
Simulation of External Peripherals for Automated

Testing of Embedded Software in Model

MSP430FR5969 ?

José Gustavo de Almeida Machado ∗ Rogério Atem de Carvalho ∗∗

∗ Innovation Hub, Instituto Federal Fluminense, RJ (e-mail:
jose.gustavo@gsuite.iff.edu.br).

∗∗ Innovation Hub, Instituto Federal Fluminense, RJ (e-mail:
ratem@iff.edu.br)

Abstract: The use of embedded systems in the various sectors of the economy has grown over
the years. Consequently, the demand for software developers capable of creating applications for
these systems in an optimized way has increased since the hardware of these devices has limited
capacity concerning computers. Embedded software tests are required to validate the correct
functioning of its tasks. However, its implementation is not always trivial, as external devices
are necessary in order to be able to implement the tests, which may not be available during
the project’s testing phase. This work aims to present solutions for test software developed
for the MSP430FR5969 microcontroller, using ESP32 to simulate the external device used to
communicate with the device under test. Test results identify errors found in software developed
for the DUT. However, some cases were observed instabilities in the double, reinforcing the need
to continue improving the codes used in the double microcontroller. The methodology has the
advantage of being software focused, while it is based on any hardware. In addition, it allows the
developer greater control over the testing process, quickly making modifications to the double
code to explore other scenarios.

Keywords: Embedded Systems; Embedded Software; Automated Driver Testing; ESP32;
MSP430.

1. INTRODUCTION

The embedded system is an information processing system
that has software and hardware components, with appli-
cations in several areas such as telecommunications, auto-
motive, electronics, automation, and military applications.
”Some of them include an operating system, but many are
so specialized that the entire logic can be implemented as
a single program” (Zander, 2008, p. 12).

In order to economically test embedded software, sev-
eral techniques, approaches, tools and structures have
been proposed by professionals and researchers in re-
cent decades (Garousi et al., 2018). However, due to the
strong interaction between the drives and the internal and
external peripherals of devices, functionality assessment,
system performance measurement, and automated testing
becomes difficult (Grenning, 2011).

Another challenging factor is the software development for
new hardware. A high proportion of hardware defects can
be identified during the testing process. In this case, the
defects identified may be related to the hardware, not just
the software developed (Kualitatem, 2016).

One of the alternatives for testing is for the developer to
use real peripherals. However, the hardware may not be
available because it is also under development or its high

? This research was supported by the Fundação de Amparo às
Pesquisas do Estado do Rio de Janeiro (FAPERJ).

price (Grenning, 2011; Garousi et al., 2018). In addition,
”typically the testing team has to share a minimal set
of hardware units among its members and/or organize
remote access to the hardware” (Garousi et al., 2018, p.
4).

The Model-in-the-Loop is a test technique that consists of
performing simulations in a virtual environment, using a
mathematical modeling of the system (Plummer, 2006).
This technique allows engineers to identify problem re-
quirements.

The Software-in-the-Loop (SIL) technique, on the other
hand, aims to compile the source code that will be im-
plemented in the microcontroller and run it in a separate
process on the computer, where it performs the simulation
(MathWorks, 2021). This feature allows checking the soft-
ware without having to specify the hardware to be used in
the project.

The Hardware-in-the-Loop technique consists of replacing
the physical part of a machine or system with a simulation
(Kleijn, 2014). In this way, the developer can verify that
the software developed for the controller meets specifica-
tions without the cost and time associated with actual
physical testing. A HIL simulation can demonstrate all
the benefits of numerical simulation for other parts of the
entire system represented by the software, as long as they
can be well modeled (Chen et al., 2008). Some of these

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 753 DOI: 10.20906/sbai.v1i1.2654

solutions are offered on the market and, depending on the
application, can be expensive.

One of the solutions developed to implement tests on
embedded systems was using a methodology consisting of
three components: a device under test (DUT), a device
that simulates the external peripheral (Double) and a
personal computer. The DUT contains the code under test
and the Double plays the role of the “real” external periph-
erals that must be used in production. The computer is
responsible for executing script tests and compare the re-
sults obtained from devices. Therefore, it orchestrates the
functions of the microcontroller (Souza and de Carvalho,
2021).

The history of this solution begins with the software to
control one of the payloads of the Brazilian 14-BISat
nanosatellite. The development of this instrument oc-
curred in parallel to the development of its control soft-
ware, carried out by the authors, who used basic tech-
niques of Test-Driven Development and test equipment
called THC (Carvalho et al., 2014; de Carvalho et al.,
2015). These initial experiments generated the Valves 1.0
toolkit, which in turn was used to certify the software
embedded in 14-BISat. (Carvalho et al., 2016; de Carvalho
et al., 2016).

This paper aims to present test solutions for the software
embedded in the MSP430FR5969, using ESP32 as a sim-
ulator of the external devices that will connect with the
device under test. The applications development are GPS
NEO-6M, RTC DS3231 and the transfer of data between
devices using the SPI protocol.

2. MATERIALS AND METHODS

Figure 1 shows the architecture used for the tests. Its
purpose is to support both iterative and incremental
development. It consists of 3 devices: computer, DUT and
double.

Figure 1. Test System Architecture (Souza and de Car-
valho, 2021)

The computer acts as an interface between DUT and Dou-
ble to control both and perform the automated test. The
communication that enables this process is USB/Serial.
The computer used in the research contains a 1.7 GHz Intel
Core i3 processor, 4 GB DDR3 memory, and the operating
system used was Ubuntu 18.04.

The DUT is the device that contains the software that
wishes to be tested. In this research, the device used to
perform this role is the MSP430FR5969, manufactured
by Texas Instruments, where the embedded software was
developed in C language.

The double is the device, more specifically a microcon-
troller, which represents the behavior of one or more real
peripherals. Before testing, the application hosted on the
computer loads the Double code with one or more precom-
piled files. The choice of the device to assume the role of
double must have a great diversity of protocols and pe-
ripherals, and an affordable price (Souza and de Carvalho,
2021). In this work, the device used to perform the double
role is the ESP32, with the standard CPU frequency of
160 MHz.

The test cases verify the response of the device with the
expected result after injecting input data. Due to the
different types of language paradigms used in the develop-
ment of DUT and double software, since the C language
belongs to the imperative paradigm and the Python lan-
guage belongs to the object-oriented paradigm, the data
entry for each device must be performed differently.

For each test case, the following steps are included:

(1) Initialization: consists of the initialization of an object
in the Double by the test application. In the case
of DUT, the production code is already initialized,
regardless of the test code.

(2) Input injection: consists of positioning the production
code in a state to perform a testing activity. The
test application is also responsible for this positioning.
Data input for the MSP430FR5969 varies depending
on the issue. Besides that, the MSP430 will interpret
and process this data according to its activity in
question. For example, entering a set of numbers, such
as a list, must use the following command ”-y 1 2 3”.
In other cases, sending a flag, such as a letter ”y”,
is enough to perform some activity, simulating, for
example, a button.

(3) Results Gathering: consists of requesting and collect-
ing results from the DUT or the Double through
the test. Obtaining the results in the Double is done
by calling a method by its object. The results are
obtained in the DUT by command, as shown in the
previous step.

(4) Asserts: it consists of comparing the result obtained
with the expected result.

This methodology is a choice over other given the following
reasons:

(1) Different the Model in the Loop and Software in the
Loop techniques, the signals sent to the device under
test are generated by hardware. This allow to verify
the response of the microcontroller as if it were in a
production environment.

(2) It is a low-cost technique compared to other tools
that use the Hardware-in-the-Loop concept. Having
the code of the Double, it is possible to use a micro-
controller that is not in use to be able to act in the
tests.

(3) The software needed for microcontrollers to play the
role of Double can be developed by the community
and reused in multiple projects, saving time and costs.

The methodology has the advantage of being software
focused, while it is based on any hardware. In addition,
it allows the developer greater control over the testing

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 754 DOI: 10.20906/sbai.v1i1.2654

process, quickly making modifications to the double code
to explore other scenarios.

The codes used for the Double and the test scripts base
were developed by Sara Monteiro, which were made avail-
able to the public through the GitHub repository entitled
Micropyhon Test Lib (Souza, 2020). The reuse of these
codes is interesting because it allows validating these algo-
rithms developed using other models of embedded systems,
ensuring reliability and encouraging the community to use
and improve them.

The production codes are the objects to be tested. The
script tests implemented for MSP430 need to send com-
mands and data via the terminal to execute a function. For
this reason, a module that works with the UART protocol
must be dedicated to the tests. The author of this research
developed them.

The test codes, DUT and Double, used in this paper, were
published in the GitHub repository to collaborate with the
community and improve the technique (Machado, 2021).

3. RESULTS AND DISCUSSIONS

3.1 UART - GPS

This application makes use of an external GPS module
model NEO-6M using the UART protocol. The GPS is
configured through commands that indicate the messages
types it must report, known as NMEA sentences (National
Marine Electronics Association) (Souza and de Carvalho,
2021).

The first test case consists of sending a command to the
GPS. The command used enables the GGA and RMC
sentences on the GPS. The command sent to the DUT
is the ”y” flag, which triggers the function that performs
this activity.

The second test case checks the GPS response after sending
a command through the DUT. The Double evaluates the
rate update command from the command sent and, if
positive, internally calls the continuous mode() method,
enabling a timer interrupt to send a Double sentence RMC
periodically. The sentence received by the DUT is verified
and the command to obtain this information is the ”b”flag.

The third test case checks the latitude and longitude value
that the DUT received from the GPS after the request. The
command to obtain this information from the DUT is ”u”.

Code 1 presents the first test case, which verifies that the
command sent by the DUT is correctly received by the
GPS (Double).

expected command = ”PMTK314
, 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 ,0 ”
1 − Objec t s Creat ion
s e l f . d o u b l e s e r i a l . r e p l (”gps =

DOUBLE GPS(22 ,16 ,2) ” , 0 . 2)

2 − Input I n j e c t i o n
s e l f . d u t s e r i a l . r e p l (”y ” , 1 . 2)

3 − R e s u l t s g a t h e r i n g

gotten command = s e l f . d o u b l e s e r i a l .
r e p l (”gps . received command () ” , 0 . 8)
[2]

4 − Asser t ion
gotten command = gotten command . decode

()
gotten command | should | equa l to (

expected command)

Code 1. Test case for the function of sending the command
to the GPS

Figure 2 shows the result of the executed test.

Figure 2. Test result for GPS after execution

3.2 I2C - RTC DS3231

The tested application is the system that configures an
external RTC of the DS3231 model, using the I2C com-
munication protocol. The activities that will be tested are
configuring and reading the date and time in the RTC. In
all, four test cases were developed.

The firmware used in ESP32 was ”MicroPython LoBo
esp32”, with the date of the last update on September 4,
2018. The manufacturer of ESP32 did not develop this
firmware, but its use is necessary because the original
firmware does not support the protocol I2C in slave mode.
Furthermore, there was a need to configure the firmware to
work with the CPU with a default frequency of 160 MHz
since the precompiled models, available for downloads, are
configured for 240 MHz.

As shown in Code 2, the first test case was defined to
test the date and time configuration. This test is static
as the date and time values stored by the Double do not
change over time. Therefore allows the developer to verify

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 755 DOI: 10.20906/sbai.v1i1.2654

that the function that performs this activity is storing the
values accurately. Besides that, it is unnecessary to use the
function that captures the date and time on the external
device.

g l o b a l d o u b l e s e r i a l
expected datet ime = [2021 , 5 , 22 , 6 ,

20 , 14 , 31]

1 − Objec t s Creat ion
d o u b l e s e r i a l . r e p l (”ds3231 =

DOUBLE DS3231(21 ,22) ” , 0 . 5)

2 − Input I n j e c t i o n
s e l f . d u t s e r i a l . r e p l (”−t 0 31 14 20 6

22 5 21 z ” , 1)

3 − R e s u l t s g a t h e r i n g
gotten datet ime = d o u b l e s e r i a l . r e p l (”

ds3231 . DateTime () ” , 1 . 2)

4 − Asser t ion
gotten datet ime = gotten datet ime [3] .

decode ()
gotten datet ime | should | equa l to (

s t r (expected datet ime))

Code 2. Test case for sending data function to configure
RTC

The DUT will transmit a set of data necessary for config-
uring the RTC. For example, the command ”-t 0 31 14 20
6 22 5 21z” can be interpreted as follows:

(1) The ”-t” flag informs the desired activity is to config-
ure the date and time in Double.

(2) The value ”0” indicates the address of the first register
that will store the information received. This register
has the function of storing seconds.

(3) The remaining integer values are seconds, minutes,
hour, day of the week, day, month, and year’s last
two digits.

(4) The ”z” flag indicates the end of the command.

The second test case, whose function is similar to the
previous case, except that it works dynamically, i.e., the
values stored by the Double registers will be updated every
1 second. It is necessary to check the dynamic situation
closer to reality.

The third test case checks the function that requests the
RTC date and time. This case does not use the function
that sets the date and time, bringing independence be-
tween the tested codes. This fact is possible thanks to
the possibility to configure the Double through the test
application directly.

The latter case tests the date and time configuration and
request functions together. It is helpful to perform a self-
test, i.e., the device to be tested is responsible for providing
the input and output data for verification.

For the correct execution of the test script, there was a
modification to the standard used on test codes obtained
in project Micropython Test Lib. During test runs, errors
were usually raised after the first successful test case was

run. In the problem investigation, it was found that the
test cases execution in isolation and without the need for
more than one opening in the connection of the Double
with the computer obtained the expected results. However,
the error is generated in opening and closing connection
several times between Double and computer because the
MicroPython REPL prompt fails and the device does not
receive the commands sent by the test script. The solution
was open and close communication between Double and
the computer one time to avoid REPL failure.

Figure 3 shows the test case errors for applying the RTC
configuration. Besides the possibility of DUT code error,
there is the possibility that the functioning of Double
causes some failures. Another possibility is the delay in
communication between the computer used for the test
and the devices.

Figure 3. RTC application test results with the error
generated by the fail of the connection between the
Double with computer

Figure 4 shows the execution of the tests with positive
results. The difference between this test result and the
previous one is the opening connection only one time
between the computer and Double during the entire test
run. A global variable is created, which stores the instance
of the SerialInterface class responsible for connecting to
devices.

3.3 SPI - Master-slave

The test cases for this application consist of the transfer
of data between the DUT with Double using the SPI
protocol. The first case verifies a read operation on the
slave by the master. The Double, for this example, plays
the role of an external peripheral typically performed by
ADCs.

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 756 DOI: 10.20906/sbai.v1i1.2654

Figure 4. RTC application test results after solving the
connection error between the Double device and com-
puter

Code 3 presents an example of a command for the DUT to
perform the activity related to that test is ”-g 3z”, where
the flag ”-g” means that the desired function, the value
”3” means the number of data to be read and the ”z” flag
means the end of the command.

g l o b a l d o u b l e s e r i a l
expec t ed read ing s = [1 , 2 , 3]

1 − Objec t s Creat ion
d o u b l e s e r i a l . r e p l (” s l a v e =

Double s lave (13 ,12 ,14 ,15) ” , 0 . 5)

2 − Input I n j e c t i o n
d o u b l e s e r i a l . r e p l (” s l a v e .

e n a b l e t r a n s a c t i o n (”+s t r (
expec t ed read ing s)+”) ” , 0 . 5)

3 − R e s u l t s g a t h e r i n g
go t t en r ead ing s = s e l f . d u t s e r i a l . r e p l

(”−g 3z ” , 1 . 2) [0]
. . .

4 − Asser t ion
. . .
s t r (go t t en r ead ing s) | should | equa l to

(s t r (expec t ed read ing s))

Code 3. The DUT function test that reads data from
Double

The second test case is similar to the first, except that the
DUT reports the buffer address. An example of a command
for this activity is ”-a 14 3z”, where the flag ”-a” means the
desired function, the value ”14” is the buffer address, the
value ”3” indicates the number of data to be received, and
the ”z” flag means the end of the command.

The third test case checks whether the Double records the
data reported by the DUT. An example of a command
is the ”-s 1 2 3z”, where the ”-s” flag means the desired
function, the numeric data is the data to be written, and
the ”z” flag is the end of the command.

The fourth test case checks whether the Double records the
data sent by the DUT at the address provided. An example
of a command is ”-s 14 1 2 3z”, which the only difference
between the last command is the address information
indicated by the value ”14”.

Figure 5 shows application test result errors. The API
needed to use the SPI protocol in slave mode on ESP32
devices was developed by Sara Monteiro, which was used
in Double (Souza, 2020). However, according to the devel-
oper, the API is unstable (Souza and de Carvalho, 2021).
Therefore, it can cause errors in the test script execution,
although the functions developed for the DUT are correct.

Figure 5. Test execution of the Master and Slave applica-
tion with error

The same strategy used in the RTC tests was adopted to
increase the test reliability, which is the only opening of
the connection with the Double by the computer during
the whole execution of the test. This action allowed the
errors generated to be restricted to the results generated
by the embedded software, which is the objective of this
work.

Figure 6 shows the test result using the strategy described
above. It allowed for reliability. However, in some cases,
results similar to what was reported by the API developer
(Souza and de Carvalho, 2021) were observed.

4. CONCLUSIONS

The use of external peripheral simulators for testing soft-
ware in embedded systems proves valuable because it

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 757 DOI: 10.20906/sbai.v1i1.2654

Figure 6. Test execution of the Master and Slave applica-
tion successfully

validates the elaborated codes and visualizes errors that
would go unnoticed by developers. It can be a low-cost
alternative, as there is no need to purchase the equipment
to start development and tests.

This model also allows a more significant number of
developers to work in parallel. Each can work on a software
module and test it without having the external peripheral
available because Double codes can be used on idle devices.

Another feature of this test model is that it does not use
breakpoints and a special debug mode to run the tests, but
there is a delay between sending commands and receiving
responses through the serial port.

Differing from the GPS tests, which use the UART proto-
col for communication, the RTC tests and data transfer be-
tween devices on the SPI bus showed errors not related to
the algorithms developed for MSP430FR5969 but between
the computer’s communication with the Double. This sit-
uation may be related to the fact that the manufacturer
of ESP32 did not develop the firmware used in Doubles
for these tests since the UART protocol, used in Double in
the case of GPS, has the functioning module as a slave by
the original firmware. Another possibility of the problem
is the delay between the computer’s communication with
the Double.

The solution was to create the communication between
the computer and Double only once during the entire test,
which does not impact the model proposal, as all steps
are maintained. Communication between computers and
devices is used only for tests, unlike the communication
between the devices, which will be used in production.
Therefore, the main objective of the test is fulfilled.

Contrasting the Double, the communication opening and
closing between the computer and DUT is performed sev-
eral times during the test execution. This fact demon-
strates more stability in the communication between the
computer and MSP430FR5969 than between the com-

puter and ESP32. For future work, built-in software for
MSP430FR5969 will be developed to function as a Double
for tests.

ACKNOWLEDGMENTS

This work is supported by Fundação de Amparo às
Pesquisas do Estado do Rio de Janeiro (FAPERJ) and
Pólo de Inovação de Campos dos Goytacazes.

REFERENCES

Carvalho, R., Arueira, G., Azevedo, M., and Toledo, R.
(2016). Developing the software for cubesats in a concur-
rent engineering environment: a toolset and case study.
In Second IAA Latin American CubeSat Workshop IAA
Latin American CubeSat Workshop.

Carvalho, R., Ferreira, H., Toledo, R., Cordeiro, C., and
Moura, G. (2014). Interfacing with the science unit:
Preparing the software side. In Proceedings of the 6th
European CubeSat Symposium.

Chen, X., Salem, M., Das, T., and Chen, X. (2008).
Real time software-in-the-loop simulation for control
performance validation. Simulation, 84, 457–471. doi:
10.1177/0037549708097420.

de Carvalho, R.A., de Azevedo, M.S., de Souza, S.C.,
Arueira, G.V., and Cordeiro, C.S. (2016). Develop-
ing and testing software for the 14-bisat nanosatellite.
IFAC-PapersOnLine, 49(30), 71–74.

de Carvalho, R.A., Silva, H., Toledo, R.F., and de Azevedo,
M.S. (2015). Tdd for embedded systems: A basic
approach and toolset. arXiv preprint arXiv:1507.07969.

Garousi, V., Felderer, M., Karapıçak, Ç.M., and Yılmaz,
U. (2018). Testing embedded software: A survey of the
literature. Information and Software Technology, 104,
14–45.

Grenning, J.W. (2011). Test Driven Development for
Embedded C. Pragmatic bookshelf.

Kleijn, C. (2014). Introduction to hardware-in-the-loop
simulation.

Kualitatem (2016). Embedded software testing chal-
lenges. URL https://www.kualitatem.com/blog/
embedded-software-testing-challenges.

Machado, J.G.A. (2021). msp430-test-with-esp32.
URL https://github.com/machado-jose/
msp430-test-with-esp32.

MathWorks (2021). Software-in-the-loop simulation. URL
http://wwtug.org/instmem.html.

Plummer, A. (2006). Model-in-the-loop testing. Proceed-
ings of The Institution of Mechanical Engineers Part
I-journal of Systems and Control Engineering - PROC
INST MECH ENG I-J SYST C, 220, 183–199. doi:
10.1243/09596518JSCE207.

Souza, S. (2020). Micropython test lib. URL https://
github.com/saramonteiro/micropython_test_lib.

Souza, S. and de Carvalho, R.A. (2021). Automated driver
testing for small footprint embedded systems. arXiv
preprint arXiv:2105.01451.

Zander, J. (2008). Model-based testing of real-time em-
bedded systems in the automotive domain. Fraunhofer
FOKUS.

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 758 DOI: 10.20906/sbai.v1i1.2654

