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Abstract: This work presents the safe control of a 2 degrees-of-freedom (2DOF) helicopter.
We consider a control framework that unifies stability/tracking objectives, expressed as a
nominal control law, and safety constraints, expressed as control barrier functions (CBFs),
through a quadratic programming (QP) and the safety constraints must be prioritized. A linear
quadratic regulator (LQR) is applied as the nominal control law and two safety constraints are
considered to ensure that pitch and yaw angles never exceed predetermined bounds. As these
safety constraints have high relative-degree, we represent them as exponential control barrier
functions (ECBFs). The system model is based on a 2DOF helicopter available at EPUSP.
The results obtained through numerical simulations demonstrate that the safety constraints are
always satisfied and the tracking objectives are satisfied just when are not in conflict with the
safety constraints.

Keywords: Control Barrier Function, Safety, 2DOF Helicopter, Quadratic Programming,
Optimal Control.

1. INTRODUCTION

The 2 degrees-of-freedom (2DOF) helicopter is a non-
linear and coupled multiple-input-multiple-output (MIMO)
system. Several control strategies presented in the litera-
ture have been applied to this system, such as robust op-
timal control using linear matrix inequalities with Takagi-
Sugeno fuzzy controllers (Yu (2007)), adaptive robust lin-
ear quadratic control (Watanabe et al. (2013)) and non-
linear predictive control (Dutka et al. (2003)). These works
are proposed to satisfy tracking objectives, however safety
is not considered. Safety is represented by constraints in
system states or outputs and can be mathematically re-
lated to control barrier functions (CBFs). Thus, we apply
a control framework that simultaneously satisfy tracking
objectives and safety constraints.

The control framework considered in this work is described
in Ames et al. (2014b). More complete and detailed ver-
sions of Ames et al. (2014b) can be seen in Ames et al.
(2019) and Ames et al. (2017). This control framework
unifies stability/tracking objectives, expressed as a control
Lyapunov function (CLF) or a nominal control law, and
safety constraints, expressed as a CBF. These objectives
can be integrated through quadratic programming (QP)
and safety constraints must be prioritized. Several applica-
tions using this methodology are described in the literature
such as bipedal walking robot (Nguyen and Screenath
(2015)), robotic manipulator (Rauscher et al. (2016)),
two-wheeled human transporter (Segway) (Gurriet et al.
(2018)), quadrotors (Wu and Sreenath (2016)) and multi-
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robot systems (Wang et al. (2017)). Besides that, this
control framework is only applicable for relative-degree
one safety constraints, i.e., the first time-derivative of the
CBF has to depend on the control input. However, in
several cases, the relative-degree of the safety constraint is
greater than one. Some works presented in the literature
propose solutions to deal with high relative-degree safety
constraints (greater than one) for this control framework.
In Wu and Screenath (2015), a solution applied only for
relative-degree two safety constraints is proposed. In Hsu
et al. (2015), a backstepping-based method is applied
to high relative-degree safety constraints. In Nguyen and
Sreenath (2016), the concept of exponential control barrier
function (ECBF) is introduced as a way to systematically
enforce high relative-degree safety constraints.

In this work, we apply the control framework described
above for a 2DOF helicopter. The system model is based
on a 2DOF helicopter available at Escola Politécnica da
Universidade de São Paulo (EPUSP). A linear quadratic
regulator (LQR) is applied as the nominal control law to
ensure that pitch and yaw angles track reference inputs
(tracking objectives) and two safety constraints are consid-
ered to ensure that pitch and yaw angles never exceed pre-
determined bounds. As these safety constraints have high
relative-degree, we represent them as ECBFs. The initial
results were obtained through numerical simulations. It
is important to highlight that this same 2DOF helicopter
was controlled in Neto et al. (2016), Neto et al. (2017)
and Barbosa et al. (2016) using a pole-placement, a state
feedback decoupling control and a discrete linear quadratic
Gaussian/loop transfer recovery control augmented by in-
tegrators, respectively.
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The rest of this paper is organized as follows: In Section
2, the modeling of the 2DOF helicopter is described. The
LQR, the concepts of CBF and ECBF, and the control
framework that unifies the stability/tracking objectives
and the safety constraints through QP are presented in
Section 3. The numerical simulations and the conclusions
are presented in Sections 4 and 5 respectively.

2. SYSTEM MODELING

The schematic diagram and the prototype of the 2DOF
helicopter available at EPUSP are shown in Fig. 1.

(a) Schematic diagram

(b) Prototype

Fig. 1. 2DOF helicopter available at EPUSP

The system rotates around pitch and yaw axes (with angles
θhel and ψhel) and we consider the following conventions
(Barbosa et al. (2016)):

(1) Helicopter is horizontal with θhel = 0;

(2) θ̇hel is positive when the nose is moving upwards;

(3) ψ̇hel is positive when the helicopter rotates clockwise;
(4) There is neither rolling nor axial movements.

The system is composed by two brushless DC motors
with propellers that control pitch and yaw angles applying
forces Fph and Fyh. The 2DOF helicopter is a coupled
system, i.e., the pitch motor controls directly the pitch
angle using the force generated by its propeller, creating
a torque in yaw as effect of air resistance. Thus, the pitch
and yaw resulting torques are written as (Barbosa et al.
(2016)):

τph = KppVmp +KpyVmy, (1)

τyh = KyyVmy +KypVmp, (2)
where Kpp is the pitch motor thrust constant, Kpy is
the yaw motor torque constant, Kyy is the yaw motor
thrust constant, Kyp is the pitch motor torque constant,
Vmp is the pitch motor percentage, Vmy is the yaw motor
percentage, in which this percentage is related to the signal
sent to the motor controller.

Applying the Euler-Lagrange formulation, we can obtain
the following equations of motion (Barbosa et al. (2016)):

θ̈hel =
λhel − (Bphθ̇hel + αhel + βhel)

Jeqp +mhl2cmh
, (3)

λhel = KppVmp +KpyVmy, (4)

αhel = mhl
2
cmhψ̇

2
hel sin(θhel) cos(θhel), (5)

βhel = mhg cos(θhel)lcmh, (6)

ψ̈hel =
ρhel + γhel −Byhψ̇hel

Jeqy +mh cos(θhel)2l2cmh
, (7)

ρhel = KyyVmy +KypVmp, (8)

γhel = 2mhl
2
cmh sin(θhel) cos(θhel)ψ̇helθ̇hel, (9)

where mh is the helicopter total moving mass, lcmh is
the center of mass distance to origin, Bph and Byh are
the movement resistance acting above pitch and yaw axes,
respectively, Jeqp and Jeqy are the equivalent moments of
inertia related to pitch and yaw axes, respectively, and g is
the gravitational acceleration constant (Neto et al. (2017)).

3. CONTROL FRAMEWORK

This section presents the LQR, the concepts of CBF
and ECBF, and the control framework that unifies the
stability/tracking objectives and the safety constraints
through QP.

3.1 Nominal Control Law - LQR

As described previously, a LQR is applied as the nominal
control law unohel

to ensure that pitch and yaw angles
track reference inputs (tracking objectives). To design the
LQR, we linearize the system for small angles, as this is the
operating point. Thus, the equations of motion are defined
by:

θ̈hel =
λhel −Bphθ̇hel −mhglcmh

Jeqp +mhl2cmh
, (10)

ψ̈hel =
ρhel −Byhψ̇hel
Jeqy +mhl2cmh

. (11)

The system can be described in state-space such as:

ẋhel = Ahelxhel +Bheluhel, (12)

yhel = Chelxhel, (13)

where xhel =
[
θhel ψhel θ̇hel ψ̇hel

]T
are the states, uhel =

[Vmp Vmy]
T

are the inputs, Ahel is the state matrix, Bhel
is the input matrix and Chel is the output matrix. The
matrices Ahel, Bhel and Chel are given by:

Ahel =


0 0 1 0
0 0 0 1

0 0
−Bph

Jeqp +mhl2cmh
0

0 0 0
−Byh

Jeqy +mhl2cmh

 , (14)
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Bhel =


0 0
0 0
Kpp

Jeqp +mhl2cmh

Kpy

Jeqp +mhl2cmh
Kyp

Jeqy +mhl2cmh

Kyy

Jeqy +mhl2cmh

 , (15)

Chel =

[
1 0 0 0
0 1 0 0

]
. (16)

LQR is an optimal regulator that, given the linearized
system (12)-(13), determines the matrix K of the optimal
control vector

unohel
= −Kxhel (17)

so as to minimize the performance index

J =

∫ ∞
0

(
xThelQxhel + uTnohel

Runohel

)
dt, (18)

where Q is a positive-semidefinite matrix and R is a
positive-definite matrix. These matrices are selected to
weight the relative importance of the state vector xhel
and the input vector unohel

on the performance index
minimization (Ogata (2009)).

If there exists a positive-definite matrix P satisfying the
Riccati equation

AThelP + PAhel − PBhelR−1BThelP +Q = 0, (19)

then the closed-loop system is stable. Thus, the optimal
matrix K can be obtained by

K = R−1BThelP. (20)

As we consider the tracking objectives, the control vector
(17) is given by:

unohel
= −K(xhel − xhelr ), (21)

where xhelr =
[
θhelr ψhelr θ̇helr ψ̇helr

]T
are the refer-

ence inputs.

3.2 Control Barrier Function

Initially, we consider the system model represented by:

ẋ = f(x) + g(x)u, (22)

with states x ∈ D ⊂ Rn, inputs u ∈ U ⊂ Rm and f(x) and
g(x) locally Lipschitz.

Safety is verified in terms of a set invariance, i.e., not
leaving a safe set. We consider a set C defined as the
superlevel set of a continuously differentiable function
h(x) : D ⊂ Rn → R as (Ames et al. (2019)):

C = {x ∈ D ⊂ Rn : h (x) ≥ 0} ,
∂C = {x ∈ D ⊂ Rn : h (x) = 0} ,
Int(C) = {x ∈ D ⊂ Rn : h (x) > 0} .

(23)

Thus, safety can be defined (Ames et al. (2019)):

Definition 1. (Safety) Let u be a feedback controller such
that (22) is locally Lipschitz. For any initial condition
x0 ∈ D there exists a maximum interval of existence I(x0)
such that x(t) is the unique solution to (22) on I(x0). The
set C is forward invariant if for every x0 ∈ C, x(t) ∈ C for
x(0) = x0 and ∀t ∈ I(x0). The system (22) is safe with
respect to the set C if the set C is forward invariant.

After the set C and safety have been defined, the CBF h(x)
can formally be defined (Ames et al. (2019)), (Ames et al.
(2017)):

Definition 2. (CBF) Consider the control system (22) and
the set C defined by (23) for a continuously differentiable
function h(x) : D ⊂ Rn → R. The function h(x) is called
a CBF defined on set D, if there exists an extended class
κ function α such that

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ D, (24)

where Lfh = ∇h(x) · f(x), Lgh = ∇h(x) · g(x) and the
class κ function is defined by (Ames et al. (2017)):

Definition 3. (Class κ function) A continuous function
α : [0, a) → [0,∞) for some a > 0 is said to belong to
a class κ if it is strictly increasing and α(0) = 0.

Considering a CBF h(x), ∀x ∈ D, define the set (Ames
et al. (2019)), (Ames et al. (2017)):

Kcbf (x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0} .
(25)

Considering control values in this set, the forward invari-
ance of C is guaranteed by the following corollary (Ames
et al. (2017)):

Corollary 1. Assume the set C defined by (23) and let
h(x) be an associated CBF for the system (22), then any
locally Lipschitz continuous controller u : D → U such that
u(x) ∈ Kcbf (x) will render the set C forward invariant.

The final control framework unifies stability/tracking ob-
jectives, expressed as a nominal control law uno, and safety
constraints, expressed as a CBF, through QP and the
safety constraints must be prioritized. Fig. 2 presents a
synthesized description of the control framework.

Fig. 2. Synthesized description of the control framework

The controller is formulated as an optimization problem,
minimizing the error (Rauscher et al. (2016))

eu = uno − u. (26)

The squared norm of the error

‖eu‖2 = uTu− 2uTnou+ uTnouno (27)

is considered as the objective function. The last term of
(27) is neglected, as it is constant in a minimization with
respect to u (Rauscher et al. (2016)). Thus, we can consider
the following QP-based controller (Ames et al. (2019)),
(Rauscher et al. (2016)):

u∗(x) = arg min
u∈Rm

uTu− 2uTnou

s.t. Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0.
(28)

It is important to highlight that the constraint in QP
enforces the condition (24) for the CBF.

The QP-based controller (28) is only applicable for
relative-degree one safety constraints, i.e., the first time-
derivative of the CBF has to depend on the control input.
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When high relative-degree safety constraints are consid-
ered Lgh(x) = 0 and the QP cannot be solved; thus, we
introduce the concept of ECBF to deal with high relative-
degree safety constraints.

3.3 Exponential Control Barrier Function

The concept of ECBF was first introduced in Nguyen and
Sreenath (2016), where in the final control framework,
stability/tracking objectives are expressed as a CLF. How-
ever, in this work, the formulation of Nguyen and Sreenath
(2016) is adapted in order to express stability/tracking
objectives as a nominal control law, such as in (28). The
term ECBF is used since the resulting CBF constraint is
an exponential function of the initial condition (Nguyen
and Sreenath (2016)).

In Ames et al. (2014a), it is described a systematic pro-
cedure using input-output linearization to design CLFs
for regulating outputs with arbitrary relative-degree. This
procedure could be applied to design CBFs for constraints
with arbitrary relative-degree r. However, this procedure is
not directly feasible to ḣ(x, u) = Lfh(x) + Lgh(x)u since
Lgh(x) is a vector and obviously not invertible (Nguyen
and Sreenath (2016)). The work Nguyen and Sreenath
(2016) introduces the notion of virtual input-output lin-
earization wherein an invertible decoupling matrix is not
required. Considering a virtual control input µb defined as

h(r)(x, u) = Lrfh(x) + LgL
r−1
f h(x)u := µb, (29)

such that the input-output linearized system becomes
(Nguyen and Sreenath (2016))

η̇b(x) = Fbηb(x) +Gbµb,
h(x) = Cbηb(x),

(30)

where ηb(x) is defined as

ηb(x) :=


h(x)

ḣ(x)

ḧ(x)
...

h(r−1)(x)

 =


h(x)
Lfh(x)
L2
fh(x)

...
Lr−1f h(x)

 , (31)

Fb ∈ Rr×r, Gb ∈ Rr×1 are defined as

Fb =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , Gb =


0
0
...
0
1

 , (32)

and Cb is defined as

Cb = [ 1 0 · · · 0 ] . (33)

If one wants to drive h(x) to zero, the work Nguyen and
Sreenath (2016) proposes to design the EBCF with a pole
placement controller µb = −Kbηb, with all negative real
poles pb = − [ pb1 pb2 · · · pbr ], where pbi > 0, i =
1, · · · , r; thus, h(x(t)) = Cbe

Abtηb(x0), where the closed-
loop matrix Ab = Fb − GbKb with all negative real
eigenvalues. Moreover, if µb ≥ −Kbηb, then h(x(t)) ≥
Cbe

Abtηb(x0) (Ames et al. (2019)).

We now can define the ECBF (Ames et al. (2019)),
(Nguyen and Sreenath (2016)):

Definition 4. (ECBF) Given a set C defined by (23) for
a r-times continuously differentiable function h(x) : D ⊂
Rn → R, then h(x) is an ECBF if there exists a row vector
Kb ∈ Rr such that for the control system (22),

sup
u∈U

[
Lrfh(x) + LgL

r−1
f h(x)u

]
≥ −Kbηb(x) (34)

∀x ∈ Int(C) results in h(x(t)) ≥ Cbe
Abtηb(x0) ≥ 0,

whenever h(x0) ≥ 0.

Similarly to (28), a nominal control law uno and an ECBF
h(x) can be unified using QP considering the following
controller (Ames et al. (2019)), (Nguyen and Sreenath
(2016)):

u∗(x) = arg min
(u,µb)∈Rm+1

uTu− 2uTnou

s.t. Lrfh(x) + LgL
r−1
f h(x)u = µb,

µb ≥ −Kbηb(x).

(35)

4. NUMERICAL SIMULATIONS

The behavior of the 2DOF helicopter with the control
framework described in this work is verified through nu-
merical simulations with MATLAB/Simulink. The numer-
ical values of the parameters are mh = 1.317kg, lcmh =
0.038m, Kpp = 0.018N·m/%, Kyy = −0.0033N·m/%,
Kpy = −6.35 · 10−4N·m/%, Kyp = 10.76 · 10−4N·m/%,
Bph = 0.1N/%, Byh = 0.1N/%, Jeqp = 0.384kg·m2,
Jeqy = 0.0432kg·m2 (Barbosa et al. (2016)).

As described previously, we apply the proposed control
framework to satisfy tracking objectives and safety con-
straints, where the safety constraints must be prioritized.
A LQR is applied as the nominal control law unohel

to
ensure that the pitch angle θhel and the yaw angle ψhel
track the reference inputs θhelr and ψhelr , respectively, and
two safety constraints are considered to ensure that |θhel|
and |ψhel| never exceed predetermined bounds θhelb and
ψhelb , respectively.

The LQR is designed for the linearized system (12)-(13).
Considering

Q =

 550 0 0 0
0 150 0 0
0 0 100 0
0 0 0 10

 , (36)

R =

[
5 · 10−5 0

0 5 · 10−5

]
, (37)

and using the MATLAB function lqr, we obtain

K =

[
3305.3 142.9 1453.7 36.2
273.7 −1726.1 130.6 −466.6

]
(38)

for the final control law (21).

We apply the safety constraints considering the nonlinear
system (3)-(7) described as (22), i.e., ẋhel = fhel(xhel) +
ghel(xhel)uhel. The safety constraints are given by:

hp = θ2helb − θ
2
hel, (39)

hy = ψ2
helb
− ψ2

hel. (40)

These safety constraints have relative-degree two and must
be represented as ECBFs. Thus, the QP-based controller
(35) that unifies the nominal control law unohel

, given
by (21), and the safety constraints, expressed as ECBFs,
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is applied. The controller is adapted to multiple safety
constraints:

u∗hel(x) = arg min
(uhel,µhel)∈R4

uTheluhel − 2uTnohel
uhel

s.t. [Lghel
Lfhel

hp(xhel) Lghel
Lfhel

hy(xhel)]uhel

+
[
L2
fhel

hp(xhel) L2
fhel

hy(xhel)
]T

= µhel,

µhel =
[
µhelp µhely

]T ≥
−
[
Khelpηhelp(xhel) Khelyηhely (xhel)

]T
.

(41)

We set θhelb = ψhelb = 0.436rad (25◦) and Khelp =
Khely = [10 10]. The simulation results are presented in

Fig. 3, where we consider θ̇helr = ψ̇helr = 0. From 0s to
50s the reference inputs θhelr and ψhelr do not exceed the
bounds θhelb and ψhelb and the results show that the LQR
is able to track the reference inputs while the CBFs do not
exert influence. After 50s the reference inputs θhelr and
ψhelr exceed the bounds θhelb and ψhelb and the safety
constraints are respected, i.e, |θhel| never exceeds θhelb ,
|ψhel| never exceeds ψhelb , and the safe set (23) is respected
(hp ≥ 0 and hy ≥ 0). From 50s and 80s there is a conflict
between the safety constraints and the reference inputs,
i.e, they cannot be satisfied simultaneously. As described
previously, this control framework prioritizes safety con-
straints, therefore the safety constraints are respected
and the reference inputs are not tracked adequately. It
is important to highlight that all the simulations were
done considering the nonlinear system (3)-(7) and the QP
is implemented using Hildreth’s QP procedure (Hildreth
(1957)).

5. CONCLUSIONS

This work presents the safe control of a 2DOF heli-
copter considering a control framework that unifies sta-
bility/tracking objectives, expressed as a nominal control
law, and high relative-degree safety constraints, expressed
as ECBFs, through QP and the safety constraints must
be prioritized. A LQR is applied as the nominal control
law and two safety constraints are considered to ensure
that pitch and yaw angles never exceed predetermined
bounds. The system model is based on a 2DOF helicopter
available at EPUSP. The numerical simulations demon-
strate that the safety constraints are always satisfied and
the tracking objectives are satisfied just when are not in
conflict with the safety constraints. As a future work, the
control framework will be implemented experimentally in
the 2DOF helicopter available at EPUSP.
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