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Abstract: The characterization of hysteretic components poses a difficult nonlinear system
identification problem. Several studies have addressed this by employing artificial neural
networks, where deep learning (DL) has recently gained attention in system identification tasks.
However, there is a lack of studies comparing different deep neural network (DNN) architectures.
Therefore, this work proposes the comparison of three DNN architectures, including feedforward
neural networks (FFNN), long short term memory (LSTM), and convolutional neural networks
(CNN), for the characterization of a piezoelectric positioning system (positioner) typified by
hysteresis. Moreover, Bayesian optimization is employed for hyperparameter tuning in all DNN
architectures. Results show that all DL architectures achieved desirable values for the coefficient
of determination (R2) and root mean squared error (RMSE). However, LSTM obtains the best
overall results, outperforming both the FFNN and CNN, being a more appropriate black-box
architecture for identifying frequency-dependent hysteresis loop shapes.

Keywords: System identification, Hyperparameter tuning, Bayesian optimization, Deep
Learning, Convolutional neural network, Long short term memory

1. INTRODUCTION

System identification is the science field interested in data
driven methods for the mathematical representation of
systems dynamics (Ljung, 1999), being used in a wide
range of problems, such as biomechanical prostheses model
extraction (Abdelhady et al., 2017), fault diagnosis (Abid
et al., 2019), and industrial robots calibration (Zhao et al.,
2019).

In essence, system identification may be performed by
two approaches when using measured data: i) black-box,
which extracts the model from input excitation and output
response of the system; and ii) grey-box, which first
generates a partial or complete model of the system
considering an a priori knowledge of the process and then
uses data to adjust its parameters. The black-box modeling
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159063/2017-0-PROSUC, 310079/2019-5-PQ2, 437105/2018-0-Univ,
405580/2018-5-Univ, and PRONEX-042/2018

stands out when compared to the grey-box approach,
for demanding less information from the system and for
the ease of implementation, since many processes become
difficult to model considering first principles, making the
grey-box identification a laborious task. (Billings, 2013;
Worden et al., 2007; Tangirala, 2018).

Piezoelectric materials are extensively used to develop
actuators for precise positioning systems (precise position-
ers) thanks to their high frequency rates, high resolution,
portability, and ease of integration (Rakotondrabe, 2014).
However, when these piezoelectric positioners operate at
micro or nano-scale applications, the direct sensing is
hindered or made impossible by the measured signals’ un-
certainties, which promotes the use of soft sensing through
artificial feedback loops (Clévy et al., 2011) or alternatively
from piezoelectric self-sensing approaches (Rakotondrabe,
2013). Meanwhile, these approaches require appropriate
characterization of the piezoelectric positioners. The lit-
erature provides some strategies for modeling these sys-
tems, including Duhem, Bouc-Wen, Preisach, and Prandtl-
Ishlinskii models (Gu et al., 2014; Rakotondrabe, 2017) to
represent their hysteresis nonlinearity, linear approxima-
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tion, and logarithmic function for their creep nonlinearity
(Rakotondrabe, 2012). While an ad-hoc tuning of these
models might appear difficult, the control design consider-
ing the model artificial feedbacks is also a challenging task
(Rakotondrabe, 2014). Therefore, by avoiding difficulties
in i) obtaining general solutions in differential-equation
based methods (i.e. Duhem and Bouc-Wen models); ii)
implementing Preisach model by the presence of double
integrals; or iii) representing hysteresis effect in asymmet-
ric behavior, in case of Prandtl-Ishlinskii model (Gu et al.,
2014), black-box system identification becomes attractive.

Two degrees of freedom (dof) piezoelectric actuators (PAs)
were modeled through Duhem hysteresis model with pa-
rameters identification made by artificial neural network
(ANN) in Wang et al. (Wang and Chen, 2017). Ayala
et al. (Ayala et al., 2018) used a shallow ANN at high
frequency rates in a nonlinear autoregressive exogenous
input (NARX) model for the same application. A nano-
scale PA was identified through a recurrent neural network
(RNN) in order to implement a model predictive control
with real-time trajectory tracking in Xie et al. (Xie and
Ren, 2019). Still, a variant of RNN was used to set up a
frequency-dependent hysteresis model with memory for a
nano-scale PA in Wu et al. (Wu et al., 2020).

The use of ANNs for system identification has been de-
vised for some decades (Kumpati et al., 1990), being ini-
tially performed by feedforward neural network (FFNN),
such as radial basis functions (RBFs) (Ayala and dos
Santos Coelho, 2016) and multilayer perceptrons (Sub-
udhi and Jena, 2011). However, the training signals time-
dependency fosters the use of RNNs for this application,
since the complexity conferred by recurrences allows the
representation of time dimension directly, without the need
for delays (Schrauwen et al., 2007). Still, deep learning
(DL) has been attracting the scientific community atten-
tion due to the results obtained in the image processing
area (LeCun et al., 2015) and already suggests strong links
to the system identification execution (Ljung et al., 2020).
De La Rosa and Li (De la Rosa et al., 2015) proposed a
modified random algorithm with multiple hidden layers for
nonlinear identification. The output weights were trained
by a conventional random algorithm, while the hidden ones
are defined by the input data and a modified restricted
Boltzmann machine. Three nonlinear identification bench-
marks were used to validate the technique. Mattos et
al. (Mattos et al., 2017) proposed the application of a
novel robust latent autoregressive model treatment, used
to account uncertainty in the regression task in a deep and
recurrent structure, known as recurrent Gaussian process,
in order to identify nonlinear systems. The vibration re-
sponse estimation of linear and nonlinear single dof and a
full-scale 3-story multi dof systems were proposed in Wu
et al. (Wu and Jahanshahi, 2019a), through deep convolu-
tional neural network (CNN) and conventional FFNN. Six
nonlinear identification benchmarks were used to show the
model robustness against noisy data.

However, the literature still presents a lack of differente
DNN architectures comparison for system identification,
specially for piezoelectric micromanipulators. Therefore,
this work presents the following contributions: i) the em-
ployment of DL to characterize a precise piezoelectric
positioner typified by hysteresis; ii) the comparison of

three different DL architectures, i.e. FFNN, long short
term memory (LSTM), and CNN; and iii) the Bayesian
Optimization application for hyperparameter tuning. Re-
sults on multiple different frequencies show the advantages
of LSTM over the other methods. Specifically, the LSTM
architecture was able to adequately model frequency de-
pendent hysteresis loop shapes, using real-world measured
data acquired from an actual piezoelectric positioner.

The remainder of this paper is structured as follows. First,
Section 2 details the data collection procedure, the deep
neural network (DNN) architectures, and the Bayesian
optimization for hyperparameter tuning. Next, Section 3
describes the experimental procedure and discusses the
results for optimization and model comparison. Finally,
the paper is concluded with final remarks and future work.

2. MATERIALS AND METHODS

This section introduces details for reproducing the char-
acterization of hysteretic piezoelectric positioner using the
DL architectures reported in this work.

2.1 Data Collection for Piezoelectric Micromanipulator

The procedure for data collection of the piezoelectric po-
sitioner employs an open loop experiment (Soares et al.,
2020). The positioner is composed of a piezoelectric actu-
ator with cantilever structure having rectangular section.
When applying a voltage to the actuator, it bends. This
bending is exploitable as the positioning result (displace-
ment).

The driving voltage signal (input) called x(t) is gen-
erated using MATLAB computational environment and
a high-voltage-amplifier, with signals ranging between
[−100V, 100V ]. The displacement (output) called y(t)
is measured using an optical displacement sensor, the
Keyence LK2420. Finally, the dS1104 acquisition board,
from dSPACE, serves as converter (DAC and ADC) with
20kHz sampling between the computer and the sen-
sor/amplifier.

The voltage x(t) for the training and validation dataset is
created using a multi-sine signal

x(t) =

nf∑
k=1

A cos (2πfkt+ φk) (1)

where fk and φk are the frequency and phase of each
sine component. In total, the signal is composed of nf =
500 components with frequencies equally spaced between
[0Hz, 500Hz] and random phases φk. The band has been
chosen so that it includes resonant modes and typical
working frequencies for precise positioning.

The test dataset is composed of twelve sinusoidal signals,
with frequencies set to 0.1, 1, 10, 50, 100, 150, 200, 250,
300, 400, 450, and 500 Hz. The multisine dataset has been
created so that the hysteretic behavior of the stage is
adequately captured, when applied in the band required
for the application.

2.2 Deep Learning Architectures

DL has gained great attention from the industry and
research community recently due to advances in computer
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vision and, most recently, natural language processing
(Goodfellow et al., 2016). Nevertheless, recent studies have
employed such techniques to perform system identification
(Ljung et al., 2020; Soares et al., 2020; Wu and Jahanshahi,
2019b). However, there are still few studies that compare
DNN models for this task (Ljung et al., 2020). Therefore,
this work compares three distinct DL architectures, FFNN,
LSTM, and CNN.

Feedforward Neural Network FFNNs are the quintessen-
tial deep learning models, also known as multilayer per-
ceptrons (Goodfellow et al., 2016). The term feedforward
derives from the information flow of such networks, going
from the input x to the intermediate layers, and finally
to the output y. A network with l layers, therefore, maps
the input x to the output y through a cascaded function
y = f(x) = f (l)(. . . f (2)(f (1)(x)) . . . ). Therefore, FFNNs
can be considered as NARX models (Ljung et al., 2020).
Moreover, such an architecture has showed universal ap-
proximation capability (Hornik, 1991).

Long Short Term Memory LSTMs are gated RNNs
(Hochreiter and Schmidhuber, 1997; Wang, 2017). Re-
current architectures are specialized in processing a se-
quence of input values x(1), . . . ,x(n), which can scale to
much longer sequences than non-sequence neural networks
(Goodfellow et al., 2016). Nevertheless, such models also
present universal approximation capabilities (Schäfer and
Zimmermann, 2006). Finally, the gate structure enables
the dynamic control of the time scale to be used for inte-
gration during the prediction step. As such, LSTMs can
be considered as a type of nonlinear state-space (NLSS)
model (Ljung et al., 2020).

Convolutional Neural Network CNNs are a specialized
type of ANN that employs the convolution operation (Le-
Cun et al., 1989). That is, in at least one of the network lay-
ers, the convolution operation is performed instead of the
usual matrix multiplication. It is mostly used to process
data with grid-like topology, like images and time series
(Goodfellow et al., 2016). Moreover, the universal approx-
imation capability of CNNs has also been proven (Zhou,
2020). Nevertheless, recent research has detailed equiva-
lences between convolutional networks and system identi-
fication models, such as Volterra series and block-oriented
models (Wiener, Hammerstein, and Wiener-Hammerstein)
(Andersson et al., 2019).

2.3 Bayesian Optimization for Hyperparameters Tuning

Hyperparameter tuning is an important task when devel-
oping machine learning models. The careful adjustment
of such hyperparameters has a huge impact on the final
predictive performance. However, the manual tuning in-
volves a trial and error approach. Therefore, automatic
approaches have been mostly used, such as grid and ran-
dom search. Most recently, researchers have shown that
Bayesian optimization can outperform other search ap-
proaches for this task (Snoek et al., 2012).

The focus of Bayesian optimization is similar to other
optimization approaches, which is to find a set of pa-
rameters in H ∈ IRD that minimizes (or maximizes)
a function g(h). However, such an algorithm constructs

a probabilistic model for g(h) and then exploits it to
suggest the next position in H to evaluate the function.
The probabilistic model is built using Gaussian processes,
resulting in slightly more computation to perform each
search, but enabling the use of less iterations to find an
optimal solution. Therefore, this algorithm is suitable for
expensive functions, such as hyperparameter tuning. The
hyperparameters to be optimized in FFNN, LSTM, and
CNN architectures are present in Table 1.

3. EXPERIMENTS AND RESULTS

This section describes all the experiments and discusses
the results. Section 3.1 introduces the experimental proce-
dure; Section 3.2 exposes the hyperparameter optimization
results; and Section 3.3 compares the three DL architec-
tures. Finally, all experiments and analyzes were done
using Python programming language.

3.1 Experimental Procedure

The experimental procedure is performed according to the
following steps.

Data Handling During optimization and training, the
development set is composed of more than 70,000 samples
with multiple simultaneous frequencies. Such a set is
randomly split for holdout validation. While the training
step uses 90% of the data, the validation step uses only
10%.

Finally, the test set evaluates the optimized models. There
are a total of 12 sets with different frequencies (0.1Hz, 1Hz,
10Hz, 50Hz, 100Hz, 150Hz, 200Hz, 250Hz, 300Hz, 400Hz,
450Hz, and 500Hz). Both the inputs (x) and outputs
(y) are scaled between the range [−1, 1], by dividing the
outputs and inputs by the maximum displacement (20µm)
and voltage (100V ), respectively.

Deep Learning Models All deep learning models are
given the regression matrix formed by input x(t) and the
output y(t). The model order was set as 10 for both input
and output, same value used in (Soares et al., 2020), ob-
tained by trial and error. Therefore, FFNN receives a total
of 20 inputs, while LSTM and CNN receive 10 time steps of
2 features. Table 1 details the adjustable hyperparameters
for FFNN, LSTM, and CNN, being kept blank in Table
1 all hyperparameters not applied to the corresponding
architeture. In both LSTM and CNN architectures, the
specialized layers are used as the first ones, while the num-
ber of fully connected layers is the value that complete the
maximum number of layers (’Total Layers’). Also, a global
max pooling operation is added between the convolution
and the fully connected layers. All DNN architectures use
the rectified linear unit (ReLU) activation function (Nair
and Hinton, 2010), 100 training epochs with a batch size
of 128 samples, and the Adam optimizer (Kingma and
Ba, 2014). Finally, the loss function is the mean squared
error (MSE) for the prediction ŷ of the validation signal
y, computed as follows for the n total samples.

MSE =

∑n
i=1 (yi − ŷi)2

n
(2)
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Table 1. Hyperparameters for the FFNN,
LSTM, and CNN.

Hyperparameters
Architecture

FFNN LSTM CNN

A
d
ju
st
a
b
le

Total Layers 3 – 5 3 – 5 3 – 5

Neurons per Layer 25 – 100 25 – 100 25 – 100

Learning Rate (10−4) 1 – 10 1 – 10 1 – 10

LSTM Layers 1 – 2

CNN Layers 1 – 2

Kernel Size 3 – 5

Support Vector Machine This experiment also employs a
support vector machine (SVM) (Boser et al., 1992; Cortes
and Vapnik, 1995) for comparison purposes. Hyperparam-
eter tuning is also performed by optimizing the kernel func-
tion (linear, polynomial, RBF, or sigmoid), the regulariza-
tion parameter (0.1 ≤ C ≤ 100), the polynomial order
([2, . . . , 6]), and the kernel coefficient (1e−4 ≤ σ ≤ 10).

Optimization The Bayesian optimization algorithm ad-
justs the hyperparameters of each architecture for 100
iterations and α = 1e−3, being α the inverse of the reg-
ularization parameter. The objective function is the MSE
computed for the validation dataset.

Evaluation Metrics This experiment uses two evaluation
metrics to analyze the results, the coefficient of determina-
tion (R2) and root mean square error (RMSE). The former
indicates how accurate the model is by the proximity of the
unity value, while RMSE measures the prediction error
amplitude, being the best predictions those with RMSE
close to zero. Both metrics are computed as follows

R2 = 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − y)2

(3)

RMSE =

√∑n
i=1 (yi − ŷi)2

n
(4)

3.2 Optimization Results

All models achieved similar optimization results, with
RMSE values close to 0.07µm. The final FFNN model is
composed of 4 layers with 100 neurons each, which has
been achieved in approximately 10 iterations. For LSTM
and CNN only 3 total layers with 2 initial specialized layers
are used, with the optimal models achieved in approx-
imately 70 and 55 iterations, respectively. Additionally,
the optimal CNN has a kernel size of 5. LSTM presents
the lowest number of configured neurons per layer (66),
followed by CNN (83). It is important to notice, how-
ever, that LSTM presents the highest number of trainable
parameters (58k) given the more complex architecture of
the LSTM layer. Such a model is followed by CNN (42k)
and FFNN (33k). LSTM also demands higher computa-
tion during training (860s) than the two other models
(75s), but demands similar computation during predic-
tion (4ms/step). Additionally, the total optimization times
for the FFNN, LSTM, and CNN were approximately 6k,
72k, and 12k seconds on a virtual machine with Intel(R)
Xeon(R) E-2690 central processing unit (CPU), 120 GB
random access memory (RAM), and CENT-OS Linux 7
operating system, respectively.

It is interesting to notice how the best DNN models are
not composed of the maximum number of neurons and

layers. Of course, this is closely related to the available
data and fixed hyperparameters. Nevertheless, such results
show that the characterization of the piezoelectric micro-
manipulator does not necessarily need a high number of
layer, but rather a good evaluation and heuristic search
method. Moreover, the fast optimization of the FFNN,
in contrast to LSTM and CNN, indicates how simpler
architectures are more easily optimized.

3.3 Comparison of Deep Learning Architectures

Figure 1 plots the outputs of the three DL architectures in
the 12 tested frequencies. The Figure 1 analysis reveals
that for lower frequencies (0.1Hz and 1Hz) all mod-
els show difficulty in characterizing the hysteresis. Most
specifically, the CNN displays an instability for the lower
voltages (0.1 − 10Hz). However, the models tend to cor-
rectly follow the frequency-dependent hysteresis for higher
frequencies. Most noticeably, signals with 250Hz and
400Hz present nonlinear characteristics that are harder
to predict by all models.

Table 2 details the R2 and RMSE scores of the tested
models for the 12 frequencies, where R2 values from
previous literature are also shown, in the ”Ref” column
(Soares et al., 2020) and suggests that: i) LSTM is the
best model when considering both metrics for achieving
higher R2 and lower RMSE, in terms of average; ii) despite
the best score for each frequency be distributed among all
DL architectures, the CNN presents best R2 and RMSE
scores for most frequencies, but worst results for the lowest
and highest ones; iii) FFNN yield the same R2 value
than LSTM and is considered the second best architecture
even presenting a higher RMSE result when compared
with CNN, since FFNN has a more constant performance
than CNN, which is denoted by the standard deviation
of 0.27 and 0.51, respectively; and finally, iv) SVM is not
capable of achieving similar results to any of the DNN
architectures, presenting the lowest R2 and highest RMSE
scores.

Table 2. The R2 and RMSE values for the
compared models at each test frequency. Best

results are marked in bold.

Freq. R2 RMSE

(Hz) Ref FFNN LSTM CNN SVM FFNN LSTM CNN SVM

0.1 0.987 0.988 0.987 0.984 0.929 1.181 1.213 1.389 2.888

1 0.989 0.989 0.989 0.985 0.939 1.098 1.085 1.280 2.597

10 0.991 0.992 0.991 0.991 0.947 0.907 0.999 1.002 2.356

50 0.998 0.996 0.997 0.999 0.956 0.650 0.563 0.314 2.121

100 0.998 0.996 0.998 0.999 0.961 0.618 0.479 0.274 1.992

150 0.997 0.997 0.998 0.999 0.966 0.580 0.473 0.358 1.884

200 0.995 0.995 0.997 0.997 0.971 0.725 0.587 0.581 1.793

250 0.986 0.988 0.983 0.979 0.967 1.191 1.400 1.577 1.953

300 0.996 0.994 0.998 0.998 0.972 0.863 0.556 0.500 1.886

400 0.988 0.990 0.989 0.995 0.897 1.319 1.341 0.953 4.138

450 0.997 0.995 0.997 0.995 0.855 0.980 0.825 0.990 5.326

500 0.986 0.992 0.994 0.985 0.756 1.446 1.216 1.901 7.765

Mean 0.992 0.993 0.993 0.992 0.926 0.963 0.895 0.927 3.058

Results for model comparison indicate that LSTM and
FFNN are the best DNN architectures for the given task.
Interestingly, the previous work also employed FFNN
(Soares et al., 2020), but applied grid search for hyper-
parameter selection. Therefore, the Bayesian optimization
used in the present work performs as well as the grid
search, according to the R2 metric disposed in Table 2.

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 780 DOI: 10.20906/sbai.v1i1.2658



−100 −50 0 50 100

−15

−10

−5

0

5

10

15

Ou
tp

ut
 (μ

m
)

0.1Hz
Real
FFNN
LSTM
CNN

−100 −50 0 50 100
−20

−15

−10

−5

0

5

10

15
1Hz

−100 −50 0 50 100

−15

−10

−5

0

5

10

15
10Hz

−100 −50 0 50 100

−15

−10

−5

0

5

10

15
50Hz

−100 −50 0 50 100

−15

−10

−5

0

5

10

15

Ou
tp

ut
 (μ

m
)

100Hz

−100 −50 0 50 100

−15

−10

−5

0

5

10

15
150Hz

−100 −50 0 50 100

−15

−10

−5

0

5

10

15
200Hz

−100 −50 0 50 100

−15

−10

−5

0

5

10

15
250Hz

−100 −50 0 50 100
Input (V)

−15

−10

−5

0

5

10

15

Ou
tp

ut
 (μ

m
)

300Hz

−100 −50 0 50 100
Input (V)

−20

−15

−10

−5

0

5

10

15

20

400Hz

−100 −50 0 50 100
Input (V)

−20

−10

0

10

20

450Hz

−100 −50 0 50 100
Input (V)

−20

−10

0

10

20

500Hz

Figure 1. Position prediction for the three tested deep neural network (DNN) architectures.

This result sets the Bayesian search algorithm as a hy-
perparameter tuning option. Finally, LSTM achieves the
best overall results, which might be mostly related to
the recurrent architecture, enabling a better handling of
sequential data.

4. CONCLUSIONS

This work employed three different DNN architectures,
FFNN, LSTM, and CNN, for system identification of a
hysteretic piezoelectric positioner. Additionally, Bayesian
optimization performs hyperparameter tuning to build
more accurate models. The models are also compared to
SVM and a FFNN from recent literature. Results show
that all the DL models outperform the SVM model. More-
over, LSTM presents the best overall results, followed by
FFNN, in terms of R2 and RMSE. The CNN architecture
was the most variable in terms of R2 and RMSE metrics,
presenting instabilities for the lower voltages (0.1−10Hz),
following by the best performances in (50 − 200, 300 −
400Hz) and a performance drop at higher frequencies.

As a conclusion, DL techniques show great potential as
system identification techniques. However, there is still

room for improvement. Solutions for the selection of lagged
regressors can be included. Future works shall also focus
on the architectures by i) combining the methods used to
build stronger ensemble models through stacking ensemble
techniques, for example; or ii) the use of more complex
models due to the noisy character of the signal. Other
interesting paths to follow refer to the methodology, such
as evaluating the performance iii) not only at different
frequencies, but varying the training/test dataset propor-
tion; and iv) with computational cost, in a multiobjective
approach.
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