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Abstract: This paper proposes an adaptive infinite horizon model predictive control (IHMPC)
integrated with active fault tolerance properties due to the performance degradation of the
model predictive control (MPC) caused by operational faults. The proposed scheme includes
a fault supervision layer composed of fault diagnosis and accommodation methods to provide
the ability to update the nominal model of the controller. The simulation results in a nonlinear
industrial reactor subject to process faults illustrate that the proposed approach achieves better
dynamic performance and has a reduced computational cost compared to a robust IHMPC.
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1. INTRODUCTION

Model predictive control (MPC) is one of the main ad-
vanced control classes used in control engineering appli-
cations due to its optimal control performance, as well
as the ability to handle constrained multivariate systems
(Mayne, 2014). Despite industrial success, notably in the
process industry, dealing with model mismatch due to
changes in plant dynamics remains the main obstacle to
maintain optimal performance of the MPC. The plant
dynamics can be changed over time due to several factors,
a major cause of this situation is operational faults (Blanke
et al., 2016). Fault is an unacceptable deviation from some
characteristic property of the system, which can occur
in any element of the control loop (sensor, actuator or
process) and according to Albalawi et al. (2018) faults
cause significant degradation in control performance.

Faults can be modeled as uncertain systems, which in a
theoretical perspective leads to the formulation of robust
MPC (RMPC). In general, the RMPC is designed to meet
all uncertainty conditions in the plant, including those
least likely to occur in practice. This can result in a control
law with conservative performance (Lorenzen et al., 2017).
In addition, the computational cost of the robust MPC
to solve online optimization problems is significant, some
of them by nonlinear programming (NLP). Thus, the
practical implementation in the controller hardware can
be expensive (Di Cairano, 2016).

Another framework to deal with model uncertainty is
through adaptive control and, particularly, for systems
subject to faults, it is directly associated with the active
fault tolerant control (AFTC) approach. The AFTC auto-
matically compensates faults by redesigning the controller
based on information provided by a fault diagnosis module,

in order to maintain the closed-loop stability and accept-
able control performance in fault situations (Blanke et al.,
2016). The adaptive MPC allows fault tolerance to be
incorporated into the optimization problem by redefining
the constraints, updating the nominal model or changing
the control objectives (Jain et al., 2018). However, AFTC
approach based on the conventional MPC, as presented
in Bavili et al. (2015), although it can provide improved
control performance, there is not a priori guarantee of
stability of the closed-loop system, which is a desirable
feature in AFTC systems.

A popular approach to obtain a nominally stable MPC
consists of adopting an infinite prediction horizon, which
can be reduced to a finite horizon cost function by defin-
ing an appropriate terminal state penalty (Rawlings and
Muske, 1993). However, other important characteristics
of an IHMPC, such as recursive feasibility and offset
elimination, depend on model and control law adequate
structures. A formulation with these characteristics can
be found in the IHMPC proposed by Odloak (2004), which
considers artificial integrating modes to eliminate the off-
set of the closed-loop system and the one-step formulation
is always feasible due to the slack variables included in the
optimization problem. The method of Odloak (2004) has
been extended to different types of dynamic systems (Mar-
tins and Odloak, 2016) and recently it has been embedded
in real-time systems, as seen in Santana et al. (2019). How-
ever, the challenge related to preserving the performance
of the IHMPC remains an open field of research, especially
in plants subject to operational faults.

In this context, this paper proposes an AFTC scheme
based on the IHMPC proposed by Odloak (2004) inte-
grated with a fault supervision layer, in order to improve
control performance in plants subject to operational faults.
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The supervision layer consists of fault diagnosis and fault
accommodation methods. The active fault tolerance is
obtained by updating the nominal model of the controller
to incorporate the fault dynamics in the optimization
problem based on quadratic programming (QP).

In comparison with existing works in the literature, the
contributions of this paper are: (1) an adaptive IHMPC
with active fault tolerance proprieties; (2) AFTC strat-
egy with reduced computational cost compared to robust
MPC strategies; (3) achieve better control performance
compared to the NLP-based robust IHMPC strategy.

This paper is organized as follows. The problem formu-
lation is described in section 2. While in section 3, the
adaptive IHMPC-based AFTC scheme for time delay sta-
ble systems is presented. Simulated results of control per-
formance in a nonlinear reactor subject to process faults
are presented in Section 4, as well as the comparative
analysis of performance and computational cost in relation
to robust strategy. In Section 5, the paper is concluded.

2. PROBLEM FORMULATION

The faults that affect the system are represented by a
variation of system parameters (Noura et al., 2009), whose
discrete time invariant state space model is:

xf (k + 1) = Afxf (k) +Bfu(k) (1)

y(k) = Cfx(k) (2)

where the matrices of the faulty system are defined by
Af = (Ah + δA), Bf = (Bh + δB) and Cf = (Ch + δC),
whilst xf ∈ Rn, u ∈ Rnu and y ∈ Rny are the state, input
and output vectors at time instant k, respectively, Ah ∈
Rn×n, Bh ∈ Rn×nu and Ch ∈ Rny×n are healthy matrices
of appropriate dimensions, δA, δB and δC correspond to
the deviation of the system parameters with respect to the
nominal values. The model Θ = (Af , Bf , Cf ) represent a
given plant dynamics, and process, actuator and sensor
faults can affect Af , Bf and Cf .

To characterize model uncertainty, it is adopted the multi-
plant system (Badgwell, 1997), where the plant model in
(1) and (2) is not exactly known, however it is known
to lie within a discrete set Ω of possible stable plants
with the same dimensions. In this case, each model Θn

corresponds to a particular plant Θn = (Afn, Bfn, Cfn),
for n = 1, . . . , L, where L is the total number of models.

Θn ∈ Ω = {Θ1,Θ2, . . . ,ΘL}, n = 1, . . . , L (3)

In the uncertainty domain considered here, it is assumed
that the plant can operate under several different operat-
ing conditions. In particular, there is one healthy operat-
ing point (without fault) represented by Θ1 ∈ Ω, whilst
Ωf = {Θ2, . . . ,ΘL} ⊂ Ω represents different operational
points with faults. The definition of set Ω is a decision to
be taken during the design phase of the process system
and depends on the desired operational policy as well as
on the study of possible faults that may occur in the plant.

Considering the system (1) and (2) and uncertainty do-
main (3), the objective is to solve a control problem with
constraints, while guarantee recursive feasibility, nominal
closed-loop stability and better control performance in
faults situations.

3. ACTIVE FAULT TOLERANT ADAPTIVE IHMPC

The proposed control scheme consists of two layers: control
and supervision, as shown in Fig. 1. In the control layer,
an IHMPC is designed to meet the desired performance
requirements of the plant, deal with constraints and guar-
antee the nominal stability of the closed-loop system. On
the other hand, the supervision layer seeks to monitor
plant faults to redesign the controller, in order to improv-
ing performance.

Fault Accommodation
Ω = {Θ1,Θ2, ...,ΘL}

IHMPC
(model Θi)

Plant

Fault Diagnosis
f̂

Supervision layer

Control layer

manipulated

variables

nominal model Θi=1,...,orL

set-points

controlled

variables

(L− 1) possible faults

Figure 1. Adaptive IHMPC-based AFTC scheme.

After the occurrence of a specific fault between nf = L−
1 possible faults, at time step kf , the operating point
of the plant is changed from the healthy model Θ1 to
the corresponding faulty dynamics of model Θi ∈ Ω, for
i = 2, . . . , orL. The fault diagnosis obtains information

about the fault f̂ at time step kd, where kd > kf , through
the concept of analytical redundancy, evaluating inputs
and outputs of the plant to verify dynamic inconsistencies
(residual) between the expected behavior and the cur-
rent plant dynamics. Posteriorly, the fault accommodation
method updates the model, at time step ka, where ka > kd,
in the optimization problem of the IHMPC to compensate
the effects of the fault in the plant.

In this scheme, the control performance is improved and
still preserves the nominally stabilizing properties of the
controller. Moreover, the proposed control structure has a
simpler numerical solution to address model uncertainty
than a traditional solution with the robust IHMPC.

3.1 Control layer

The formulation of the stabilizing MPC presented here is
based on the state-space model in the analytical form of
the step response of system with open-loop stable modes,
proposed by Odloak (2004), and extended to the time
delay system, as discussed in Martins and Odloak (2016).
However, different from Odloak (2004), here it is proposed
a cost function with an adaptive nominal model, according
to changes that may occur in the plant due to faults.

In this model formulation, a discrete time state-space
model in incremental form of the inputs, ∆u(k), is written
from the corresponding step response at each time k of the
system in (1) and (2):

x(k + 1) = Ax(k) +B∆u(k) (4)

y(k) = Cx(k) (5)

where:

x(k) =
[
xs(k) xst(k) z1(k) z2(k) · · · zp(k)

]T ∈ Cnx
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A =



Iny 0 Bs1 Bs2 · · · Bsp−1 Bsp
0 F Bst1 Bst2 · · · Bstp−1 B

st
p

0 0 0 0 · · · 0 0
0 0 Inu

0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Inu 0

 ∈ R
nx×nx ,

B =
[
Bs0 Bst0 Inu

0 . . . 0
]T ∈ Rnu×nx ,

C =
[
Iny

Ψ 0ny×(ny+nu·p)
]
∈ Rny×nx , p = max

i,j
γi,j ,

nx = ny + nst + p · nu, nst = ny · nu ·max(na)

The incremental form of the inputs introduces artificial
integrating modes, xs ∈ Rny , that provides integral action
that eliminates offset at steady-state. The state vector also
has a component related to the stable modes, xst ∈ Rnst ,
of the system, where nst = ny · nu · max(na) and na
distinct stable poles. The states z1 to zp represents the past
input move delayed by the time period of zero until the
largest process delay, p. The diagonal matrix F contains
components corresponding to the stable poles. Whilst the
matrices Bsl and Bstl , for l = 0, . . . , p, are expressions of
the coefficients of the partial fraction expansion of the step
response. The details for obtaining these matrices can be
found in Martins and Odloak (2016).

That way, for time delay stable systems and for the case of
reference tracking, the IHMPC solves, considering here the
adaptive nominal model (most likely) Θi, i = 1, . . . or L,
the following optimization problem:

Problem 1.

min
∆uk,δy,k

Vk(Θi=1,...or L),

Vk(Θi) =

m+p∑
j=0

‖e(k + j|k)− δy,k(Θi)‖2Q

+

m−1∑
j=0

‖∆u(k + j|k)‖2R

+
∥∥xst(k +m+ p|k)

∥∥2
¯Q(Θi)

+ ‖δy,k(Θi)‖2S

subject to (4), (5) and

∆u(k + j|k) ∈ U, j = 0, . . . ,m− 1 (6)

U =


−∆umax ≤ ∆u(k + j|k) ≤ ∆umax

umin ≤ ∆u(k − 1) +
∑j
i=0 ∆u(k + i|k) ≤ umax

∆u(k + j|k) = 0 j ≥ m


xs(k +m+ p|k)− ysp − δy,k(Θi) = 0 (7)

where e(k+j|k) = y(k+j|k)−ysp is the output prediction
error vector at time step k + j computed at time step
k, taking into account the effects of the future control
actions, y(k+ j|k) is the output prediction vector, ysp,k is
the output reference vector, m is the control horizon and
δy,k ∈ Rny is the slacks vector that aims to extend the do-
main of attraction of the controller and provides recursive
feasibility to the method. Q ∈ Rny×ny is a positive definite
weighting matrix of the controlled outputs, R ∈ Rnu×nu is
positive semi-definite weighting matrix associated with the
move suppression on manipulated variables, and matrix
Sy ∈ Rny×ny is positive definite weighting matrix corre-
sponding to slacks and must have adequate values to avoid

the unnecessary use of the slacks in the optimization prob-
lem. The terminal weighting matrix, Q̄(Θi), is determined
from the solution of a Lyapunov equation:

Q̄(Θi)− FT (Θi)Q̄(Θi)F (Θi) = FT (Θi)Ψ
TQΨF (Θi) (8)

The constraint (7) is imposed to limit the cost function
of the controller and the use of slacks in the optimization
problem is only performed if this restriction is not satisfied
with null slack variable. The Problem 1 is solved by
quadratic programming (QP) and it recursively feasible,
see proof in Odloak (2004), and asymptotically stable in
the terms of the stability arguments proposed by Rawlings
and Muske (1993).

3.2 Supervision layer

The supervision layer is flexible regarding the specification
of the fault diagnosis method. However, for the implemen-
tation of analytical redundancy, model-based approaches,
notably with observer, has been relevant for fault diagnosis
(Gao et al., 2015). Specifically in this paper, it is consid-
ered the unknown input fault detection observer (UIFDO)
proposed by Sotomayor and Odloak (2005).

For the development of UIFDO, a fault vector f ∈ Rnf

is added to the system model (1) and (2), representing
possible faults in the plant. In this way, from an adequate
transformation matrix T , see Santos et al. (2019) for more
details, the faulty model can be written in terms of a
new state w(k) = Tx(k), which can be separated into
two parts w(k) = [w1(k) w2(k)]T , where w1(k) is related
to the faults that will be insensitive to the detector and
w2(k) contains the faults that will be monitored. Now, with
the assistance of Luenberger observer, an UIFDO can be
written as:

ŵ2(k + 1) = Āŵ2(k) + B̄u(k) + Ēȳ1(k) +Kr(k) (9)

r(k) = ȳ2(k)− C̄ŵ2(k) (10)

f̂(k − 1) = (Ē11)[ŵ1(k)− Ā11ŵ1(k − 1)

− Ā12ŵ2(k − 1))− B̄1u(k − 1)] (11)

where r is the residual, f̂ is the estimated fault magnitude,
ŵ2 is the estimate of the fault-sensitive state, ȳ1 and ȳ2 are
the outputs of the transformed system, Ā, Ā11, Ā12, B̄,
B̄1, C̄, Ē and Ē11 are transformed system matrices, and
K the observer gain, which was determined here through
the adaptive Kalman filter, as indicated in (12) and (13),
where P is the prediction error covariance matrix.

K(k) = (ĀP (k − 1)C̄T )(I + C̄P (k − 1)C̄T )−1 (12)

P (k) = (Ā −K(k)C̄)P (k − 1)ĀT (13)

Remark 1. The probability of simultaneous occurrence of
faults was considered insignificant.

The fault diagnosis is implemented through a bank with nf
UIFDO in order to produce a structured residual set. The
design of each UIFDO takes into account a specific fault
in the plant with model contained in (3). In addition, the
observer has the characteristic of being insensitive to one
fault and sensitive to others.

The fault accommodation method is based on a decision-
making algorithm, which checks information about the
faults diagnosed to update the nominal model in Problem
1 to the most likely dynamics of the plant contained in (3).
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4. SIMULATION RESULTS

This section presents the simulated results of the applica-
tion of the fault tolerant adaptive IHMPC in an industrial
styrene polymerization reactor. The dynamic performance
and computational cost of the proposed control scheme are
compared with the robust IHMPC proposed by Odloak
(2004), which has no active fault tolerance characteristics.

4.1 Styrene polymerization reactor

It is considered here the industrial process for free-radical
solution polymerization of styrene in a jacketed continuous
stirred tank reactor (CSTR), whose phenomenological
model is nonlinear, subject to three possible situations of
abrupt process faults. In this system process, the polymer
intrinsic viscosity η (y1) and temperature of the reactor T
(y2) are the controlled variables and flow rate of initiator
Qi (u1) and flow rate of cooling jacket fluid Qc (u2) are the
manipulated variables. The definition of the parameters,
variables, equations and process operation points can be
consulted in Maner et al. (1996).

The faults scenarios analyzed correspond to abrupt changes
in three nominal parameters of the reactor: frequency fac-
tor for termination reaction At, temperature of the reactor
feed Tf and initiator efficiency fi. For modeling purposes,
the following magnitude of faults was adopted: decrease
of 10% in parameter At, additive disturbance of 1.65K
in Tf and 15% reduction in initiator efficiency. A set of
linear models was obtained empirically to approximate the
nonlinear plant, as showed in Table 1.

Table 1. Set of linear models of the plant

u1(Qi)[L/h] u2(Qc)[L/h]

Θ1

(healthy)

y1(η)[L/g]
−45.47

5.79s+ 1
e−0.44s 3.75

9.29s+ 1
e−2.81s

y2(T )[K]
122.14

7.09s+ 1
e−0.10s −39.01

7.33s+ 1
e−0.62s

Θ2

(fault At)

y1(η)[L/g]
−42.62

5.76s+ 1
e−0.44s 3.18

8.59s+ 1
e−2.80s

y2(T )[K]
119.96

6.93s+ 1
e−0.10s −33.04

6.83s+ 1
e−0.61s

Θ3

(fault Tf )

y1(η)[L/g]
−45.46

5.66s+ 1
e−0.46s 2.69

8.14s+ 1
e−2.73s

y2(T )[K]
121.92

6.46s+ 1
e−0.11s −28.20

6.37s+ 1
e0.56s

Θ4

(fault fi)

y1(η)[L/g]
−38.64

5.50s+ 1
e−0.42s 3.68

8.96s+ 1
e−2.81s

y2(T )[K]
95.51

6.75s+ 1
e−0.12s −38.71

7.23s+ 1
e−0.61s

The controlled variables have a fixed setpoint ysp =
[2.9091 (L/g) 323.55 (K)]T , whilst the inputs and input
movements must be within the specified limits by umax =
[144 (L/h) 748 (L/h)]T , umin = [72 (L/h) 400 (L/h)]T and
∆umax = [18 (L/h) 87 (L/h)]T . The tuning parameters of
the adaptive IHMPC, for ∆T = 1 h, are shown in Table 2.

In the healthy (faultless) situation the nominal model of
the adaptive IHMPC is Θ1, in the case of a specific faults
this model is updated to the corresponding fault {Θ2, Θ2,
Θ3}. Regarding the robust IHMPC, the prediction model
is fixed Θ1 and the other models used for contracting-
cost constraints of the optimization problem. Differently

adaptive IHMPC, the optimization problem of robust
IHMPC is solved by nonlinear programming (NLP), see
Odloak (2004) for more details. Finally, the current model
of the plant is nonlinear subject to faults.

Table 2. Tuning parameters of the controller.

model Θ1 Θ2 Θ3 Θ4

m 3
hp ∞
Qy [4.0 0.5] [4.0 0.5] [4.0 0.3] [6.0 0.6]
R [400 200] [400 200] [400 200] [400 100]
Sy [104 104]

4.2 Fault scenario - At

The variation of the parameter At may occur due to the
diffusion limitations in the monomer conversions. Thus,
a reduction of 10% is considered, similar to an abrupt
process fault. As seen in Fig. 2, the fault occurs at time
20 h and the fault diagnosis performed in approximately
2 sampling time. It is noted that an alarm is generated
from the residuals rTf

and rfi , and not by the residual
rAt

, due to the insensitivity characteristic of the detector
fault. We use a decision limit T = 0.2. It is also verified
that the estimate of the fault magnitude is coherent with
the abnormality that occurred in the process.

Figure 2. Fault diagnosis for abrupt fault in parameter At.
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Figure 3. Performance of the controllers - fault At.
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The control performance of the adaptive and robust
IHMPC are shown in Fig. 3. Specifically, for the adaptive
IHMPC, after online fault diagnosis, the fault accommoda-
tion module updates the model from Θ1 to Θ2, meanwhile
the robust IHMPC remains with the model Θ1. The two
control strategies are able to converge the outputs to the
respective setpoints, however the performance of adaptive
IHMPC has less variation in the controlled variables.

4.3 Fault scenario - Tf

A sudden change in the feed temperature Tf affects the re-
actor temperature evolution and, consequently, influences
the polymer properties and the process productivity. In
this fault scenario, it is considered a abrupt increase of 1.65
K. The results of the fault diagnosis are presents in Fig.
4, observing that the residuals rAt and rfi are sensitive
and residual rTf is insensitive to this fault. The fault is
properly isolated and its magnitude is estimated perfectly
with respect to the real fault in the process.

Figure 4. Fault diagnosis for abrupt increase in Tf .
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Figure 5. Performance of the controllers - fault Tf .

In this situation, adaptive IHMPC is redesigned online by
changing the model from Θ1 to Θ3. The performance of the
control strategies is shown in Fig. 5. It is possible to verify
qualitatively that the adaptive IHMPC has the better
dynamic performance in the process control, because it
regulates the controlled variables with less deviation from

the setpoints and also manipulates the control valves
less aggressively. It is important to note that, before the
redesign of the adaptive IHMPC, the control action of both
controllers basically follow the same performance, however,
after fault diagnosis and accommodation, the adaptive
controller responds with a more effective control action.

4.4 Fault scenario - fi

In a given context, the overall efficiency of the initiator
may decrease due to imperfect mixing with a reaction
fluid. For this scenario, it is simulated an abrupt fault
with reduction of 15% in the efficiency of the initiator.
As shown in Fig. 6, the fault is diagnosed correctly.
Only the residual rfi is not sensitized, which characterizes
the referred fault, and the fault magnitude is estimated
according to expectations. In this situation, the nominal
model of the adaptive IHMPC is updated from Θ1 to Θ4.

Figure 6. Fault diagnosis for abrupt increase in fi.
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Figure 7. Performance of the controllers - fault fi.

In this fault scenario, the adaptive IHMPC, again, results
in better dynamic performance in the process control
subject to fault, as seen in Fig. 7. It is noted that this
control strategy provides a control action that results in
less overshoot in the controlled variables, in addition to
leading the process to steady-state more quickly than the
robust strategy. The performance improvement achieved
by the adaptive IHMPC directly influences the economic
performance of the polymer production process.
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4.5 Computational cost of the controllers

The computational cost associated with an MPC controller
is an important parameter, given that at each sampling
time the controller needs to solve an optimization problem.
In this way, the computational cost of the QP-based adap-
tive IHMPC and NLP-based robust IHMPC are compared
in terms of the solution time of the optimization problem
at each time step k. In all the faulty scenarios, the com-
putational cost of the adaptive controller is significantly
lower compared to the robust controller. As seen in the
histograms in Fig. 8, 9 e 10 the numerical performance
of the adaptive IHMPC is concentrated in the time range
of up to 0.03 s. On the other hand, the robust IHMPC
provided irregular time values, with average time of 0.16
s, 0.30 s and 0.22 s, for faults At, Tf and fi, respectively,
and solution time of up to 1.4 s, as seen in Fig 10(b).

Figure 8. Computational cost - fault At.

Figure 9. Computational cost - fault Tf .

Figure 10. Computational cost - fault fi.

5. CONCLUSIONS

This paper presents an active fault tolerant scheme based
on the integration of an IHMPC with a fault supervision
layer. One of the main characteristics of the proposed
approach is its ability to guide a plant subject to faults
to improve control performance. The simulation results in
a nonlinear industrial reactor subject to three possible pro-
cess faults illustrate that the adaptive approach achieves
better control performance than a IHMPC robust. The

adaptive IHMPC requires lower computational cost to deal
with the uncertainty of the model. Finally, the application
demonstrated practical implementation perspectives in a
real case, with the possibility of integration in real systems
that already employ the conventional IHMPC.
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