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Abstract: The following paper presents the methodology proposed to describe the equations which may 

define the flight dynamics of a new tilt-wing-coaxial-rotor tricopter, with the ability to rotate independently 

its three coaxial rotors. To assertively describe the mechanics involved in such aircraft, forces and torques 

related to aerodynamical, propulsive and inertial principles are considered. Specially highlighting the non-

linear attitude of the aircraft and its moving center of gravity (CG) due to its capability to assume a non-

symmetrical morphology airborne. The non-linear mathematical model is essential to fully understand the 

behavior of a multi-body, omnidirectional, unmanned aerial vehicle (UAV) in order to apply control 

techniques to it. The inertial matrix that describes the mass distribution of the multi-body system, as 

function of the coaxial-rotors’ tilt angles, is compared to the 3D model obtained in a computer-aided-design 

(CAD) software such as SolidWorks. Finally, a simulation using Linear Quadratic Regulation (LQR) 

control for a cruise (leveled flight) condition is analyzed in order to validate the dynamic behavior of the 

aircraft. 

Keywords: Aerial robotics, Coaxial-rotor; Flight mechanics; Non-linear model; Simulation and control; 

Tilt-rotor; Tilt-wing; Tricopter. 



1. INTRODUCTION 

Over the last decade, with the ongoing development of Drones 

or UAVs, a wide variety of models have been tested and 

created, leading to especially two types of Drones: multi-

copters and fixed-wings. Yet, recently, there has been an 

increasing demand to explore the “mixture” between these two 

types of drones, leading to Vertical-Take-Off-and-Landing 

drones (VTOL), which seek to produce an aircraft that is able 

to have the stability characteristics of a multi-copter in hover 

mode, and the speed and elevated flight time that a fixed-wing 

usually provides in cruise mode. Thus, VTOLs are capable of 

taking-off vertically, hover in the air, fly horizontally (by 

generating lift on its wings) and then land vertically. 

Unfortunately, this comes with the cost of complexity, by 

increasing significantly the non-linear degree of the system’s 

dynamics. 

Within the realm of VTOLs, several authors have been 

studying and testing different types of drone designs. As an 

example, Onen et al. (2015) proposes a conventional fixed-

wing airplane with a tricopter architecture, in which the frontal 

rotors have the ability to rotate from their vertical position 

(helping lift the drone during take-off or landing) into a 

horizontal position when the drone starts the cruise mode, or 

horizontal flight. A similar model is studied by Bautista et al. 

(2017) in which a flying-wing is coupled with three tilting 

rotors. Another good example is Mikami et al. (2015) where 

the authors consider a double-winged aircraft (one at the front 

and one at the rear) where each wing has a couple of rotors 

mounted at the middle of their semi-spans. These wings rotate 

simultaneously when the drone transitions from a hover mode 

into cruise mode. On all these three cases, once the aircraft 

reaches the cruise mode, they use classical flight control 

surfaces such as ailerons, flaps, rudder or elevator in order to 

contribute to the control of the aircraft, as an airplane would. 

The review of Zhong et al. (2016) shows several VTOL 

models, which are characterized by their ability to rotate either 

just their rotors (classified by the authors as Tilt-rotor UAVs) 

or their rotors along with their wings (classified as Tilt-wing 

UAVs). In every model reviewed by the authors, classical 

flight control surfaces also seem to be used to contribute in the 

aircraft’s control. Autenrieb et al. (2019) presents the control 

of a Tilt-wing aircraft with rotors at the tips of the wing and 

classical flight control surfaces to control it. 

When using a rotor in an aircraft, it is necessary to consider the 

rotor’s induced torque on the body or base where it is mounted, 

due to Newton’s third law caused by the interaction of the air-

flow passing through the propellers. Thus, every aircraft that 

uses rotors must use a mechanism to ensure the balance or 

cancellation of this induced torque and thus to control the 

attitude of the aircraft. In the case of a helicopter, for example, 

a rear rotor compensates for this torque while also providing 

yaw control. Another option to achieve this purpose is by using 

coaxial-rotors that can balance the induced torque (by rotating 
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its propellers in opposite directions), while also offer a greater 

thrust force than a single rotor would as shown by Alexis et al. 

(2013). The use of coaxial-rotors is well described by 

Allenspach et al. (2020) which is a crucial component to allow 

their Tilt-rotor hexacopter achieve an omnidirectional 

movement in the air.  

The main goal of this research is to explore the dynamics of a 

new drone architecture with tilting-wings and coaxial-rotors in 

a tricopter configuration. The aircraft model proposed in this 

work has a coaxial-rotor mounted on the tip of each of its 

tilting-wings (with no ailerons or flaps), while also having a 

rear tilting-coaxial-rotor. Each wing is conceived with an 

independent rotation from each other, allowing the 

vectorization of the rotors’ thrust forces and the wings’ lift and 

drag forces as method to provide control and maneuverability 

while flying or hovering. An extensive research over renowned 

journals, including IEEE, shows that this drone architecture 

may be pioneer.  

As will be explained in the following sections, the model’s 

forces and torques related to aerodynamical, propulsive and 

inertial principles are considered. Highlighting that the inertial 

matrix could be non-symmetrical, as it is a function of the 

tilting angles. 

2. DRONE DESCRIPTION 

The aircraft is composed of three rigid bodies that spin around 

its fuselage F (considered the main body). The right wing 
1W  

plus the right coaxial-rotor
1R , mounted at its tip, represents 

the first set or rigid body rotating around the fuselage. The left 

wing
2W , plus its left coaxial-rotor 

2R  (also at the tip), 

compose the second spinning set. Both wings rotate 

independently of each other around the fuselage in a "medium-

wing" configuration, on a rotation axis close to the aircraft's 

nose. The third rigid body, with also independent rotation 

along the aircraft’s longitudinal axis, is the rear coaxial-rotor

3R . A conceptual design of the drone in its hover and forward 

flight modes is presented in Fig. 1, from different perspectives. 

Each wing is considered rectangular, with no torsion angle and 

with a symmetrical aerodynamic profile. The fuselage is 

designed based on the aerodynamic profile of the wing itself, 

in order to diminish drag forces over it. 

Since the three rigid bodies of the aircraft rotate independently 

of each other around an axis that crosses the aircraft's fuselage, 

it is important to note that with each rotation of these 

components the CG of the aircraft will change its position in 

space. This is taken into account in the equation of inertia and 

active moments in the aircraft. The rotation of each wing and 

the rear coaxial-rotor is measured by their respective tilting 

angles
Ei , with i = 1, 2, 3 (for the wings, this also represent 

the incidence angles) and shown in Fig. 2. The tilting angles 

are considered to be at 0º when a given coaxial-rotor (lateral 

or rear) is horizontal and at 90º when is vertical and the thrust 

vector is pointing upwards.  

 

 

Fig. 1. Perspectives of the aircraft: (a) Forward flight in 

perspective, (b) Hover mode in perspective, (c) Upper view of 

forward flight, (d) Upper view of hover mode, (e) Front view 

of forward flight, (f) Front view of hover mode. 

If both wings are not aligned with each other (i.e.
1 2E E  ) or 

if the real coaxial-rotor is not pointing at 90º, then the aircraft 

will assume a non-symmetrical morphology, which implies 

that the products and moments of inertia must be considered at 

every moment as a function of the tilting angles. 

 

Fig. 2. Rotation of the tilting angles: (a) Right Wing-Coaxial-

Rotor tilting angle 
1E , (b) Left Wing-Coaxial-Rotor tilting 

angle 
2E , (c) Rear Coaxial-Rotor tilting angle 

3E . 

3. REFERENCE SYSTEMS 

The reference systems used is this model follow the right-hand 

rule and are described as the following: 

Main Reference Systems 

Inertial: I 

o Attached to Earth’s reference system; 
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o Axes  , ,
I

X Y Z oriented, respectively, towards 

North, East and towards Earth’s core; 

Body-fixed: B 

o Origin at the aircraft’s movable CG; 

o Axes  , ,
B

X Y Z oriented, respectively, towards the 

aircraft’s nose, right wing and aircraft’s belly; 

o Does spin with the aircraft. 

Nose-fixed: A 

o Origin fixed to the aircraft’s nose; 

o Axes  , ,
A

X Y Z always parallel to  , ,
B

X Y Z ; 

o Does spin with the aircraft; 

o Serves as a reference system to determine the 
aircraft’s CG position. 

Secondary Reference Systems 

Parallel to body system B: Pb   

o Origin at the CG of each component (wings, 
coaxial-rotors and fuselage); 

o Axes  , ,
Pb

X Y Z  always parallel to  , ,
B

X Y Z ; 

The movable position of the aircraft’s CG (and its fixed system 

B) is a function of the position of the center of gravity of each 

component (wings, coaxial-rotors and fuselage) relative to a 

fixed point in the aircraft. This is the reason why reference 

system A (parallel to B) is considered, as it will always be 

attached to the aircraft’s nose. By considering a system parallel 

to system B (and, thus, to A) and fixed at a given component’s 

CG, it is possible to determine the position of that component, 

relative to system A. Those parallel to body systems are referred 

as Pb , and can be seen in Fig. 3. 

 
Fig. 3. Distribution of reference systems used in the model. 

Only the parallel to body reference system attached to the 

fuselage’s CG is not shown. 

In the case of the wings and their respective coaxial-rotors, the 

relative position of their respective Pb  systems with respect 

to A is also a function of tilting angles  
1E  and

2E . 

By knowing the coordinates of the relative position of all 

components with respect to A and their respective masses, it is 

possible to find the relative position of the aircraft’s CG and 

its system B with (1). Where m, with its respective subscript, 

represents the mass of a given component and 
Tm  represents 

the aircraft’s total mass. 

Now, knowing the coordinates of the relative position of a 

given component and from the aircraft’s CG, both with respect 

to system A, a simple vectorial subtraction gives the relative 

position of that same component with respect to system B. As 

an example, for coaxial-rotor
1R , with a tilting angle

1E , its 

position relative to B is given by (2). 

1

2

3

1

2

1 2 3 1 2

1 2 3 1 2

1 2 3 1 2

1

A A A

A A A A A A

A A A A A A

A A A A A A

T

B B B

R

R

PbR PbR PbR PbW PbW F

R

PbR PbR PbR PbW PbW F

T W

PbR PbR PbR PbW PbW F

W

F

X Y Z

m

m
X X X X X X

m
Y Y Y Y Y Y

m m
Z Z Z Z Z Z

m

m

   

 
 
 

 
 

 
 

 
 

 
     
 
  

  
(1) 

 

 

1 1 1

1 1

1 1 1

B A A

B A A

B A A

PbR PbR E B

PbR PbR B

PbR PbR E B

X X X

Y Y Y

Z Z Z





     
     

      
     
          

 
   (2) 

By knowing the coordinates of the relative position of a given 

component with respect to B, it is possible to transfer the 

inertial distribution, moments and forces produced by that 

component to the body-fixed system B. In addition, on the 

other way-around, aircraft’s linear and rotational velocity 

vectors (originally defined relative to system B) can now be 

transferred to the respective component’s Pb  system. The 

drone’s linear and rotational velocities may affect the 

behaviour of the component. As an example, considering again

1R , (3) gives the relative wind-speed components acting on 

the coaxial-rotor, which affect its thrust and torque. 

 

11
1

1 1 1

1 1

B

B

B

PbRR

R Y E PbR

R PbR

XU U P

V Rot V Q Y

W W R Z




       
        

            
                 

 (3) 

Where  1Y ERot  is a rotation matrix around the Y-axis, 

 
T

U V W is the linear velocity vector and  
T

P Q R is 

the angular velocity vector, both with respect to system B.  

4. AIRCRAFT’S INERTIA 

The products and moments of inertia of each component can 

be estimated with the use of a 3D modelling CAD software 

such as SolidWorks if the component’s mass and dimensions 

are known. As an improvement of the conceptual design 

previously shown in Figs. 1 to 3, real items such as electronics, 

structural and other mechanical parts (like propellers) with 

their respective masses and dimensions were considered in 

order to obtain a realistic 3D model of the aircraft’s wings, 

coaxial-rotors and fuselage. Fig. 4 shows the 3D rendered 
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SolidWorks’ model, with an approximate total mass of 4,375 

kg. 

 
Fig. 4. Aircraft’s 3D model in a symmetric configuration. 

Knowing the coordinates of the relative position of each 

component with respect to B and through the Huygens-Steiner 

theorem of parallel axes, it is possible to transfer the moments 

and products of inertia of each component, to the coordinated 

body-fixed system B. Then, the overall inertia tensor
TJ  is 

given by the sum of the inertia tensor of every component. 

1 2 3 1 2B B B B B BT R R R W W FJ J J J J J J        (4) 

And taking the time derivative of (4), gives: 

1 2 3 1 2B B B B B BT R R R W W FJ J J J J J J        (5) 

In this way, the aircraft’s CG coordinates and the inertia tensor  

are functions of the tilting angles, while the time derivate of 

the aircraft’s inertia tensor  becomes a function of both the 

tilting angles and their time derivatives Ei . 

If the inertia tensor is to be considered as constant, and 

consequently its time derivative as null, the error between the 

model and the real aircraft would be enlarged. 

To validate the calculation of the aircraft’s inertia tensor, for a 

given value of its three tilting angles, the inertia tensor 

obtained by the equation model is compared with the inertia 

tensor obtained from the 3D model designed in the SolidWorks 

software.  

Tables I and II show the aircraft’s comparison of moments and 

products of inertia for different tilting angles. 

TABLE I. Inertia tensor comparison for 1E = 2E = 15º 

and 3E = 90º, in a symmetrical configuration. 

Moment/Product of 

Inertia [kg m²] 
SolidWorks Model Equation Model 

Ixx 0.2680 0.2509 

Ixy = Iyx 6.4269e-06 8.4972e-06 

Ixz = Izx 0.0020 0.0032 

Iyy 0.3782 0.3700 

Iyz = Izy -5.8999e-06 -4.6472e-06 

Izz 0.6349 0.6124 

 

TABLE II. Inertia tensor comparison for 1E = 120º, 2E = 

45º and 3E = 65º, in a non-symmetrical configuration. 

Moment/Product of 

Inertia [kg m²] 
SolidWorks Model Equation Model 

Ixx 0.2694 0.2525 

Ixy = Iyx 0.0014 0.0013 

Ixz = Izx 0.0035 0.0030 

Iyy 0.3797 0.3683 

Iyz = Izy -0.0003 -0.0002 

Izz 0.6355 0.6083 

5. EQUATIONS OF MOTION 

The Newton-Euler equations of motion are used to describe 

the forces (6) and torques acting on the aircraft (7). By defining 

 
T

v U V W as the linear velocity vector and 

 
T

w P Q R as the angular velocity vector, both with 

respect to system B, then by Newton’s second law applied to 

the body-fixed system: 

T Bm v w v F
 
   

 
  

      
      (6) 

 

 TT T BJ w J w w J w M        
     (7) 

With   representing the cross product, 
BF the sum of 

external forces and 
BM the sum of external moments. It 

should be noticed that both the inertia tensor and its derivative 

are being considered. Additionally, it is considered that wings 

and coaxial-rotors will contribute for both forces and 

moments, while the fuselage contributes only for drag forces 

and the gravitational force will act upon the total aircraft’s 

mass at its CG. 

Gravitational Force 

Defined in the inertial system I, gravitational force is 

transferred to the body-fixed system B, by the rotational matrix
B

XYZ I
R , as function of the Euler angles   (roll),   (pitch) and 

  (yaw). 

c c s c s

c s s c s s s s c c s c

c c s s s c s s s c c c

B

XYZ I
R

    

            

           

 
 


 
   





 (8) 

 0 0
B

TB

G XYZ TI
F R m g     (9) 

With c as cosine and s as sine functions and g as the gravity 

acceleration. 

Fuselage Drag Force 

Given by (10), fuselage drag force is already defined in system 

B. Air density is represented by  ;  The projected area normal 
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to each of the B system axes is represented by FiA  and 
DFiC

the corresponding drag coefficient. 

2 2 21

2B

T

DF FX DFX FY DFY FZ DFZF A C U A C V A C W       (10) 

Coaxial-Rotors’ Thrust Forces and Moments 

Equations (11) and (12) give the total thrust force and total 

torque for a given coaxial-rotor, respectively. The subscripts 

refer, respectively, to the upper hu and lower hl propellers of 

the coaxial-rotor. 

Ri hu hlT T T   (11) 

Ri hu hlQ Q Q   (12) 

Moreover, for a given propeller its thrust force is considered 

as in (13) and its torque as in (14). Where Ct represents the 

propeller’s thrust coefficient, Cq represents the propeller’s 

torque coefficient,   its rotational speed and D  its diameter. 

2 4

hT Ct D   (13) 

2 5

hQ Cq D   (14) 

The coefficients Ct and Cq are found as polynomial 

equations which are function of the advance ratio 
adrJ  of the 

propeller, given by (15), thanks to the experimental data 

provided by the manufacturers of the APC 10x3.8 SF propeller 

and  the Scorpion M-3011-760KV brushless motor chosen for 

this project (which are used in all rotors). For a lower propeller, 

the effect of the induced wind speed from its corresponding 

upper propeller to it is also taken into account. 
RiU  was given 

in (3). 

Ri
adr

U
J

D
      (15) 

The thrust force of each coaxial-rotor is transferred to the B 

system, by its corresponding rotation matrix, as a function of 

the corresponding tilting angle
Ei . The total thrust force 

becomes the sum of the thrust forces of each coaxial-rotor. 

     
1 2

1 2 3 3

0

0 0

0 0 0
B

R R

T Y E Y E X E R

T T

F Rot Rot Rot T  

     
     

  
     
          

   (16) 

Additionally, knowing the coordinates of each coaxial- rotor 

and its corresponding thrust forces, both with respect to B, the 

torque produced by the thrust forces is given by (17). 

1 2 3

1 1 2 2 3 3

1 2 3

B B B

B B B B B B B

B B B

PbR PbR PbR

T PbR TR PbR TR PbR TR

PbR PbR PbR

X X X

M Y F Y F Y F

Z Z Z

     
     

          
     
          

   (17) 

Moreover, each coaxial-rotor contributes with two additional 

moments. The first one being the induced moment caused by 

the interaction of the air-flow passing through the propellers 

(18) and the second one being gyroscopic moment caused by 

the variation of the propeller’s angular momentum. 

     
1 2

1 2 3 3

0

0 0

0 0 0
B

R R

Q Y E Y E X E R

Q Q

M Rot Rot Rot Q  

     
     

  
     
          

 (18) 

For the gyroscopic moment, (19) gives the angular momentum 

of each coaxial-rotor, caused by the respective propellers’ 

rotation, where 
hI  represents the propeller’s inertia and 

 hu hl   represents the rotation speed difference between 

upper and lower propellers. The total gyroscopic moment is 

then given by (20), where it becomes a function of upper and 

lower rotation speeds
hi , accelerations hi , tilt angles

Ei  and 

tilting speeds Ei .  

   

   

   

1 1

2 2

3 3

0 0

0 0

0 0

B

B

B

T

R Y E h hu hl

T

R Y E h hu hl

T

R X E h hu hl

H Rot I

H Rot I

H Rot I

  

  

  

   

   

   

 (19) 

1 2 31 2 3B B B
B B B B

R R RG R R RM H w H H w H H w H          
(20) 

The coaxial-rotor then becomes a system controlled by three 

inputs: tilt angle
Ei , upper propeller rotational speed 

hu  and 

lower propeller rotational speed
hl . However, based on the 

propeller’s manufacturer data, a polynomial expression for the 

lower propeller rotational speed
hl  is found as a function of 

the upper propeller rotational speed 
hu and the coaxial-rotor 

relative wind-speed 
RiU in order to turn (12) close to zero for 

any given condition of propeller rotation or relative wind-

speed. This allows the coaxial-rotors to turn (18) close to zero 

too. Hence, the coaxial-rotor is sufficiently controlled only by 

its tilt angle
Ei and its upper propeller rotational speed hu , as 

the corresponding lower propeller rotational speed
hl  follows 

the upper one. Fig, 5 shows this relation. 

Wings’ Aerodynamic Forces and Moments 

Each wing is considered rectangular with a span of 0,5 m and 

a chord of 0,13 m, with no torsion angle, with a symmetrical 

aerodynamic profile and without ailerons or flaps. The chosen 

aerodynamic profile was the NACA0012. 
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Fig. 5. Lower propeller rotational speed

hl as a function of 

upper propeller rotational speed 
hu and coaxial-rotor relative 

wind-speed
RiU , in order to diminish the coaxial-rotor’s total 

induced torque. 

Additionally, each wing is analyzed as two different sections, 

each one with its own angle of attack. Section 1 is closer to the 

wing’s root and is free of the induced wing-speed effect of a 

coaxial-rotor’s upper propeller. Section 2, closer to the wing’s 

tip, is considered affected by the limited air “tube” formed by 

the upper rotor propeller, without radial compression of the 

flow and acting exclusively upon section 2 of a given wing, 

without altering the air flow of the adjacent section (Maqsood 

et al. 2010). The ‘local’ angle of attack of a given section in a 

wing is given by (21), where the subscript WiSj refers to the 

‘i-th’ wing and the ‘j-th’ section. The vertical  WiSjW  and 

horizontal  WiSjU  speed components, relative to the wing’s 

section are obtained in (22), similarly as in (3), with the 

difference that for the wing’s section, the relative speed 

components are “perceived” at the sections’ aerodynamic 

center, at the mean aerodynamic chord, rather than at the 

wing’s CG. The sections’ aerodynamic center coordinates are 

found with a similar approach as the coordinates of the CG of 

a given component are found in (2). 

arctan
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WiSj

WiSj

W

U


 
  

 
 

   (21) 
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

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  (22) 

The section’s lift WiSjL and drag WiSjD forces are defined as 

(23) where 
WiSjA  refers to the section’s area and 

LC  with 
DC  

to the wing’s lift and drag coefficients, respectively. 

 

 

2 2

2 2

1

2

1

2

WiSj L WiSj WiSj WiSj

WiSj D WiSj WiSj WiSj

L C A U W

D C A U W





 

 

   (23) 

The 2D version of the lift 
lC and drag 

dC coefficients are 

estimated for large angles of attack, based on the NACA0012 

airfoil data. Then, the 3D version of these coefficients is 

obtained based on the approximation of the wing to an 

elliptical shape (optimal wing). Fig. 6 shows the estimation for 

the 2D coefficients, with the red dots as the experimental data 

and the blue lines as the estimated coefficients. Though a more 

refined method as Computational Fluid Dynamics analysis or 

wind-tunnel test is required to properly model the aerodynamic 

coefficients of the wings for large angles of attack, this initial 

estimation provides a basic understanding of the aerodynamic 

effects of the wing for the aircraft’s model. It is worth noticing 

that the drag coefficient was limited to the value of 1.28, which 

is considered as the drag coefficient of a flat plate against the 

wind. 

 
Fig. 6. 2D lift 

lC  and drag 
dC coefficients. In red experimental 

data and in blue estimated curves. 

Now the aerodynamic forces of a given wing’s section can be 

transferred to the B system by a rotation of the sections’ local 

angle of attack WiSj  and then by a rotation of the wing’s 

corresponding tilting angle
Ei . Equation (24) shows the 

aerodynamic forces for a given wing’s section, with respect to 

system B. The total aerodynamic force is then the sum of the 

aerodynamic forces of all sections in both wings in (25). 

    0
B

WiSj

AWiSj Y Ei Y WiSj

WiSj

D

F Rot Rot

L

 

  
  

   
    

   (24) 

1 1 1 2 2 1 2 2B B B B BA AW S AW S AW S AW SF F F F F       (25) 

Likewise, for a given wing’s section, the aerodynamic moment 

caused by it is given by (26), with 
WiSjB

MACM as the 3D 

aerodynamic-profile moment estimated similarly as the lift 

and drag coefficients, as a function of the local angle of attack
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WiSj . The total aerodynamic moment is then the sum of the 

aerodynamic moments of all sections in both wings in (27). 

0

0

WiSjB

B WiSj WiSj BB B
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MAC
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M M Y F

Z
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   (26) 

1 1 1 2 2 1 2 2B B B B BA AW S AW S AW S AW SM M M M M     
  (27) 

Kinematic Relations 

The dynamics of the system, defined in the body-fixed system 

B, must be transferred to the inertial system I to determine the 

aircraft’s position and attitude in space. 

The time derivative of Euler’s angles (roll , pitch   and yaw

 ) are related to the aircraft’s rotational velocity, with respect 

to the body-fixed system with (28). 

 

1
1 0 s

0 c s c

0 s c c

T
T

P Q R



     

  


 

   
    
  

 (28) 

The aircraft’s linear velocity in space is related to its linear 

velocity with respect to the body fixed system by the inverse 

rotation matrix given in (8). 

   
1

T
TB

I I I XYZ I
X Y Z R U V W

 
  

 (29) 

By isolating  v  in (6) and w  in (7), (30) and (31) are obtained: 

T

B

T

F
v U V W w v

m

 
     


 (30) 

 1
TT B Tw P Q R J M J w w J w   

            
  (31) 

From (28) to (31) it is possible to identify the non-linear 

system of the aircraft with its twelve states (x) and nine inputs 

(u): 

 
T

I I Ix X Y Z U V W P Q R    (32) 

 1 2 3 1 1 2 2 3 3

T

E E E huR hlR huR hlR huR hlRu           
(33) 

With inputs being three tilting angles
Ei , upper propellers’ 

rotational speeds hu  and lower propellers’ rotational speeds

hl . However, as discussed in Fig. 5, with lower propellers’ 

rotational speeds
hl  following their corresponding upper 

ones, the control inputs become only six, rather than nine. 

 1 2 3 1 2 3

T

E E E huR huR huRu        (34) 

6. SIMULATION AND CONTROL 

With the non-linear model fully defined, it is necessary to test 

the model in a simulation environment in order to understand 

if the dynamics that were considered are in accordance with 

the physical principles and if the control variable inputs behave 

accordingly to effectively control the aircraft towards 

stabilization and the following of command references.  

To test the aircraft’s behaviour, the cruise or levelled flight is 

simulated. The drone starts with a constant forward speed U 

with all other state variables at zero, without linear or angular 

accelerations in any of its axes and its wings are tilted almost 

horizontally. For this flight condition, based on Allenspach et 

al. (2020) for optimal control, the Linear Quadratic Regulation 

technique with state feedback and integral action (LQRI) is 

chosen to control the linear velocity  
T

U V W  and angular 

velocity  
T

P Q R  state variables, with control input 

variables as defined by (34). The initial conditions of state and 

control variables are found in order to achieve the equilibrium 

point and then the system is linearized to obtain matrices A 

and B in (35). Additionally, it is assumed that all state variables 

are measurable. 

6 1 6 6 6 1 6 6 6 1x x x x xx A x B u   (35) 

With cruise flight initial conditions defined by (36), Fig. 7 

shows the response of state variables for 40 seconds of 

simulation in a Simulink environment. At t = 1s, a step input 

in the forward velocity U of 3 m/s is given until t = 10s. Then, 

from t = 20 s until t = 25 s, a negative step input of -5 º/s is 

given to the yaw variation R. Fig. 8 presents the corresponding 

variation of the input variables. 

1 2 3

1 2 3

1 2 3

20 , 6,7º , 90º ,

794 , 723 ,

809 , 771

E E E

huR huR huR
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s s
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s s
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  

  

   

  

  

 (36) 

From the simulation results it can be seen that for the forward 

step acceleration U, as expected, both wings lean closer to zero 

while their respective coaxial-rotors accelerate and the rear 

coaxial-rotor maintains the 90º tilt while varying its 

acceleration in order to stabilize the vertical acceleration W 

and the pitch Q variation. Afterwards, with the yaw command 

R at t = 20 s, both wings rotate in opposite directions, having 

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 576 DOI: 10.20906/sbai.v1i1.2627



 

 

     

 

the right wing leaned closer to zero and its right coaxial-rotor 

accelerating while the left coaxial-rotor deaccelerates. This 

produces a large amount of torque in the negative direction of 

the 
ZB  axis (see fig. 3), which is expected for the aircraft in 

order to follow the commanded negative yaw turn. Meanwhile, 

the rear coaxial-rotor is tilted in order to produce a positive 

torque around the 
ZB  axis and act as a “brake” in opposition 

to the right-coaxial rotor. It can be seen that all the while the 

control inputs variate in order for the drone to accompany the 

commanded inputs while preserving the stabilization of the 

aircraft. 

 

 
Fig. 7. State variable changes for step inputs in forward speed 

U and yaw speed R. In red the actual states and in yellow the 

references. 

 

 

Fig. 8. Control input variable changes for step inputs in forward 

speed U and yaw speed R.  

7. CONCLUSIONS AND FUTURE WORK 

The proposed non-linear model of a novel VTOL tricopter 

drone that mixes the inclination of wings along with coaxial- 

rotors to generate lift and maneuver in the air was created and 

validated. The leveled-flight simulation with LQRI control in 

a Simulink environment demonstrated that the aircraft 

responds physically correct to given commands by varying the 

inclination of its wings and the acceleration of its coaxial-

rotors. Future work will include testing and comparing other 

types of control techniques such as Adaptive control or with 

the aid of Artificial Neural Networks in order for the aircraft 

to follow trajectories and achieve transition between hover and 

cruise flight modes as proposed by Seonghun Yoon et al. 

(2014) and Autenrieb et al. (2019) for tilt-wing aircraft control. 
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