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Abstract: This work presents a platform based on edge computing for the implementation
of monitoring algorithms in complex industrial processes, combining safety, performance and
scalability. Only free software was used and the connection of the industrial computer with
processes was made via OPC UA communication standard, very common in industry 4.0. Two
case studies were worked out to explore the features of the platform. First, multivariate process
monitoring was applied to a pilot plant, showing steps towards training and remote monitoring.
Secondly, increasing volume of synthetic data was provided by an OPC server to evaluate
three performance metrics of a single node and to decide about inclusion of new nodes to
share computational burden. The results achieved show the proposed environment can handle
computational tasks of increasing complexity for general applications in the industry.
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1. INTRODUCTION

The monitoring of industrial processes has been gaining
more and more strength with the great availability of data
(Tan et al., 2020). The use of machine learning algorithms
(C., 2013) brought an immense variety of algorithms that
can be used for diagnostics and prognosis of equipment
and processes. To afford it, growing volumes of data must
be stored and processed.

Cloud computing quite expanded the reach of application
usage and has emerged as a de-facto method to reduce
cost with highly scalable computing services to its users
(Srivastava and Khan, 2018). The possibility of maintain-
ing algorithms based on artificial intelligence in the cloud
processing the collected data, makes the architecture very
attractive, due to the ease of incorporating improvements
and access by a large number of customers (Labati et al.,
2020).

However, cloud computing faces some challenges, such as
data transmission latency, critical data security, network
consumption and even the high availability of services
(Ding et al., 2020).

Edge computing is a new cloud paradigm which aims to
bring existing cloud services and utilities near end users
(Mohan, 2019). Thus, the issues related to latency and
data security are mitigated.

OPC UA is an industrial standard that brings information
integration and interoperability across separated devices
and applications. It was used in Beňo et al. (2019) to
transform binary data from OPC UA server to JSON
Publisher/Subscriber format, in order to be easily accessed
from any location in the cloud. This standard is used here
as well to connect the proposed platform to industrial
processes. Also, an industrial computer based in the same

hardware, a Raspberry Pi 3, is the main part of the
proposed platform.

The challenge of this work is to propose an environment
that solves these problems, and maintains the processing
capacity.

2. PROPOSED ENVIRONMENT

A brief description of the resources of the proposed frame-
work for edge computing is presented in this section.
Among many existing possibilities for edge computing
platforms and protocols (Mohan, 2019), the selection con-
sidered mainly open-source environments, well known and
flexible hardware and industrial communication standards.

2.1 Hardware

Industrial Computer - IC. The industrial computer, is
equipped with a Raspberry PI 3+ computing module as
a controller,similarly to (Beňo et al., 2019), with a 1.2
GHz processor and a maximum memory of 40 GB. It
also has a Raspbian operating system that is a Linux
distribution, and a pre-installed Node-RED environment.
Some of the benefits of this hardware are the low cost,
a huge processing power in a compact board. Standard
communications protocols such as UART, SPI and I2C
allow IC to communicate and exchange data with other
devices.

2.2 Softwares

Python is an open source language, with powerful math-
ematical libraries. In this paper, Numpy was used for matrix
calculations for multivariate statistical monitoring, Scipy
is a library of statistical functions and was used to calcu-
late statistical thresholds, Scikit-learn contains a wide
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range of supervised and unsupervised machine learning
algorithms, and was used to compute the principal compo-
nents. These libraries make available existing algorithms
from literature that can be readily implemented.

Nodered is a visual programming tool, in an open source
environment, developed by IBM Emerging Technology
to connect IoT devices IBM (2013). It allows running
Javascript code in native form and several other languages
as well, just adding libraries. Its installation on Raspberry
Pi 3 is very simple. Nodered is used here to establish the
communication between OPC UA and the message broker
RabittMQ. It allows also user commands to perform model
training.

RabittMQ is a popular open source message broker
which uses the AMQP (Advanced Message Queuing Pro-
tocol) protocol to enable asynchronous communication
between devices. It receives all messages from the clients
and then routes the messages to the appropriate desti-
nation clients. Both Nodered and Python algorithms are
producers and consumers of messages for RabittMQ while
influxDB only consumes messages (See Figure 1). The ori-
gin of all processed data is OPC UA. The performance of
RabittMQ in a IoT framework was evaluated in Vandikas
and Tsiatsis (2014).

InfluxDB is a time series database designed to han-
dle high recording and query loads, developed by In-
fluxDataInfluxData (2020). It is used here to store data
generated by Python algorithms while performing process
monitoring. The monitored variables are stored on pro-
cess historians in general, but they can also be stored in
InfluxBD. The models used for process monitoring are also
saved in this database. Finally, InfluxDB provides data for
visualization using Grafana.

Grafana is an open source web platform for creating
interactive graphics visualization dashboards, developed
by Grafana Labs. Here it will be integrated with InfluxDB
in order to monitor the process variables.

2.3 OPC UA Standard

In this work, the OPC UA standard was used, which is
standardized in IEC 62541, and defined as a platform
independent standard. OPC UA meets all requirements
for information and communication level of Reference
Architecture Model Industry and is very common in the
industry. OPC clients are easily configured on Nodered.

2.4 The proposed Framework

The selected hardware, software and standards and their
interconnections can be seen in Figure 1. An OPC server
provides data from the pilot plant to the Nodered OPC
client. This data is published by RabbitMQ and consumed
by Python algorithms to perform process monitoring. The
output of these algorithms is again published by Rab-
bitMQ and consumed by InfluxDB for storage and Grafana
for visualization. Thus, the so called Edge Node 0 is re-
sponsible for collecting and publication of data and also
for visualization of the results from monitoring algorithms
that can run in this node. However, the great advantage of

this framework is the possibility of expanding the process-
ing power using additional nodes with similar hardware. In
this case, new monitoring algorithms consume data from
RabittMQ and return their outputs to the same broker, to
be visualized by Grafana. Additional processing or storage
requirements can be accomplished in the cloud.

Fig. 1. Proposed Framework.

3. APPLICATIONS

Two applications are now considered to explore the main
features of the proposed framework. First, a typical multi-
variate process monitoring algorithm is applied to a pilot
plant. An industrial controller controls the plant and send
data to the IC. After training, the model is used for fault
detection and results are available for remote monitoring
via any browser. This example highligths the ease to de-
velope such applications to industrial processes connected
via OPC UA standard, but uses negligible resources from
de IC. A second application uses synthetic data provided
by an OPC server to demand more IC resources. The
volume of data to be processed is increased continuously
to evaluate the necessity of more resources.

3.1 Application to a pilot plant

This application consists of a multivariate statistical mon-
itoring of processes on the pilot plant described in the
section 3.1.1. A leak at the pump outlet was introduced
as a failure in the plant, which is emulated by opening a
aF manual valve (Figure 2) that returns the pump’s outlet
fluid to the reservoir.
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Pilot plant. The pilot plant used in the tests consists of
two coupled cylindrical tanks, 250 mm in diameter and 750
mm high, inspired in Johansson et al. (1999). The upper
tank receives water pumped from a reservoir through a
pneumatic control valve. The lower tank receives water
from the same pump through a second pneumatic control
valve and also from a manual valve at the bottom of the
upper tank, that behaves like a disturbance. Both levels
are controlled by the corresponding pneumatic control
valves via PID controller using the levels of the reservoirs
measured by pressure transmitters. The valve positions a1
and a2 are available via Hart protocol.The pump flow v is
measured by a vortex flow meter.

Fig. 2. Pilot plant diagram.

In order to test the fault detection algorithms, the manual
valve af was introduced in the plant. Its opening causes
the fluid to return from the pump outlet to the reservoir,
emulating the loss of pump efficiency.

DeltaV DeltaV MQ Controller (Figure 1) is a powerful
and flexible distributed control system (DCS) produced
by Emerson. It is used here to configure the hardware,
to design the control algorithms, to monitor the pilot
plant and to make process variables available through
an OPC-UA server. DeltaV receives from the I/O cards
the measurements of flow, level and valve openings via
Hart protocol. These variables and also those generated by
control algorithms are made available to OPC UA clients.

Multivariate statistical monitoring In this work, Hottel-
ing’s T 2 statistic was used with order reduction of vari-
ables via principal component analysis. Consider the data
matrix X =[x1x2...xm] ∈ Rn×m with m variables and n
samples. It is assumed that each variable is normalized so
that it has zero mean and unit variance. Since S is the
covariance matrix of X it can be approximated by the
sample covariance matrix, as follows.

S ∼=
1

n− 1
XTX = PΛPT + P̃Λ̃P̃

T
(1)

For the principal component analysis (PCA), the eigen-
value decomposition of the covariance matrix is performed
to obtain the loading matrices, principal components P ∈
Rn×` and residual matrix P̃ ∈ Rn×(n−`), where ` is the
number of principal components retained. The diagonal

matrix Λ contains the main eigenvalues ordered in de-

scending magnitude, while Λ̃ contains the eigenvalues of
smallest magnitude.
The Hotelling T 2 statistic is calculated by

T 2 = tTΛ−1t = xTDx (2)

where D ≡ PΛPT and t are columns of the score matrix
obtained from T = XP. The statistical control threshold
T 2
UCL it is given by MacGregor and Kourti (1995)

T 2
UCL =

(n− 1)(n+ 1)k

n(n− k)
Fα(k, n− k) (3)

where Fα(k, n − k) is the upper limit for the confidence
level α of the F distribution with degrees of freedom k and
n− k.
Model training for monitoring involves decomposition to
obtain eigenvalues and calculation of matrix P. This step is
performed at the workstation using a previously collected
training data set. For monitoring, each new sample of
variables must perform the operations: subtraction of the
mean, division by standard deviation and calculation of
the T 2 statistic using equation 2. These operations are
performed in the IC, which receives the data sampled via
OPC communication .

Environment development. The RabbitMQ was used as
a messenger server to build a distributed computing envi-
ronment. Three queues were created. They are described
below and illustrated in Figure 3:

• Variables: Queue of variables read from the OPC UA
server by Node-RED and sent to be consumed and
processed by the Python algorithm at the processing
node.
• Monitoring: Python processing results queue, which

will be consumed by InfluxDB.
• To model: When the user needs to generate a new

model for monitoring, Node-RED will send the range
of selected variables to this queue, which will be
consumed automatically by all processing nodes, to
generate a new model.

Fig. 3. Diagram of distributed computing implemented.

For communication via standard OPC by Node-RED, the
installation of the library node-red-contrib-opcua is
required. As seen in figure 4, when connecting to the OPC
UA server, using the OpcUa Client node, where the server
address is assigned, the OpcUa Item node is used to specify
which server variable will be read, indicating the full path
and type.
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Fig. 4. Flow of reading and monitoring the variables.

The Scikit-learn library implements the PCA algorithm,
which receives the normalized X input matrix and the
desired number of components `, providing the principal
components P, in the attribute pca.components , and the
corresponding singular values Λ in pca.singular values .
Thus, Equation 2 can be implemented as seen in line 6 of
Algorithm 1.

Algorithm 1 Training

1: procedure Training(X)
2: pca = PCA(n components = `)
3: pca.fit transform(X)
4: P = pca.components
5: Λ = pca.singular values
6: S = P.dot(Λ).dot(P.T )
7: return S

The monitoring algorithm 2 receives the new data vector
t, normalizes it with the average and standard deviation
obtained from X, and applies the T 2 statistic as in
Equation 2.

Algorithm 2 Hotelling T 2 statistic

1: procedure Hotelling t2(t,D)
2: return T 2 = t.dot(D).dot(t.T )

The control threshold, calculated by the Equation 3, is
implemented by the scipy library, and can be used by
calling the command: chi2.ppf(α, `).

Training In the interval between 16:28 to 16:45 (figure
5), the plant is in steady state at the point of operation
described in table 1.

Table 1. Monitored variables.

ID Description Value

n1 Level of tank 1 50cm
n2 Level of tank 2 50cm
a1 Opening of valve 1 30%
a2 Opening of valve 2 70%
v Flow rate 47 L/min

At 16:45 the ’Train’ button (figure 4), was activated and
the last 200 samples of the 5 variables were collected
to generate the model, with ` = 3 main components

being retained, keeping 95% of the variance. The sampling
rate was chosen 5s to assure that subsequent samples are
statistically independent.

Monitoring The plant was monitored in the range of
16:45 to 16:53, totalizing 100 samples. In the real-time
graph plotted by Grafana (figure 5), one can see that from
the start of monitoring to point A, the plant was in normal
operation, having T 2 statistic crossed the threshold only
once. The fault was introduced at point A, opening the aF
manual valve, and at point B the monitoring T 2 statistic
exceeded the threshold and remained above it.

Fig. 5. Graphs for pilot plant monitoring in Grafana.

Discussion of the results During normal operation, the
statistic crossed the threshold only 1% of the time, for a
level of significance of 95%. All monitored variables had
their values faithfully represented according to the presets
set in the plant, described in the table 1. The measures of
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the levels of the tanks varied around 50cm, between 49.6cm
and 50.4cm. The openings a1 and a2 were 30% and 70%
respectively. And the v flow of the pump remained close
to 47L/min.

Upon introducing the fault, the pump’s v flow decreased
to 46L/min and the valve openings a1 and a2 needed to
increase to 32% and 72% respectively, in order to try to
recover the drop in the levels of tanks that went to 49.8cm.
This change was successfully detected by Hotelling’s T 2

algorithm, indicating the failure, one sample after its
introduction.

Training and monitoring was performed totally in the edge
device using data from the pilot plant received via OPC
UA communication. The dashboards with the results are
available via browser, and can be readily acessed by the
pilot plant operator. Similarly, new variables can be made
available to train algorithms for different faults, using
specific dashboards. The huge variety of machine learning
functions available in libraries of Python language allow
the development of new algorithms to monitor faults and
performance. The edge device resources (memory, CPU,
storage) must be monitored to consider the allocation of
new tasks to new nodes, as will be discussed in the next
application.

3.2 Application to synthetic data

This application aims to monitor the performance of the
IC as its load is increased. Instead of the five variables
from the pilot plant, an easy task, one hundred random
variables with normal distribution were generated. These
variables are used for training (200 samples) and then
monitoring starts, reading the variables via OPC each
1s and processing. After 30 readings, the performance
metrics are evaluated and procedure is repeatead for two
hundred variables. At each new step, one hundred more
variables are added and the IC resources are monitored.
The purpose is twofold: to check its capacity and to
allocate tasks to new nodes when its capacity reaches its
limit.

The same multivariate statistic was used to train the
model and to monitor the variables. These variables were
generated and made available by an OPC UA server
created with the opcua library in Python, on a computer
on the same local network as the IC.

Two tests were carried out. In the first, the IC was the
unique node (node 0, Figure 1), and all the processing
was done in this node. In the second test, a second node
(node 1, Figure 1) was introduced in the network. Now, the
IC reads the variables, processes requests, stores data and
displays the results in Grafana. Node 1 is responsible for
reading variables in RabbitMQ, executing the multivariate
test, and return the results do RabbitM everytime a new
OPC reading takes place.

Three metrics were evaluated:

• CPU Consumption: Measures CPU consumption
in %.
• Memory Consumption: Measures memory con-

sumption in %.

• ∆T: Time in [ms], for the IC to read the variables
from the OPC UA server.

The consumption of CPU and memory were collected
by Telegraf, with five measurement per second used to
calculate the average value. The time ∆T is calculated by
Node-RED itself, measuring the time between the moment
that the variables are requested from the OPC UA server,
and the moment that receives the last variable of that
request.

For both tests, these metrics are measured 30 times, for
30 samples of the variables collected for monitoring, and
a box plot is generated to evaluate their median and
the dispersion. The metrics are measured only in the IC
(node 0), in order to evaluate its load. If consumption of
CPU or memory are close to their limits, tasks should be
allocated to other nodes. Similarly, if ∆T is greater than
the sampling rate of 1s, the number of variables reached
the limit.

In the second test the sampling rate of 1s is maintained,
and a second processing node (Node 1) was added, and
the RabbitMQ client in Python from IC (Node 0) was
disconnected.

Results The boxplots in figure 6 compare the perfor-
mance metrics for the two tests, for the number of variables
acquired and processed ranging from 500 to 3500.

Fig. 6. Performance metrics for both tests.

In the first test, the CPU consumption increases as the
number of variables increases, but the median is smaller
than 44%. Memory consumption median is smaller than
43% and has increased by only 1% increasing the number
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of variables. CPU and memory consumption are very
dependent of the algorithms that are running in the node.
The time to read the variables (median) ranged from
100ms to 600ms. Thus, even for 3500 variables ∆T is
smaller than 1s, the sample time selected for monitoring.

In the second test, one can see that the CPU consumption
prevailed below the consumption observed in the first test.
The memory consumption was smaller than 40.2%. The
reduction of CPU and memory consumption is explained
by the fact that the RabittMQ monitoring client is discon-
nected from node 0. The reading time ∆T was similar up
to 2500 variables, since in both tests this task is performed
only by node 0. The extra time for more than 2500 is due
to the data traffic from RabbitMQ to node 1, which is
managed by node 0, where ∆T is being measured. This
metric would require concern for more than 3500 variables.
In this paper, the sampling rate for OPC readings was 1s.
It could be increased to allow increasing the number of
variables. As discussed in Cavalieri and Chiacchio (2013),
the read and write services must be optimised for bulk
read/write operations and not for reading/writing single
values, as done in this paper. Another possibility to reduce
this metric is to include a new node for OPC readings,
sending data to RabbitMQ on node 0, that manages the
tasks.

Monitoring these metrics is fundamental to ensure the
edge device is able to accomplish its tasks. When limits
are reached for any of these metrics, new edge computing
nodes can be added to share the load. The extra nodes
can share tasks related to reading variables via OPC,
processing variables available on RabbitMQ, with node 0
managing all nodes and responsible for visualization.

The example with 2 nodes (second test) shows that tasks
can be easily allocated to new nodes using this platform.
The dynamic allocation of tasks is beyond the scope of this
paper, and the interested reader can find some proposals
in Rego et al. (2013).

4. CONCLUSION

A scalable edge computing platform for industrial process
monitoring was proposed. This platform brings powerful
machine learning algorithms close to end users, reducing
costs, increasing safety and readiness for increasing bur-
den.

An industrial computer based on Raspberry Pi 3 was
configured and programmed to be an edge device, com-
municating with industrial processes via OPC UA stan-
dard. Web services for storage, message broker, visualiza-
tion dashboards based on open source sofware were pro-
grammed and configured in the edge device, using Python
language.

An application to a pilot plant controlled and supervised
by a comercial distributed control system was performed,
appling well known multivariate statistical process moni-
toring to the control loops. The usual steps for training and
monitoring were performed and show that any industrial
process with OPC UA communication could be consid-
ered as well. The great advantage in this case is privacy,
avoiding data leaving the industry automation network.

A second application was performed to evaluate the perfor-
mance of the edge device, using three performance metrics.
They alowed monitoring the vicinity of the performance
limits and additionaly to consider the allocation of tasks
to new edge computing nodes. Up to 3500 variables were
acquired and processed by a single node every second. A
second node was added to share computational burden,
showing with these good results that the proposed plat-
form is ready for a huge variety of apllications.
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