
Proposal of a Low Cost Navigation System for

Starter Teams in Autonomous Racecar

Competitions

Lima, Bruno S. ∗ Moreno, Ubirajara F. ∗∗

∗ Departament of Mechanical Engineering, Federal University of Santa
Catarina, SC, Brazil (e-mail: bruno.szdl@gmail.com).

∗∗ Departament of Automation and Systems, Federal University of
Santa Catarina, SC, Brazil (e-mail: ubirajara.f.moreno@ufsc.br).

Abstract: This article is intended for student teams which aim to enter a autonomous racecar
competition. Many starter teams have neither a consolidated knowledge in autonomous system
nor a great financial support. Most papers focused on autonomous racecars introduce advanced
systems with expensive hardware. Therefore, this work proposes a low-cost and simple navigation
system for the autonomous racing problem. This paper focus on a specific event of the Formula
Student Driverless competition, but it can serve as basis for other events and competitions. The
development of the system is done using the framework ROS and simulated in Gazebo. From
this perspective, this work can serve as a guide for starter teams to design their first prototype.

Keywords: Autonomous Vehicles, State Estimation, Localization, Map-building, Trajectory
and Path Planning.

1. INTRODUCTION

Autonomous racecar competitions for student teams have
been taken place in some countries for years, such as
the Formula Student Driverless (FSD) in Germany and
the Formula Student Autonomous Competition (FSAC) in
China. The FSD is part of the Formula Student Germany,
which also encompass the Formula Student Combustion
and Formula Student Electric. The Driverless class was
introduced in 2017, and since then several teams have
made a great improvement on their projects.

With the advancement of technology and popularization
of artificial intelligence (AI) and autonomous systems,
many students teams wish to design their own vehicles
and enter those competitions. Starter teams usually do
not have neither a consolidated knowledge in autonomous
system nor a great financial support. When they read the
papers from the teams which have been for years in the
competition, they come across with complex systems and
expensive hardware, such as Kabzan et al. (2019), Bader
and Hofmann (2017) and Chen et al. (2018), not knowing
how to begin the project. It is hard to find a work that
helps starter teams to enter this field.

This article aims to fill this gap between the starter
teams and the competition, proposing simple and low cost
solutions for a team to develop its first prototype quickly
combined with a platform of simulation to evaluate the
performance of the algorithms. These solutions are not the
ones which will win the competition, nor are they the most
optimized. However they will help the team to have the
base knowledge and a prototype, so that they can run their
experiments and realize which areas they have to focus
on the most. Over time the team can acquire knowledge

and propose more optimized solution, leading to a more
competitive car.

Although several different areas are necessary to be de-
signed in order to have the car ready for the race, this ar-
ticle focus on four aspects of navigation: computer vision,
state estimation, self localization and mapping (SLAM)
and path planning. Furthermore, the system proposed is
specific for the trackdrive event of FSD and it follows the
2020 rules. However, it can serve as basis for other events
and competitions.

This paper is structured as follows. In Section 2 it is
described the trackdrive event of the FSD and the overview
of the proposal for the low cost navigation system. Section
3 introduces the suggested tools for the car’s software
development. In Section 4 it is described in more details
the computer vision, state estimation, SLAM, path plan-
ning and control subsystems of the proposal. Results for
simulations run by a starter team are shown in Section 5.
Finally 6 is reserved for the conclusion of the work.

2. SCENARIO AND SYSTEM PROPOSAL

The trackdrive event is one of the dynamic events of the
FSD and it is the most valued one in terms of points.
It consists in a track bounded by cones with different
functions and colors. The vehicle has no prior knowledge
of the track, so it has to run a first lap in order to map
the track. After that it can plan the optimal path, to run
laps with the minimum possible time. After 10 laps are
concluded, the vehicle stops.

The specifications of the cones are shown in Figure 1,
however the small orange cone with a single white stripe
is not used for this event. A layout of the track for

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 675 DOI: 10.20906/sbai.v1i1.2642



Figure 1. Specifications of the cones used in the Formula
Student Driverless events.
Source: FSG Competition Handbook 2020

Figure 2. Layout of the track for the trackdrive event.
Source: FSG Competition Handbook 2020

the trackdrive event is illustrated in Figure 2. It can be
seen from Figure 2 the function of each cone: the small
yellow cones mark the right border of the track; the small
blue cones delimit the left border; the big orange cones
determine the start and finish line. The minimum track
width is 3m and the maximum distance between two cones
of the same color is 5m. The Figure also shows the start
position of the vehicle and the stop area after 10 laps.

For a simple and low-cost solution for the trackdrive event
of the FSD, the sensors represent a large amount of the
budget, so they are supposed to be in a few number. The
sensors have two main functions in the car, which are
to measure the state of the vehicle and to perceive the
environment. There are two sensors, that combined can
take care of first function, the GPS and IMU. The IMU is,
in general, more accurate than the GPS, but its error build
up quadratically over time. Because of this, the GPS needs
to be introduced for correcting the IMU measurement in
the state estimation.

The perceiving of the environment, meant for the cone
detection can be done by a stereo camera. A pair of
mono cameras could also be used, but it would require
much more caution to calibrate and assemble the sensoring
platform. A LiDAR could also be useful, but it has a very
high price. So, if the team does not have enough money, it
is possible to use just a camera. In general, if the team is
able to afford more sensors, LiDARs, wheel encoders and
Ground Speed Sensors can make the state estimation and
cone detection systems more robust.

From the chosen sensors, it is possible to build the system’s
architecture. The diagram of the proposal can be seen in
Figure 3. In this architecture the GPS and IMU measure-
ments serve as inputs for the State Estimation subsystem,
while the images from the camera serve as input for the
Computer Vision subsystem. Other sensors can be added
depending on the availability.

Figure 3. System’s architecture

The State Estimation subsystem estimates the state of
the vehicle using the Extended Kalman Filter (EKF) and
sends this information to other subsystems. The Computer
Vision subsystem uses a CNN to detect the cones in the
vehicle’s field of view (FOV).

The SLAM subsystem is responsible for creating and
updating the map of the track which will be used in the
future laps. While the car is mapping the track it has to
move in order to complete a first lap. The Path Planning
(exploration lap) subsystem decides to where the vehicle
must go to complete the lap being aware of only a part of
the map. The SLAM and Path Planning (exploration lap)
subsystems compose a single subsystem called Exploration
Lap. The Path planning (fast laps) subsystem is used
to find the optimal trajectory for the first laps and the
velocity and acceleration profiles.

Finally, a Control subsystem is used to send the command
to the actuators in order to make the vehicle moves and it
receives information from the State Estimation and from
the Exploration Lap in the first lap. In the others laps,
the information is given by the Path Planning (fast laps)
subsystem instead of Exploration Lap.

3. ROBOT DEVELOPMENT TOOLS

There are many tools a team can use for the development
of a robot’s software, such as the Robotics Toolbox for
MATLAB, the Microsoft Robotics Developer Studio and
the Mobile Robot Programming Toolkit. However, there
is another option with a great adhesion among software
developers for robotics called Robot Operating System
(ROS) and it has a native simulator named Gazebo. It is
suggested for the teams to used these tools for the reasons
discussed in the next subsections.

3.1 Robot Operating System

ROS is a robotics middleware suite. It contains a range
of frameworks for robot software development and a lot
of libraries and tools to support the project. It is an
open source project and has a large and participatory
community, hence it is very simple to find straightforward
documentation and answers to eventual questions. There
are a lot of ROS courses and classes available on internet
and also many solutions already implemented by the
community for well known and widespread problems of the
robotics field. This middleware is used by many companies

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 676 DOI: 10.20906/sbai.v1i1.2642



and student teams, including the ones competing in FSD.
It can be installed following the steps in

https://www.ros.org/install/

By the time of this work, it is recommended to use ROS
melodic, for it has more consolidate documentation and
packages. There are three concepts widely used in ROS
that must be known for the understanding of the proposal,
nodes, topics and messages.

• Nodes: A node, represented in yellow in Figure 4
is an algorithm which process some information. It
is able to receive information as input and also to
hand information as output. The node can represent
a sensor, actuator, controller or anything that process
information. For instance, a camera can be modeled
as a node which receives information from the envi-
ronment (light), transforms it into another type of
information (image) and sends it to another node.
• Messages: A message represents the type of the in-

formation. There are numerous information types, it
can be an image, a desired velocity, a distance from
an obstacle, etc. The developer can even create his
own types of message. Each message has a predefined
structure. The message Twist, for instance, used in
order to pass information of velocity, is composed by
two three dimensional vectors, one of which stands
for the linear velocity and the other one stands for
angular acceleration. It is not necessary to have in-
formation of all the variables in the message, one can
leave unknown values as zero.
• Topics: The node sends the message somewhere and

receives the message from somewhere. This “place”
is called topic, shown in blue in Figure 4. There are
other ways to transmit information in ROS, such as
services and actions, but it is not needed to use them
for now. The topic is like a bulletin board, any node
can publish messages into the topic and any node
can read messages from the topic, which is called
subscribe to the topic. Each topic only allows one
type of message, but a message can be sent to multiple
topics. The messages in the topics can be published
and read in real time.

A robot software can be modeled in ROS using only these
three concepts. As long as this work aims to propose a
simple solution, only them are recommended.

Most of ROS tutorials and applications use omnidirec-
tional robots or differencial drive two-wheeled robots, but
the racecar is a four-wheeled robot with Ackermann steer-
ing. The team can build its own robot from scratch, or
it can use the catvehicle implemented by Bhadani et al.
(2018), available in

https://github.com/sprinkjm/catvehicle

The team must modify the properties of the car to meet
the competition rules.

3.2 Gazebo

ROS has a fully integrated simulator called Gazebo. It
is hard to think about ROS without thinking of this
simulator. It utilizes high-quality graphics and a very
accurate physics engine. It is widely used for quick robot

Figure 4. Representation of the information exchange
between nodes by topics and services.
Source: Towards Data Science

Figure 5. Car and cones models in Gazebo.

development and tests, even by teams of FSD and it has
a large community. The simulator is very easy to use and
has several plug-ins for the majority of the sensors used
in autonomous cars. Figure 5 shows a screenshot of the
simulator, containing a racecar and the cones marking
the track. Robots and models can be created in Gazebo
following the tutorials in

http://gazebosim.org/tutorials

3.3 Sensoring

This subsection describe how to simulate the three sensors
defined in Section 2 in Gazebo. For more information it is
recommended to visit

http://gazebosim.org/tutorials?tut=ros_gzplugins

GPS The GPS can be modeled using the ROS package
hector gazebo plugins. It contains a plug-in that simulates
a GNSS receiver. However, this GPS publishes messages
of the sensor msgs/NavSatFix type, composed of latitude,
longitude and altitude information, and we will need mes-
sages of the nav msgs/Odometry type for the state esti-
mation. In order to do this conversion, the ROS package
gps common, available in

http://wiki.ros.org/gps_common

can be used. It has a node that reads sensor msgs/NavSat
Fix and publishes nav msgs/Odometry into the /odom
topic.

IMU The same ROS package used for simulating the
GPS can be used for the IMU. The hector gazebo plugins
contains a plug-in that simulates an IMU sensor. This
sensor publishes messages of the sensor msgs/Imu type,
composed of linear accelerations and angular velocities.

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 677 DOI: 10.20906/sbai.v1i1.2642



Figure 6. Pointcloud generated using the
stereo image proc package.

This format can be used for the state estimation, so it
needs no additional package.

Camera There is no plug-in in Gazebo that can be used
for the simulation of a stereo camera. However, there are
plug-ins for mono cameras and it is possible to mimic a
stereo camera using two mono cameras. A plug-in for mono
cameras can be found in the standard gazebo packages.
The package stereo image proc, available in

http://wiki.ros.org/stereo_image_proc

reads sensor msgs/Image messages from the cameras and
is capable of publish a pointcloud of the environment. An
example of this pointcloud can be seen in Figure 6.

4. SUBSYSTEMS

This subsection details the subsystems shown in Figure 3.

4.1 Computer Vision

The Computer Vision subsystem receives images from the
camera in real-time and detects the cones in it, along
with their colors. For the detection of the cones, a Con-
volutional Neural Network (CNN) must be trained. It is
recommended to use the YOLO architecture Bochkovskiy
et al. (2020) to build the CNN, and train it using the
FSOCO Dodel et al. (2021) dataset. This dataset can be
accessed by making a contribution with a set of images.
Then, the CNN can be integrated with Gazebo with the
ROS package darknet ros, available in

https://github.com/Tossy0423/yolov4-for-darknet
_ros

The package has a node which reads the topic in which
the camera publishes the images, and then publishes
the bounding boxes of cones into another topic. More
information about the package can be found in the GitHub
page. An example of the output of the CNN can be seen
in Figure 7.

4.2 State Estimation

The State Estimation subsystem estimates the state of
the vehicle. For the robot to localize itself or map the
environment, it must have a good estimation of its state.
The state, according to Simon (2006), is the set of variables
which completely represents the condition of the robot in
an instant of time. For an autonomous car the state is
composed of the position, velocity and orientation.

To estimate the state of the vehicle it is recommended to
use the EKF. This filter does a probabilistic estimation

Figure 7. Bounding boxes for the cones.

and updates it in real-time. It has two phases, prediction
and update. The prediction is done based on the motion
model of the vehicle, using the measures of internal sensors
and the kinematic and dynamic equations of motion. The
update phase corrects the state based on the measure
model based on the external sensors.

As it can be seen in Figure 8, the prediction phase can
be run using the measurements from the IMU sensor as
the input for the motion model, which predicts the state
of the vehicle. The measurement model can receive the
measurements from the GPS and its output is used to
update the predicted state. In the next instant of time,
the updated state will be used to predict a new state. This
Figure illustrate the classical formulation for the EKF,
whose equations can be found in many books, such as
Simon (2006).

This filter is recommended because it is widely used in
mobile robots and by other teams from FSD. There are
numerous implementation of this method, even in ROS.
Besides that, Xue and Schwartz (2013), showed that it is
a better option for real-time and low cost applications.
The results are not better than methods like Unscented
Kalman Filter or Particle Filter, but it is more simple and
faster.

To implement the EKF in ROS it is recommended to use
the package

http://wiki.ros.org/robot_localization

It has a node that reads the messages published by the
sensors, and it publishes the estimated state into another
topic. More information can be found on the website. This
package was developed for an omnidirectional robot, so
the motion model must be modified to correspond to an
Ackermann steering model.

4.3 Exploration Lap

Although there are several methods for SLAM widely
accepted and used for mobile robots, such as EKF-SLAM
(Smith and Cheeseman (1986)) and Fast-SLAM (Monte-
merlo and Thrun (2007)), they are not very simple to
understand and implement for the track scenario. It is
recommended for the starter teams to develop their own

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 678 DOI: 10.20906/sbai.v1i1.2642



Figure 8. Diagram representing the EKF’s information
flow.

SLAM method in a simple way focused only in the char-
acteristics of the trackdrive event.

The map serves for the vehicle to plan its trajectory.
To do this, the racecar needs only the estimation of the
boundaries of the track. As the boundaries of the track
are marked by the cones, the map can be composed just
by the position of the cones.

A node can publish the position of the cones and the
vehicle in real-time using the information given by the
camera and by the Computer Vision subsystem. The cones
ahead of the vehicle and their colors can be detected by
the computer vision. Then it is needed to match a pixel
from each bounding box, such as the central pixel or a
pixel below the center, to its corresponded point in the
pointcloud provided by the camera. The pointcloud will
show the distance from the cone to the camera. After
that, the state of the vehicle can be used to transform
the position of the cone detected by the car into a global
position. Another node can read the global position of the
cones to build a map and update it as the node receives
more information.

However, to complete the exploration lap, the vehicle must
move across the whole track to the finish line. It is not
possible to plan a path from the beginning to the end of
the track because it is not completely known. So the vehicle
must plan its next trajectories based only on the partial
map it currently has.

To do this, a suggestion is to draw lines connecting blue
cones to yellow cones or vice versa, as shown in Figure 9.
The strategy of when to draw or not draw these lines can
be defined by the team. At the center of these lines, nodes
can be generated. If the mapping is sufficiently accurate,
the nodes will be generated near the central line of the
track. So all the vehicle has to do is follow these nodes
as they are generated. To decide which node to follow, a
search strategy can be implemented, such as Uniform cost
search or A* search.

When the vehicle finds the finish line node, it means the
first lap was completed. The map can then be saved in a
file containing the estimated position of the cones and the
nodes. This map will be used in the trajectory planning
for the fast laps.

A common problem the team can face while exploring the
lap is the lack of visibility in tight turns as shown in Figure
10. In these kind of situations the vehicle can’t see the
internal cones of the turn and might not be able to draw
lines connecting cones and generate nodes. The team must
be aware of this possibility and implement rules for the
vehicle to follow in this scenario. For instance, making the

Figure 9. Example of map being built. The blue and yellow
squares represent the estimated position of the cones
with their respective colors. The red circles are the
nodes the car can follow.

Figure 10. Example of tight turn. There is no blue cone in
the FOV of the vehicle.

turn left if there is no node to follow and only yellow cones
in front of the vehicle, and the same thing for blue cones,
but turning right, can be a simple working solution.

4.4 Path Planning

After completing the first lap, the vehicle has a full map
of the lap, so it can plan a full trajectory for the fast
laps. The optimal path is the path which allows the car
to complete the track within the minimum time possible.
Braghin et al. (2008) suggests that the optimal path can be
the one with the minimum length. However, this path leads
to tight turns, forcing the vehicle to decelerate, losing time.
With that in mind Braghin then suggests that the optimal
path could be the one with the minimum curvature, but
he concludes that the optimal path is an interpolation of
the minimum curvature and the minimum length paths.

Heilmeier et al. (2019), based on the Braghin’s work,
developed a new method to optimise the minimum curva-
ture path and it proved to be the most optimised path.
Heilmeier formulates this optimisation problem which
varies the raceline points r along the track widths, in

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 679 DOI: 10.20906/sbai.v1i1.2642



order to minimize the curvature. The raceline points ri
are defined as

ri = pi + αini, (1)

where pi = [xi, yi]
T

is a point of the track’s centerline

and [xi, yi]
T

are its coordinates. The parameter ni is a
unit lenght normal vector, perpendicular to the track’s
centerline and αi is used to move the point along the
normal vector, always between the track’s borders. So,

αi ∈
[
−wtr,left,i +

wveh

2
, wtr,right,i −

wveh

2

]
, (2)

where wtr,left,i represents the width of the left part of the
track given a specific point i, and wtr,right,i the width of
the right part. The parameter wveh corresponds to the
width of the vehicle.

The raceline is then defined by third order spline interpola-
tions of the points r. For instance, the x-part of the spline
and its derivatives with respect to t can be described as
follows

xi (t) = ai + bit+ cit
2 + dit

3, (3)

x
′

i (t) = bi + 2cit+ 3dit
2, (4)

x
′′

i (t) = 2ci + 6dit, (5)

where ai, bi, ci and di are the spline parameters and t
is the normalised curvilinear parameter along one spline
segment at the distance s starting at the distance si0, so

ti (s) =
s− si0

∆si
, (6)

The optimisation is done minimizing the discrete curvature
κ2i of the splines summed along the raceline with N points,
as shown in Eq. 7

minimize
[α1...αN ]

N∑
i=1

κ2i (t) , (7)

where κi is expressed as

κi =
x

′

iy
′′

i − y
′

ix
′′

i(
x

′2
i + y

′2
i

) 3
2

, (8)

where xi and yi are the x-part and y-part of the spline.
It is suggested for the team to test different methods
and choose the one that gives the best results in terms
of lap time. However, to use these method, it is needed
to have an estimation of the boundaries of the track and
the centerline. This estimation can be obtained using the
nodes of the track’s map. As long as the nodes are probably
at the centerline of the track, the least squares method
can be used in order to estimate this center line. After
generating this center line, an internal and an external
offset can be done based on the minimum track’s width
imposed by the competition rules.

The center line and the estimated boundaries can be seen
in Figure 11. The boundaries generated pass through most
of the cones and they are very close to the actual bound-
aries. In this case, the track has the minimum possible
width, but in a wider track, the generated boundaries
would still represent the minimum width, resulting in
a more secure estimation. Another way to estimate the
boundaries could be to create a curve, using the least
squares method, passing close to the cones.

Figure 12 shows the minimum curvature path in the
previous track, generated using the estimated boundaries.

Figure 11. Example of the estimation of the track’s bound-
aries. The yellow and blue squares mark the actual
position of the cones. The green curve was obtained by
the least squares method. The black lines are offsets
of the green line.

Figure 12. Example of optimal path generated using
Heilmeier’s method, represented by the black curve.
The yellow and blue squares mark the actual position
of the cones.

The minimum safe distance between the car and the
track’s boundary can be modified, according to the team’s
need.

4.5 Control

The control of the vehicle can be divided in two parts.
During the exploration lap, it can be implemented a pure-
pursuit controller in order to make the vehicle follow the
chosen node of the map. This can be done until the vehicle
find the initial node, meaning that it has completed the
first lap.

For the fast laps, a PID controller can be used to find the
error between the desired state and the actual state. The
desired state can be obtained from the optimal path coor-
dinates and the velocity and acceleration profiles, while
the actual state is obtained from the State Estimation
subsystem.

5. EXPERIMENTS AND RESULTS

The system proposed by this work is being used by
Ampera Racing, a starter team from Federal University of
Santa Catarina. Simulations were run following the system
propose, using the recommended development tools.

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 680 DOI: 10.20906/sbai.v1i1.2642



Table 1. Maximum position error for different
sensoring configurations.

GPS IMU

σ2
GPSx,y

σ2
GPSV

f σ2
a σ2

θ̇
f Emax

(m2) (m2/s2) (Hz) (m2/s4) (rad2/s2) (Hz) (m)

0,5 0,5 1 5e-3 10e-5 100 1,77

0,5 0,5 1 1e-3 10e-5 100 1,21

0,5 0,5 1 5e-3 10e-5 200 1,68

0,5 0,5 1 1e-3 10e-5 200 0,87

0,5 0,5 10 5e-3 10e-5 100 1,25

0,5 0,5 10 1e-3 10e-5 100 0,78

0,5 0,5 10 5e-3 10e-5 200 1,11

0,5 0,5 10 1e-3 10e-5 200 0,49

Figure 13. Position estimated by EKF. The true position is
represented by the black line and the EKF estimated
position by the red line.

For the state estimation, the sensors used were the sug-
gested ones, GPS and IMU. In the experiments, the car
was manually controlled on the track while the true and
estimated position were measured. The variance of the
sensors was decreased and the frequency increased until
the maximum difference between the estimated position
and the true position was less than 0.5m. As shown in
Table 1, for the maximum error to be less tham 0.5m, the
GPS needed to have a frequency of 10Hz and a maximum
variance of 0, 5m2 for the position measurements, while
the IMU had to have a frequency of 200Hz and maximum
variances of 10−3m2/s4 for the acceleration measurements
and 10−5rad2/s2 for the angular velocities measurements.
The Figure 13 shows the true position of the car and the
estimated position during one experiment.

For the exploration of the track, the team had two trained
CNNs, called YOLOv4 normal and YOLOv4 tiny, in
reference to the size of the CNN. Both of then were
tested to define which one should be used for the next
experiments. For the tests, the car was manually controlled
along the track while the average FPS and the total
classification errors were measured. As can be seen in
Table 2, the YOLOv4 tiny had a much higher average FPS
when compared to YOLOv4 normal. This FPS will surely
decrease when experiments are done in a real prototype,
but the YOLOv4 tiny will be better in terms of FPS
nonetheless, so it was chosen to be implemented. The
quantity of classification errors from both CNNs were very
close to each other, but this problem was solved plotting
in the map only blue cones detected on the left side of the
image, and yellow cones detected on the right side of the
image.

Table 2. Comparison of CNNs.

CNN avg. FPS Classification errors

YOLOv4 normal 32 4
YOLOv4 tiny 119 5

Figure 14. Complete track map.

Figure 15. Estimated cones position. The true position is
represented by squares and the estimated position by
triangles.

By following the suggestions of this work and by creating
good heuristics for the first lap exploration, the car was
able to complete the lap in the simulations. A video of one
simulation can be seen in

https://youtu.be/2lnkisTIOLY

where the car completed the track successfully. Figure 14
shows the complete track map, built by the system using
the connecting lines and nodes. And Figure 15 shows both
true and estimated position of the cones.

For the trajectory planning, the four methods cited by this
paper, minimum path, minimum curvature and interpola-
tion from Braghin et al. (2008) and minimum curvature
from Heilmeier et al. (2019), were tested in five different
tracks, which can be seen in Figure 16. The tracks have
different sizes and forms, so it is possible to conclude which
method is better in general. The results of the experiments
can be seen in Table 3.

A vehicle can run the Heilmeier minimum curvature’s
path and Braghin’s interpolated path approximately at
the same time, and faster than Braghin’s minimum length
and minimum curvature. But Heilmeier’s path generation

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 681 DOI: 10.20906/sbai.v1i1.2642



Figure 16. Tracks used in the experiments.

Table 3. Comparison of trajectories.

Track Trajectory Lap time (s) Solver time (s)

1 Min. length 19,96 0,001
Min. curv. (Braghin) 17,66 0,001
Min. curv (Heilmeier) 16,85 0,003
Interpolation 16,90 5,246

2 Min. length 88,75 0,839
Min. curv (Braghin) 81,67 0,553
Min. curv (Heilmeier) 79,96 1,590
Interpolation 79,47 191,325

3 Min. length 37,08 0,016
Min. curv (Braghin) 35,74 0,017
Min. curv (Heilmeier) 33,54 0,054
Interpolation 33,39 16,728

4 Min. length 85,77 0,452
Min. curv (Braghin) 79,31 0,425
Min. curv (Heilmeier) 78,04 1,184
Interpolation 77,80 79,394

5 Min. length 19,17 0,001
Min. curv (Braghin) 18,24 0,002
Min. curv (Heilmeier) 15,51 0,006
Interpolation 15,18 14,212

is faster. While Braghin’s path needs several second to
be calculated, Heilmeier’s needs milliseconds. Although
Heilmeier’s path needs more time to be generated than
the Braghin’s minimum length and curvature, the time
saved in the laps compensate it. The car will run nine
fast laps, so this saved time will be multiplied by nine. So
it is recommended to use Heilmeier’s method to plan the
track’s optimal trajectory. Finally, the control subsystem
was not yet developed by the team.

6. CONCLUSION

The aim of this work was to propose a simple and low cost
navigation system for starter teams with little knowledge
in autonomous cars and a limited budget. Suggestions were
made for the tools to be used in the development of the
vehicle’s software and how to implement the navigation
system, covering the following topics: Computer vision,
State Estimation, SLAM, Path Planning and Control.
The results of the proposed integration of algorithms,
evaluated in the experiments were satisfactory, with a good
perspective of increase of the performance.

This navigation system is currently being implemented by
the Ampera Racing team at Federal University of Santa
Catarina, Brazil. This team, which already competes in
the electric class of Formula SAE Brazil, is an example of

a starter team that wishes to design its first autonomous
vehicle for the FSD competition, having no great knowl-
edge in this field and a limited budget.

Following the steps and recommendations written in this
paper, and consulting the information in the sources cited,
a team is able to develop and simulate its first prototype.
Future works can evaluate the performance of the system
in a real environment. This real scenario will contain
more uncertainties and noises, and by doing experiments,
the team can realize which areas need more attention
and study, and the system can be improved and became
more complex over time. During the development of new
strategies, it is recommended to build the blocks of the
system in a modular manner, so the team can work with
the modules separately, improving time efficiency, and put
them together afterwards.

REFERENCES

Bader, M. and Hofmann, A. (2017). Design of an au-
tonomous race car for the formula student driverless
(fsd).

Bhadani, R.K., Sprinkle, J., and Bunting, M. (2018). The
CAT vehicle testbed: A simulator with hardware in the
loop for autonomous vehicle applications. Electronic
Proceedings in Theoretical Computer Science, 269, 32–
47. doi:10.4204/eptcs.269.4. URL https://doi.org/
10.4204/eptcs.269.4.

Bochkovskiy, A., Wang, C.Y., and Liao, H.Y.M. (2020).
Yolov4: Optimal speed and accuracy of object detection.
ArXiv:2004.10934.

Braghin, F., Cheli, F., Melzi, S., and Sabbioni, E.
(2008). Race driver model. Computers & Struc-
tures, 86(13–14), 1503–1516. doi:10.1016/j.compstruc.
2007.04.028. URL http://dx.doi.org/10.1016/j.
compstruc.2007.04.028.

Chen, T., Li, Z., He, Y., Xu, Z., Yan, Z., and Li, H.
(2018). From perception to control: An autonomous
driving system for a formula student driverless car.

Dodel, D., Schötz, M., and Vödisch, N. (2021). Fsoco:
The formula student objects in context dataset.
ArXiv:2012.07139.

Heilmeier, A., Wischnewski, A., Hermansdorfer, L.,
Betz, J., Lienkamp, M., and Lohmann, B. (2019).
Minimum curvature trajectory planning and control
for an autonomous race car. Vehicle System Dy-
namics, 58(10), 1497–1527. doi:10.1080/00423114.
2019.1631455. URL http://dx.doi.org/10.1080/
00423114.2019.1631455.

Kabzan, J., Valls, M.I., Reijgwart, V., and Hendrikx,
H.F.C. (2019). Amz driverless: The full autonomous
racing system. arXiv:1905.05150.

Montemerlo, M. and Thrun, S. (2007). FastSLAM: A
Scalable Method for the Simultaneous Localization and
Mapping Problem in Robotics. Springer.

Simon, D. (2006). Optimal State Estimation. John Wiley
& Sons, Inc.

Smith, R.C. and Cheeseman, P. (1986). Bayesian filtering:
From kalman filters to particle filters, and beyond.
International ournal of Robotics Research, 5(4), 56–58.

Xue, Z. and Schwartz, H. (2013). A comparison of several
nonlinear filters for mobile robot pose estimation. In
Proceedings of 2013 IEEE. International Conference on
Robotics and Automation.

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 682 DOI: 10.20906/sbai.v1i1.2642

https://doi.org/10.4204/eptcs.269.4
https://doi.org/10.4204/eptcs.269.4
http://dx.doi.org/10.1016/j.compstruc.2007.04.028
http://dx.doi.org/10.1016/j.compstruc.2007.04.028
http://dx.doi.org/10.1080/00423114.2019.1631455
http://dx.doi.org/10.1080/00423114.2019.1631455

	Introduction
	Scenario and System Proposal
	Robot Development Tools
	Robot Operating System
	Gazebo
	Sensoring

	Subsystems
	Computer Vision
	State Estimation
	Exploration Lap
	Path Planning
	Control

	Experiments and results
	Conclusion



