns

]
=W ·A · V , (5)

where V is the generalized eigenvector, J s is the Jordan
block associated with stable states, Jns is the Jordan block
associated with non-stable states. Finally, the submatrices

related to stable states, W s, and non-stable states, W ns,
can be obtained from W .

Assuming that there is an RTO layer that defines input
targets, udes, to be achieved by the control layer. Then, the
zone tracking oriented MPC strategy is formulated in order
to accommodate such targets, complying with operational
zones, and unmeasured disturbances, namely:

Problem P0

min
xs,∆uk,δk,yt

Vk =
N−1∑
j=0

{
‖x(j)− xs‖2Qx

+ ‖∆u(j)‖2R
}

+

+ ‖x(N)− xs‖2Q̃x
+ ‖us − udes‖2Qu

+

+ ‖ys − yt‖
2
Qy

+ ‖δk‖2S (6)

subject to (2), (3) and:

x(j = 0) =x(k), (7)

x(j) ∈ Zs, j = 0, . . . , N + k2, (8)

∆u(j) ∈ ∆U , j = 0, . . . , N − 1, (9)

yt ∈ Zt, (10)

xs ∈ Xss, (11)

W ns · (x(N)− xs) = 0, (12)

where Qx ∈ R(nx×nx), Qy ∈ R(ny×ny), Qu ∈ R(nu×nu)

are assumed to be positive semi-defined tuning matrices,
while R ∈ R(nu×nu), and S ∈ R(nx̂×nx̂) are positive
definite tuning matrices. ∆U , Zs, Zt are compact-convex
sets related to bound constraints on input increments,
states, and output trajectory, respectively:

∆U = {∆u ∈ Rnu |∆umin ≤ ∆u ≤ ∆umax} , (13)

Zs =

{
x ∈ Rnx

∣∣∣∣[x̂min

umin

]
≤
[
x̂+ δk
u

]
≤
[
x̂max

umax

]}
, (14)

Zt = {yt ∈ Rny |ymin ≤ yt ≤ ymax } . (15)

xs is an artificial equilibrium point enforced by Xss:

Xss = {xs ∈ Zs | (I −A) · xs = 0} , (16)

and can be expressed by
[
x̂>s u>s

]>
. Moreover, the output

at this equilibrium point, ys, is evaluated with C · xs.

The slack variable, δk, is applied to soften the bounds on
the state constraints and provide additional degrees of free-
dom for the controller to mitigate disturbances that excite
the process. In this sense, S must be orders of magnitude
higher than the other tuning matrices (Santana et al.,
2020). Additionally, to comply with physical constraints
of the system, one can include bound constraints to limit
the slack variables in Problem P0.

Constraint (7) is such that x(0) is the initial condition of
Problem P0, taken as the measured states at time step k.
k2 is a scalar to increase the prediction horizon in (8),
aiming at ensuring the feasibility of this constraint on
the infinite horizon, by imposing (8) up to time N + k2

(Santana et al., 2020). Its value can be estimated from the
steps described by Rawlings and Muske (1993).

The terminal cost weight, Q̃x, is given by:

Q̃x =W>
s ·Qx ·W s, (17)

where Qx is the solution of the Lyapunov equation:

Qx =V >s ·Qx · V s + J>s ·Qx · Js, (18)
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and V s is the generalized eigenvector related to stable
states obtained from (5).

It is noteworthy that in order to provide degrees of freedom
to the controller, the output trajectory yt is a decision
variable of the control problem that must be kept inside
the operational zones (10). In this sense, the proposed
controller aims to drive the process system toward the
desired zone while maintaining the inputs as close as
possible to the desired input targets, udes.

Remark 1. Problem P0 combines two major ingredients
presented by Santana et al. (2020) to enlarge the do-
main of attraction, allowing accommodation of distur-
bances. The first element is imposing terminal equality
constraints solely on non-stable states (unstable and in-
tegrating states), which permanently enlarge the domain
of attraction. The second element comprises the usage of
slack variables to soften the bounds on the original states,
x̂, enlarging the domain of attraction solely when it is
needed.

2.1 Stability of the closed-loop system

Theorem 1 asserts that Problem P0 is nominally stable.
In this sense, if the initial condition at time step k, x(0),
belongs to the domain of attraction of the optimization
problem, the controller maintains the system within such
a domain and drives it to the reachable steady-state
asymptotically.

Theorem 1. Consider a stabilizable (A, B) pair with nns

non-stable poles and N ≥ (1 + nns)/nu. If the solution to
Problem P0 is feasible at time step k, with appropriate
k2 to ensure the feasibility of the states bounds over the
infinite horizon, then it will remain feasible at successive
time steps. Thus, the successive solutions drive the closed-
loop system asymptotically to a steady-state where the
cost function Vk reaches its lowest achievable value.

Proof. The proof of this theorem builds on the concepts
of recursive feasibility and convergence (Santana et al.,

2020). Consider that
[
∆u∗,>k x∗,>s δ∗,>k y∗,>t

]>
is a feasi-

ble solution to Problem P0 at time step k, given any x(0)
that belongs to its domain of attraction. The optimal cost
function at this time step is:

V ∗k =
N−1∑
j=0

{
‖x(j)− x∗s‖

2
Qx

+ ‖∆u∗(j)‖2R
}

+

+ ‖x(N)− x∗s‖
2

Q̃x
+ ‖u∗s − udes‖2Qu

+

+ ‖C · x∗s − yt‖
2
Qy

+ ‖δ∗k‖
2
S . (19)

Moving to time step k + 1, it is shown that the solution

inherited from time step k,
[
∆ũ>k+1 x

∗,>
s δ∗,>k y∗,>t

]>
,

where ∆ũ>k+1=
[
∆u>(1), . . . ,∆u>(N − 1),0>

]>
remains

feasible. Firstly, the bound constraints (8) to (10) are
satisfied by the inherited solution, as well as (11). Then,
take the terminal equality constraint (12) at time step k:

W ns · (x(N)− x∗s ) = 0,

W ns ·
(
AN · x(0) + ΘN ·∆u∗k − x∗s

)
= 0,

zns(N) = W ns · x∗s , (20)

where ΘN is
[
AN−1 ·B, · · · ,B

]
. Therefore, the non-

stable states, zns(N), are at the artificial steady-state.
Moving to the next time step, k + 1, (12) gives:

W ns ·
(
AN · x(1) + ΘN ·∆ũk+1 − x∗s

)
= 0,

W ns ·
(
A ·

(
AN · x(0) + ΘN ·∆u∗k

)
− x∗s

)
= 0,

Jns · zns(N) = W ns · x∗s , (21)

as zns(N) is at an equilibrium point, (20), then zns(N) =
Jns · zns(N), resulting in (21) to be equivalent to (20).
Therefore, the inherited solution satisfies (12), and Prob-
lem P0 is recursively feasible.

Taking the difference of V ∗k and the cost function applying

the inherited solution, Ṽk+1, one has:

V ∗k − Ṽk+1 =‖x(0)− x∗s‖
2
Qx

+ ‖∆u(0)‖2R. (22)

Given that Q is assumed to be positive semi-definite,
while R is assumed positive-definite, V ∗k must be greater

or equal to Ṽk+1. Moreover, since the inherited solution
is only a feasible solution at time step k + 1, and the
cost function is convex, one can conclude that V ∗k+1 ≤
Ṽk+1 ≤ V ∗k . This demonstrates that the cost function
can never increase along with its time evolution, being
a monotonically decreasing function, i.e. a Lyapunov-like
function, resulting in an asymptotically convergent control
law. 2

Remark 2. Assuming that the closed-loop system reaches
the steady-state, xs, and provided that the cost function
is a Lyapunov-like function, the minimum value for Vk is:

V∞ = ‖u∗s − udes‖2Qu
+ ‖C · x∗s − yt‖

2
Qy
, (23)

i.e. a weighted sum between the distances of the controlled
variables and outputs at the artificial steady-state from the
desired input target, udes, and the evaluated output target.
In this sense, the weighting matrices Qu, Qy defines the
priority of attending the targets defined by the RTO layer
or some operational conditions, respectively. If the input
target is reachable and corresponds to the outputs inside
the zone, then V∞ is zero.

Remark 3. It is noteworthy that if the RTO layer defines
an unreachable input target in conflict with the opera-
tional zone (ymin,ymax), it only affects the performance of
the closed-loop system, without jeopardizing its feasibility,
even in the presence of disturbances. Additionally, from
Remark 2, one can conclude that the matrices Qu, Qy
define which aspect must be prioritized.

3. CASE STUDY

The case study addresses a Continuous Stirred Tank Re-
actor (CSTR) processing A→B, which must be controlled
in the neighborhood of an unstable equilibrium point.
The dimensionless model of the system is borrowed from
Nagrath et al. (2002):

dy1

dτ
= u1 · (1− y1)− 0.072 · y1 · κ, (24)

dy2

dτ
= u1 · (−y2)− 0.3 · (y2 − y3) + 0.0576 · y1 · κ, (25)
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dy3

dτ
=
u2 · (−1− y3)

0.1
+

0.3 · (y2 − y3)

0.05
, (26)

κ = exp

(
y2

1 + y2/20

)
, (27)

where τ is the dimensionless time, y1 is the reactant A
concentration, y2 is the reactor temperature, y3 is the
cooling jacket temperature, u1 is the feed flow rate of
reactor and u2 is the feed flow rate of the cooling fluid
in the jacket. The unstable equilibrium point of interest
is: 0.6364 (y1ss), 1.9146 (y2ss), -0.4823 (y3ss), 0.7232 (u1ss)
and 2.7779 (u2ss). It is used a sampling time of 0.05 τ ,
and through linearization the following discrete state-space
model is obtained (Santana et al., 2020):

x̂(j + 1) =

9.44 · 10−1 −1.08 · 10−2 −4.99 · 10−5

1.64 · 10−1 1.04 · 100 7.41 · 10−3

1.51 · 10−2 1.48 · 10−1 1.85 · 10−1

 · x̂(j)+

+

 1.82 · 10−2 4.85 · 10−6

−9.60 · 10−2 −1.20 · 10−3

−8.81 · 10−3 −1.25 · 10−1

 · u(j) (28)

y(j) =

[
1 0 0
0 1 0
0 0 1

]
· x̂(j). (29)

The controller parameters are:Q = diag([1. 1. 0.5 0.1 0.1]),
R = diag ([2 2]), S = diag

([
102 102 102

])
, Qy =

diag ([4 4 4]), and Qu = diag ([1 1 1]). The control hori-
zon isN = 2, which is the minimum value defined by Theo-
rem 1, since A has two integrating states and one unstable
state. It must be emphasized that the slack weights are
orders of magnitude higher than the other tuning weights.
In this case study, it turns to be sufficient to define k2 as
zero.

In the simulation scenario, the system starts from the

operating condition [0.25 −1.3 −1.2]
>

, which is outside
the bounds on states (perturbed state). This forces the
control law to use the δk to ensure the feasibility of the
optimization problem. Tables 1 and 2 describe the bound
constraints, output zones and the input targets. Addition-
ally, from 130 τ to 140 τ a persistent disturbance of -0.1
in the reactant concentration, y1, excites the system.

Table 1. Bounds on states, inputs, inputs in-
crements and slack variables.

x̂>
max

[
0.2 2.0 1.0

]
x̂>
min

[
−0.2 −1.0 −1.0

]
u>
max

[
4.0 6.0

]
u>
min

[
−0.5 −1.

]
∆u>

max

[
0.25 0.5

]
δmax 40% · x̂max

δmin 40% · x̂min

Table 2. Zone definitions and targets on input
variables. From 50 τ to 180 τ it is only indi-

cated the changes between scenarios.

τ y>min y>max u>
des

0 to 49
[
−0.2 −1.0 −1.0

] [
0.2 2.0 1.0

] [
0.0 1.0

]
50 to 99

[
−0.2 0.0 −1.0

] [
0.0 2.0 1.0

] [
−0.1 2.0

]
100 to 180

[
−0.2 1.0 −1.0

] [
−0.15 2.0 1.0

] [
0.1 0.5

]

Figure 1 depicts that the control law can track the target
imposed to inputs, udes, while maintaining the outputs
inside their operational zones (Figure 2). It is noteworthy
that some targets are unreachable for the controller, but
it does not affect its feasibility, as stated by Remark 3.

Figure 1. Input of the system.

Figure 2. Outputs of the system.

One of the key ingredients of this strategy is to apply
slack variables to soften the bound constraints on states
(14). Figure 3 indicates that the controller only used such
variables when the system was excited by disturbances
that drove the states to outside their bounds, as asserted
by Remark 1. In fact, the slack variables are non-zero
between [0, 0.5] τ , and [130.05, 130.07] τ .

The effect of the slack variables in the domain of attraction
is more evident in Figures 4 and 5. It is important to
highlight that the domain of attraction is a polyhedral
region SN ⊆ Zs such that for all x ∈ SN , Problem P0 is
feasible, i.e. this is a set of initial states x(0) that can be
admissibly steered to the desired output zone in N steps.
Such figures explicit the domain of attraction from the
time when a disturbance enters into the system until the
time when the slacks are zeroed.
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Figure 3. Slack variables of the system.

Figure 4. Domain of attraction of the proposed controller
from the initial condition (black polyhedron) to the
time 0.55 τ (lighter gray polyhedron). The magenta
polyhedron represents the domain of attraction when
the slack is zeroed. The control zone is represented
in red. The system trajectory at the aforementioned
time period is depicted in green.

Figure 4 depicts a shift in the domain of attraction (dashed
black lines) to comply with the initial condition outside
the bound constraints of states. Figure 5 depicts such
a shift accommodating the disturbance that excites the
process at 130 τ and drives the process to outside its
states’ bounds. Therefore, one can conclude that the slack
variables enlarge the domain of attraction when necessary
to avoid infeasibility issues. Furthermore, Figures 2 and 5
depict that when the disturbance excites the system, from
t = 130 τ to t = 140 τ , the control law can not fully comply
with the defined zone, i.e. it drives the system toward a
region where a steady-state exists (blue polyhedron) but
outside the defined output zone (red polyhedron), without
affecting its feasibility.

The abrupt change presented in the system trajectory
in Figure 5 occurs at 140 τ due to the disturbance
that affected y1. However, since this happened inside the
domain of attraction, the slack variables remained zeroed,
Figure 3, consequently the domain of attraction is not

Figure 5. Domain of attraction of the proposed controller
from the time 130 τ (black polyhedron) to the end
of the simulation (lighter gray polyhedron). The ma-
genta polyhedron represents the domain of attraction
when the slack is zeroed. The control zone is rep-
resented in red. The blue polyhedron represents the
region where there is an artificial steady-state, xs. The
system trajectory at the aforementioned time period
is depicted in green.

Figure 6. Domain of attraction (magenta polyhedron) of
the proposed controller from the time 100 τ to the
time 129.95 τ (the slack is zeroed). The control zone
is represented in red. The blue polyhedron represents
the region where there is an artificial steady-state,
xs.The system trajectory at the aforementioned time
period is depicted in green.

changed. Additionally, in such a scenario, the control law
can drive the system toward the defined output zone.

Figure 6 depicts the domain of attraction of the small-
est zone imposed to the controller when there is no dis-
turbance, between 100 τ and 129 τ . Because the slack
variables are zeroed, the domain of attraction remains
unchanged. The trajectory is driven towards a region
where there is an xs (inside the blue polyhedron) and
minimizes the distance from the defined output zone (red
polyhedron).
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Figure 7. Domain of attraction (black polyhedron) of the
control law when the terminal equality constraint (12)
is set to be x(N) = xs and without slack variables.
The desired zone is represented in red. The blue
polyhedron represents the region where there is an
artificial steady-state, xs.

In order to exemplify the effect of the terminal equality
constraint (12), consider an alternative constraint in which
x(N) must be at xs, as proposed by Ferramosca et al.
(2009). Figure 7 depicts both the domain of attraction and
the region where xs exists. In this case study, the control
horizon is small (N = 2) and such regions are almost the
same. If we compare regions provided by figures 6 and 7, it
is evident that by imposing solely non-stable states to be at
the artificial equilibrium point, the domain of attraction of
the proposed controller is therefore permanently enlarged,
as asserted by Remark 1.

4. CONCLUSION

This work presented a zone tracking-oriented stabilizing
MPC strategy, which aims to provide both feasibility and
stabilizing properties, especially when the controller is
subjected to unreachable targets produced by the RTO
layer. Such properties are achieved by terminal equality
constraints regarding non-stable states to be at an artificial
steady-state that tracks the desired RTO targets. It is
demonstrated that the control law guides the closed-loop
system towards a steady-state that minimizes the distance
between the RTO targets and the operational zones.

Another key aspect is to circumvent infeasible conditions
provided by unmeasured disturbances. Then, suitable slack
variables soften the bound constraints on states and can
enlarge the domain of attraction when needed.

The case study exemplifies the effect of each ingredient
in the closed-loop performance. It focuses especially on
the permanent enlargement of the domain of attraction
provided by the terminal equality constraint design and
the temporary change in the domain of attraction provided
by the slack variable.
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