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Abstract:
This work presents a Human-Machine Interface (HMI) development based on Steady-State
Visual Evoked Potentials (SSVEPs). The Goertzel transform was used in this proposal to identify
the stimulus frequencies present in electroencephalogram (EEG) signals. A maze game was
created as a mobile application to relate the stimuli to navigation commands. The preliminary
results show a hit rate above 85%. Besides, the system is structured to insert Augmented Reality
(AR) tools.

Resumo:
Este trabalho apresenta um desenvolvimento de Interface Homem-Máquina (HMI) baseado
em Potenciais Evocados Visuais de Estado Estável (SSVEPs). A transformada de Goertzel
foi utilizada nesta proposta para identificar as frequências de est́ımulo presentes em sinais
de eletroencefalograma (EEG). Um jogo labirinto foi criado como um aplicativo móvel para
relacionar os est́ımulos aos comandos de navegação. Os resultados preliminares mostram uma
taxa de acerto acima de 85%. Além disso, o sistema está estruturado para inserir ferramentas
de Realidade Aumentada (AR).
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1. INTRODUCTION

The brain is known as the most complex organ in the
human body controlling the senses and emotions and
promoting human interaction with the environment. Then,
Human Machine Interfaces (HMIs) arose from the idea
that the reading of individual brain activities can set an
external device (LEVINE et al., 2000), (STAWICKI et al.,
2016).

Steady-State Visual Evoked Potentials (SSVEPs) are
brain responses well-measured in the visual and pari-
etal cortical areas considering flickering visual stimulation
(VIALATTE et al., 2010). The SSVEPs are used as basis in
Brain Computer-Interfaces (BCIs), as well as other kinds
of Human-Machine Interfaces (HMI) which allows its user
to choose commands associated with different stimulus
frequencies. For example, SSVEP-based HMI could be
used to give autonomy to people with motor disabilities or
even be used for immersion applications and digital games
(MASON et al., 2004), (BAYLISS, 2003).

The SSVEPs contain stationary periodic oscillations with
observable peaks in the frequency spectrum (VIALATTE
et al., 2010). In many cases, a non-parametric technique
is employed to estimate the spectrum, such as the peri-
odogram (MANOLAKIS et al., 2005). However, according
to Oikonomou et al. (2016) the periodogram method has
problems related to spectral leakage and frequency reso-
lution. Furthermore, from a statistical point of view, the
periodogram befalls an inconsistent estimator.

The Goertzel transform is another method for calculating
the discrete Fourier transform coefficients. This transform
uses arithmetic operations to determine a unique value in
each iteration, calculating these coefficients is a less com-
plex, numerically more efficient, and computationally less
expensive operation. These are necessary characteristics
for the implementation of an HMI in an embedded system.
Among the possible SSVEP-based HMI, this work chose
the development of a maze game for cell phones, in which
the stimulus frequency identification is associated with the
player movement.

The remainder of this paper is organized as follows. Section
2 refers to the methodology for signal processing and
mobile game development. Section 3 describes the results
from the Goertzel transform and the reliability of stimulus
frequencies. Section 4 provides the concluding remarks.

2. MATERIALS AND METHODS

2.1 Signal Database

In the initial step, the Goertzel transform was applied
in an SSVEP database acquired in (MüLLER, 2012).
The experiments were performed according to the rules
of the Ethics Committee of the Federal University of
Espirito Santo, under registration number CEP-048/08.
This database is composed of EEG signals from 12 EEG
channels of 9 volunteers with a stimulus sampling rate of
600 samples per second. All the volunteers are male ones
with an average age of 27.3 years and a standard deviation
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of 4.2. The 12 EEG channels correspond to P7, PO7, P5,
PO3, POz, PO4, P6, PO8, P8, O1, O2 and Oz electrodes,
as shown in Fig. 1.

Figure 1. Electrode placement for recording EEG signal
(MüLLER, 2012)

The EEG acquisition equipment was the BrainNet36, from
Lynx Ltda. The reference and ground electrodes were
positioned in the left ear and the forehead, respectively.
For data acquisition, each volunteer was accommodated
comfortably in a chair while observing a 17”LCD monitor
placed at 70 cm from the chair. In the center of the screen,
there was a stripe composed of black and white reverse
patterns as on a chessboard. The volunteers were exposed
to the stimuli flickering at frequencies of 5.6 Hz, 6.4 Hz,
6.9 Hz, and 8.0 Hz one at a time. Each trial lasted 2
minutes without rest between them. Thus, considering the
sampling of 600 Hz, each trial generated a signal composed
of 72000 samples per channel.

Moreover, the signals were analyzed in intervals of 2, 3,
and 4 seconds, which correspond to 1200, 1800, and 2400
samples, respectively. The overlap window was defined to
1 second or 600 samples, aiming to obtain a new response
for every new second of the recorded signal.

The limit of 2400 samples, 4 seconds, represents a max-
imum response time tolerable for this application type.
When using more samples, the response time would in-
crease. Besides, the more samples used in the algorithm,
the higher the computational cost. Since the proposal is to
optimize the system, taking all the processing to a micro-
controller, it becomes unfeasible to increase the number
of samples due to these two factors. For the database, no
artifact removal was performed, only temporal and spatial
filtering. Therefore, the maximum delay for the system is
approximately 4 seconds, even though the system produces
one response every second due to the 75% of window
overlap.

2.2 Filtering Procedure

Initially, the raw EEG signal, signalc, was filtered from
continuous components. The mean value µ was determined
for each channel and the resulting signal, signals, was
calculated such as presented in Equation(1).

signals = signalc − µ (1)

Then, a Common Average Reference (CAR) was applied as
spatial filtering. For that, the mean value ρ was determined
for each sample considering all the twelve EEG channels.
The resulting signal, signalf , was calculated for each
sample and each channel such as presented in Equation(2).

signalf = signals − ρ (2)

The final filtering operation was to apply a 5-order elliptic
IIR filter to the signalf over a frequency range of 3 to
50 Hz. Even though 12 EEG channels were used for the
filtering procedure, only three channels were used in the
further feature extraction and classification steps. They
are O1, O2, and OZ electrodes since the signals recorded
in these channels are the most relevant as shown in (Müller
et al., 2015) and corroborated in Section 3.2.The flowchart
in Fig. 2 illustrates the pre-processing steps, filtering the
signals temporally and spatially.

Figure 2. Preprocessing Steps

2.3 Goertzel Transform

The Goertzel transform is a signal processing technique
that provides a means for evaluating individual terms of
the Discrete Fourier Transform (DFT) (SUNDARARA-
JAN et al., 2020). This filter operates on a two-steps pro-
ceeding. The first step acts as a second-order IIR filter to
calculate an intermediate sequence z[n] from the discrete
sequence x[n] corresponding to the signal to be processed
(signalf ), as described in Equations 3 and 4:

z[n] = x[n] + 2 · cos (2π
k

N
) · z[n− 1]− z[n− 2] (3)

k =
Fi
Fs
·N (4)

where z[n − m] is the intermediate sequence delayed of
m samples, N is the total number of samples used in
the calculation, Fi is the desired frequency, and Fs is the
sampling frequency. In Equation (4), k is the ratio of the
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desired frequency by the sample frequency, multiplied by
the number of samples.

The second step corresponds to the FIR filter of the
output sequence y[n] (signalg). This output represents the
amplitude of the signal spectrum at the desired frequency
and considers the intermediate sequence z[n] according to
Equation (5):

y[n] = z[n]− z[n− 1] · e−j2π k
N (5)

The procedure of extracting characteristics by the Goertzel
transform depends on the choice of some parameters, such
as:

• the frequency interval, k, which is related to the
number of samples, N , in each sequence x[n];
• the chosen EEG channels, whose preference most be

the parieto-occipital channels;
• the window overlap percentage, since it influences

the speed of stimulus changes identification enabling
faster responses to command external devices.

2.4 Classification

The Goertzel transform output, signalg, is examined to
identify the frequency stimulus that the user was sub-
mitted. The spectral amplitude at each known stimulus
frequency is used to classify stimuli. The Goertzel algo-
rithm is applied to each signal window in the database
for the three occipital channels (Cj) and the four stimulus
frequencies (Fi).The Equation (6) shows how to obtain this
value.

Fe = Fi|i− > Amax = max(Ai,j), (6)

where Fe is the stimulus frequency identified; Fi is the i-
th stimulus frequency of interest; Amax is the maximum
spectral amplitude and Ai,j is the spectral amplitude
corresponding to the stimulus frequency Fi in the channel
Cj .

2.5 Maze Mobile Game

In an SSVEP-based HMI, the stimulation system is typ-
ically implemented using LEDs or conventional monitors.
This work, on the other hand, created a game application
for cell phones. Then, even for the development of the
visual stimuli system and the game itself, it was necessary
to select a game engine. The Unity game engine was chosen
for its ease of use and practicality, and the visual stimuli
system was created in the C# programming language
using threads.

The game application uses green and black frames alter-
nately on the borders of its interface. The green color
was chosen since the contrast of green and black color
making the stimulation more pleasant (Tello et al., 2015).
The frames positioned in the center of each border alter-
nated on different frequencies to represent four distinct
commands to the game. The game itself is a labyrinth
game on which a digital robot can move according to
the stimulus selection. The game layout was based on
a maze proposed by (VOLOSYAK, 2011). Fig. 3 shows

the interface developed in the Unity game engine for cell
phones.

Figure 3. Maze game layout.

The use of threads increased processing capacity while also
improving stimulus flickering frequency precision. A circuit
with a Light-Dependent Resistor (LDR) attached to the
screen stimulus region was used to test the precision of the
stimulus frequencies on the game application. The voltage
signal on the LDR was measured and processed to identify
the peak of the power spectrum on the region between
the stimulation frequencies (between 3 and 18 Hz). It is
expected that the error in this measurement process does
not exceed 5%.

Figure 4. Schematic for stimulus frequency measurement

The new stimulus frequencies chosen for the mobile game
were 6.4 Hz, 8.9 Hz, 12.5 Hz, and 14.9 Hz corresponding
to the upper, right, lower, and left stimulus, respectively.
These are different frequencies from those in the database
presented in Section 2.1, as the choice of these new
frequencies is according to some criteria as follow:

• more widely spaced frequencies reduce interference
from adjacent frequencies, allow for the evaluation of
shorter windows, and are less susceptible to inaccu-
racies in stimulus frequencies;

• the region near 10 Hz should be avoided due to
possible confusion in SSVEP identification since it is
more prone to the appearance of the alpha rhythm;

• gradual frequencies (such as 6.0, 12.0, 18.0, etc.)
should be avoided to reduce aliasing and avoid over-
lapping harmonics from one stimulus on the another.

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 496 DOI: 10.20906/sbai.v1i1.2615



2.6 Augmented Reality

This work was developed as part of an app using the
Augmented Reality (AR) system, as shown in Fig. 5.
Virtual Reality (VR) glasses increase the mobility of the
HMI and allow the experience of immersion in a virtual
environment. The AR system shown in Fig. 5 represents
the complete arrangement and is a proposal for future work
that includes active electrodes for the acquisition of EEG
signals rather than using an electrode cap. Therefore, the
SSVEP-based HMI would be portable in the glasses.

Figure 5. Glasses prototype with attached electrodes

3. RESULTS AND DISCUSSIONS

This section presents the results from Goertzel Transform
applied to the EGG signals from the database described
in Section 2.1. The first scenery sought to evaluate the
best window size for SSVEP identification. Once defined
N = 2400 samples as the most appropriate window,
the Feature Extraction and Classification steps allowed
identify the most relevant occipital channel.

3.1 Window Size Analysis

The EEG signals from 9 volunteers according to Section
2.1 were analyzed. The stimulus frequencies are 5.6 Hz,
6.4 Hz, 6.9 Hz, and 8.0, the sampling frequency is 600
samples/s and each trial lasted 2 minutes. Then, the total
number of samples from each channel per frequency was
72000 samples. Thus, the data were organized in a multi-
dimensional structure of 9 (volunteers) x 4 (frequencies) x
12 (channels) x 72000 (samples).

The window size used in Goertzel transform parameters
directly affects the interval between two frequencies in the
frequency vector and thus it influences the accuracy of the
stimulus frequency identification. For example, considering
a sampling frequency of 600 Hz, a two-second window
(1200 samples) corresponds to a 0.5 Hz interval between
adjacent frequencies, 2400 samples corresponds to a 0.25
Hz spacing, and so on.

Three N values were evaluated to determine the most
relevant window size for SSVEP identification: 1200, 1800,
and 2400 samples, which correspond to 2, 3, and 4-second
windows of EEG signal, respectively. An overlapping win-
dow was used to obtain the system response every second.
Thus, the overlap was performed by window sliding of 600
samples.

The Goertzel algorithm was applied to identify the fre-
quency corresponding to the sample with the highest
power spectral for all possible values of stimulus frequen-
cies and all windows. Table 1 lists the hit rate for each
frequency considering the three window sizes analyzed.
The rate shown is not the average from the three channels
(O1, O2, and OZ), but the highest maximum value among
these three channels.

Table 1. Maximum hit rate per volunteer for
different window size.

Volunteer window Stimulus Frequency Average
# Size 5.6 6.4 6.9 8.0 (%)

Vol1
1200 100 100 97.5 94.1 97.9
1800 100 100 99.2 97.5 99.2
2400 100 100 100 99.2 99.8

Vol2
1200 59.7 51.3 35.3 45.4 47.9
1800 65.3 55.1 39.0 55.9 53.8
2400 79.5 64.1 46.2 65.0 63.7

Vol3
1200 86.6 88.2 94.1 94.1 90.8
1800 92.4 96.6 97.5 97.5 96.0
2400 97.4 99.2 99.2 98.3 98.5

Vol4
1200 55.5 74.8 79.8 97.5 76.9
1800 61.9 78.8 78.8 100 79.9
2400 66.7 79.5 85.5 100 82.9

Vol5
1200 37.8 44.5 52.9 63.0 49.6
1800 41.5 56.8 59.3 72.0 57.4
2400 57.3 65.8 70.1 80.3 68.4

Vol6
1200 89.9 81.5 77.3 90.8 84.9
1800 96.6 90.7 85.6 96.6 92.4
2400 99.2 93.2 92.3 95.7 95.1

Vol7
1200 94.1 100 100 100 98.5
1800 99.2 100 100 100 99.8
2400 100 100 100 100 100

Vol8
1200 63.9 73.1 65.6 84.0 71.6
1800 76.3 77.1 78.0 89.8 80.3
2400 77.8 78.6 85.5 95.7 84.4

Vol9
1200 83.9 94.9 88.1 70.3 84.3
1800 92.3 100 90.6 78.6 90.4
2400 95.7 100 94.0 84.5 93.5

Table 1 shows that the window size of N = 2400 sam-
ples (4 s) produced the highest hit rates. Considering
Fi/Fs = k/N , then k is the integer value closest to N ·
Fi/Fs. Thus, the greater the value of N , the narrower the
frequency streaks will be. It allows a greater accuracy of
power spectral density measurement corresponding to Fi.
Therefore, this accuracy improves as you increase N .

However, the window size, N , can not increase indefinitely
once it increases the processing delay for system response.
It is only necessary to guarantee a minimum distance
between the frequencies of interest to avoid the spectrum
of one contributes to the other.

3.2 Channel Relevance Analysis

Once the best window size was determined as 2400 samples
(4 s), it was necessary to investigate the most occipital
relevant channel. For that, the hit rate for each stimulus
frequency and volunteer was evaluated considering 2400
samples and shown in Table 2.

Table 2 also shows the average hit rate for each volunteer
and channel. Even though the Oz channel has achieved the
best result for four among nine volunteers, it was necessary
to make an individual assessment, since there were some
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Table 2. Hit rate for each stimulus frequency
and channel, considering 2400 samples.

Volunteer Channel Stimulus Frequency Average
# 5.6 6.4 6.9 8.0 %

Vol1
O1 100 100 100 98.3 99.6
O2 100 100 100 98.3 99.6
Oz 100 100 100 98.3 99.6

Vol2
O1 61.5 42.7 39.3 59.8 50.9
O2 55.6 42.7 53.0 23.1 43.6
Oz 73.5 77.8 57.3 66.7 68.8

Vol3
O1 94.9 99.2 100 87.2 95.3
O2 93.2 94.0 84.6 97.4 92.3
Oz 98.3 98.3 94.9 94.9 96.6

Vol4
O1 35.0 47.0 47.0 76.1 51.3
O2 67.5 80.3 86.3 100 83.5
Oz 51.3 77.8 75.2 100 76.1

Vol5
O1 49.6 65.0 75.2 73.5 65.8
O2 39.3 56.4 35.0 52.1 45.7
Oz 60.7 51.3 60.7 65.0 59.4

Vol6
O1 77.8 88.9 90.6 100 89.3
O2 76.9 75.2 67.5 75.2 73.7
Oz 98.3 95.7 91.5 100 96.4

Vol7
O1 49.6 75.2 80.3 82.9 72.0
O2 100 100 100 100 100
Oz 95.7 100 100 100 98.9

Vol8
O1 64.1 76.1 65.8 73.5 69.9
O2 68.4 75.2 82.1 96.6 80.6
Oz 50.4 71.8 61.5 65.0 62.2

Vol9
O1 71.6 89.7 80.2 75.0 79.1
O2 96.6 100 80.2 77.6 88.6
Oz 100 100 92.2 85.3 94.4

tie cases. Thus, in Table 3 the Oz channel presents itself
as the majority in the choice of the most relevant channel,
which is reinforced if it goes chosen in the tie cases in which
it is a part.

Another way to evaluate the results is by calculating the
overall hit rate per channel, which means the mean value
was determined for each channel considering all volunteers
and all stimulus frequencies. Table 4 presents these results.

Table 3. Occipital channel with higher hit rate
per stimulus frequency.

Volunteer Stimulus Frequency
# 5.6 6.4 6.9 8.0

Vol1 O1-O2-Oz O1-O2-Oz O1-O2-Oz O1-O2-Oz

Vol2 Oz Oz Oz Oz

Vol3 Oz O1 O1 O2

Vol4 O2 O2 O2 O2-Oz

Vol5 Oz O1 O1 O1

Vol6 Oz Oz Oz Oz

Vol7 O2 O2-Oz O2-Oz O2-Oz

Vol8 O2 O1 O2 O2

Vol9 Oz Oz Oz Oz

Majority Oz Oz Oz Oz

Table 4. Overall hit rate per channel

Channel Overall Hit Rate

O1 77.8 %

O2 83.0 %

Oz 85.4 %

Based on Table 2, the occipital channel chosen for per-
forming the next steps will be Oz (higher hit rate in 5 out
of nine volunteers), followed by channel O2 (3 volunteers),

and channel O1 (1 volunteer). This finding is consistent
with that reported in Müller et al. (2015), which shows
that Oz is the most relevant individual occipital channel.

All of these results indicate that the Oz channel is the
most relevant occipital channel. Another possibility is to
develop an algorithm that combines the decision from each
occipital channel using specific weights.

3.3 Validation of Game Stimulus Frequencies

A very important parameter in an SSVEP-based HMI is
the reliability of the frequencies that make up the interface.
In this case, it is necessary to check up the flickering fre-
quencies in the cell phone screen. The frequency precision
evaluation was performed by capturing the voltage signal
over an LDR for 2 seconds, as shown by Fig 4 in Section
2.5. This signal was used as input to calculate the Fast
Fourier Transform in the Matlab environment. The peak
frequency was identified and the frequency corresponding
to the greater peak bellow than 20 Hz was considered.

Table 5. Verification of stimulus frequencies

Stimulus Frequency (Hz)
6.4 8.9 12.5 14.9

6.4 8.5 12.3 14.8
6.5 8.6 12.5 14.7
6.5 8.6 12.3 15.0
6.6 9.2 12.0 15.0
6.2 9.2 12.7 14.9
6.1 9.0 12.6 14.6
6.7 8.7 12.8 14.5
6.6 8.9 12.6 15.2
6.2 9.1 12.4 15.0
6.5 8.8 12.5 15.1

Average 6.43 8.86 12.47 14.88

Std. Dev. 0.2003 0.2591 0.2312 0.2251

Table 5 displays the average values that are close to
the expected values and have low standard deviations. A
worst-case metric is to calculate the maximum value by
dividing the difference between the expected and measured
values by the expected value.

In Table 5, the worst case is for fexpected = 6.4Hz and
fmeasured = 6.7Hz. This leads to an error of 0.3/6.4 =
4.7%, which is within the margin of error of 5% proposed
by the authors in Section 2.5. This margin of error is
justified by the use of more spaced frequency streaks.

It emphasizes that the tests performed to verify the game
frequencies were performed only using LDR for 2 seconds,
so the system was not tested in the HMI configuration,
using volunteers for data acquisition.

4. CONCLUSION

The work presented in this paper analyzed and evaluated
results from the Goertzel transform applied to an SSVEP-
based HMI. These results showed hit rates above 85%
considering maximum spectral on the Oz channel and
relating them to the stimulus frequencies.

Moreover, the results proved that a 2400-samples window
size (4 s) with an overlap of 1 s is sufficient to identify
the stimulus frequencies. Even more, the results consid-
ering the three occipital channels together (Table 1) can
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have higher or lower hit rates when they are considered
individually (Table 2). This allows the development of an
adaptive channel selection system from a previous signal
acquisition step.

Another SSVEP identification approach is to evaluate
which stimulus frequency is the most identified among
all channels. It can be done by calculating the maximum
spectral amplitude per channel and analyzing the resulting
mode, which is the most frequent frequency considering
all channels. Moreover, it is possible to develop a hybrid
decision process on which more than one processing tech-
nique could be applied to the EEG signal. For example, a
switching system between two or more algorithms can be
used to choose the one with the highest hit rate for a given
volunteer. This would allow a raise in the SSVEP hit rate.

The smartphone game proved to be effective for carrying
out the flickering visual stimulation since the margin of
error will not influence the result of the captured data.
Furthermore, active electrodes should be coupled to the
augmented reality glasses to capture EEG signals in the
new stimulus frequencies as shown in Section 2.5.

To complete the system, a tiny and affordable computer
Raspberry Pi has already been purchased to embed the
SSVEP-based HMI. It will be responsible for acquiring
and processing the EEG signals, generating a command
signal for an external device, or a decision for a virtual
navigation system.

Therefore, the Goertzel transform was presented as a
viable tool for stimulus frequency identification in an
SSVEP-based HMI.
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MüLLER, S.M.T. (2012). Interface Cérebro computador
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Robótica. Thesis - Federal University of Espirito Santo.

Müller, S.M.T., Filho, T.F.B., and Filho, M.S. (2015).
Monopolar and bipolar electrode settings for ssvep-
based brain-computer interface. Journal of Medical and
Biological Engineering.

Oikonomou, V.P., LIAROS, G., GEORGIADIS, K.,
CHATZILARI, E., ADAM, K., NIKOLOPOULOS, S.,
and KOMPATSIARIS, I. (2016). Comparative evalua-
tion of state-of-the-art algorithms for ssvep-based bcis.
Computer Science, Mathematics.

STAWICKI, P., GEMBLER, F., and VOLOSYAK, I.
(2016). Driving a semiautonomous mobile robotic car
controlled by an ssvepbased bci. Computational Intelli-
gence and Neuroscience.

SUNDARARAJAN, P., Sathik, M.H.M., Sasongko, F.,
Tan, C.S., Pou, J., Blaabjerg, F., and Gupta., A.K.
(2020). Condition monitoring of dc-link capacitors using
goertzel algorithm for failure precursor parameter and
temperature estimation. IEEE Transactions on Power
Electronics.

Tello, R.J.M.G., Müller, S.M.T., Ferreira, A., and Filho.,
T.F.B. (2015). Comparison of the influence of stimuli
color on steady-state visual evoked potentials. Revista
Brasileira de Engenharia Biomedica.

VIALATTE, F.B., MAURICE, M., DAUWELS, J., and
CICHOCKI, A. (2010). Steady- state visually evoked
potentials: focus on essential paradigms and future per-
spectives. Progress in Neurobiology.

VOLOSYAK, I. (2011). Bci demographics ii: How many
(and what kinds of) people can use a high-frequency
ssvep bci? IEEE Transactions on Neural Systems and
Rehabilitation Engineering.

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 499 DOI: 10.20906/sbai.v1i1.2615




