
A Tool for Modeling and Behavioral Tests

Generation of Embedded Software ?

Thiago C. T. e Nascimento ∗ Lucas C. T. e Nascimento ∗∗

Rogerio A. de Carvalho ∗∗∗

∗ Instituto Federal Fluminense, RJ, (e-mail:
thiagocampostn@gmail.com)

∗∗ Instituto Federal Fluminense, RJ, (e-mail:
lucascampostn@gmail.com)

∗∗∗ Instituto Federal Fluminense, RJ, (e-mail: ratem@iff.edu.br)

Abstract: This paper summarizes the functionalities of a module for the Modelio UML Case
Tool named WOOM Flow. Its purpose is to extend the tool by allowing greater efficiency in the
development of embedded systems, both in the design and the testing phases. This module
interacts directly with Modelio’s Finite State Machine (FSM) diagramming functionality,
allowing the resulting diagram to be exported to the SCXML format. The model can then
be used to produce a table that permits the assignment of responsibilities. This table gathers
information that specifies the internal interactions of the system to be developed, which was
previously specified through UML modelling of the behaviour expected by the system at a higher
level. Technologies that focus on the structure, for example, Class-Responsibility-Collaboration
Cards, suffer the possibility of losing information related to the system requirements during the
transference to the coding phase. It happens because it directly associates a responsibility from
a use case to a class. The advantage of using WOOM is to reduce as much as possible the loss
of information by prioritizing the behaviour of the system. With the generated FSM and the
assignments mapped by the table, it is possible to produce the skeleton of the embedded system,
as well as the methods that will test it.

Keywords: finite state machines, embedded systems, automatic testing, software tool, system
design

1. INTRODUCTION

At the end of the 1960s, with the increasing complexity
of problems to be solved by computers, together with
the increased demand for software, it was noticed that
the techniques and methods for developing and expanding
software were outdated and inefficient; thus causing the so-
called“Software Crisis”, which led to an increase in project
costs, low-quality codes and an increase in bugs due to
the great difficulty of maintaining the codes, according to
Dijkstra (1972).

As noted by Hsu (2009), at the end of the 1990s the Object-
Oriented Programming (OOP) paradigm, which emerged
in the previous decade, became popular through proposals
to solve the problems highlighted by the crisis, increasing
efficiency, facilitating reuse, maintenance, extension, test-
ing and documentation of codes. Snyder (1986) explains
that OOP uses the concept of storing data in “objects”
and no external agent can modify the object directly, thus
requiring methods that interact with the object that causes
its self-modification. This methodology creates decoupled
and more descriptive codes, which are clearer and more
specific.

? Fomented by the Programa Institucional de Bolsas de Iniciação em
Desenvolvimento Tecnológico e Inovação from Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico.

Then, Test Driven Development (TDD) became popular
in the early 2000s. According to Beck (2003); Janzen and
Saiedian (2005), TDD is a software development process
that follows the verification and validation procedures in
a short cycle that ensures its expected functioning by
encouraging the creation of multiple test cases according to
the development progress, reducing duplication. According
to Smart (2014); Solis and Wang (2011), Behaviour Driven
Development (BDD) was developed by Dan North as
a response to TDD. Comparatively, BDD promotes the
development of tests that are structured similar to a
written specification of the functionality, making their
maintenance easier.

de Carvalho et al. (2013) explains the benefits of applying
BDD in Information Systems projects by indicating that
with the usage of BDD, implementation risks and effort
are reduced. The WOOM Flow module makes usage of
BDD, requiring the modelling of information systems in
general, and embedded systems specifically, focusing on
their behaviour. This approach ensures that a minimal (or
potentially zero) amount of information related to system
requirements is lost during the process since it keeps
its structural aspects intact. Software modelling in UML
using a CASE Tool, together with the rapid presentation
of the relevant information of the software’s structure
and behaviour, has the potential to increase modelling

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 795 DOI: 10.20906/sbai.v1i1.2661

productivity and testing, given that the module generates
boilerplate code for testing each component.

2. BACKGROUND

There are main concepts and tools on which WOOM Flow
depends heavily as its foundation due to their numerous
advantages to the area of development of information
and embedded systems. These benefits contribute to the
formation of a clearer, more reliable and cohesive system
that follows a modular design that aids collaboration and
testability.

2.1 Unified Modeling Language

Established on OOP methods, Unified Modeling Language
(UML), which emerged in the second half of the 1990s,
is employed in the Software Engineering area to describe
systems, according with Li and Chen (2009). It makes
use of diagrams to represent structural and behavioural
information about projects. With the application of UML,
it is possible to visualize and analyze a design and find
solutions in the early stages of development.

UML was designed as a way to make communication
efficient around software production. In order to do this,
it has several modalities in the generation of documents
that enrich the development process, such as structural
(classes, objects, components, implantation, packages and
structure) and behavioural (use case, state machine, activ-
ities and interaction) diagrams.

2.2 Modelio

Modelio is a free software used to generate diagrams in the
UML standard. Its specific application in this project is the
construction of Finite State Machines with its modelling
tools. Since Modelio is an open-source project with an
active community and a wide range of documents, the
decision to develop a module for the program would be
more beneficial than alternatively creating a new, complete
tool, which should reimplement multiple features that are
already offered by Modelio. That way, duplication of effort
is avoided by using a program that is already mature and
maintained by an established community.

Given the scope of this project, the most useful resource
is the tool for creating a ”State Machine diagram”. The
software already comes with the ability to design ready-
to-use state machines using a simple to use drag-and-drop
interface. It’s possible within the diagramming system
to create different states, transitions and their respective
conditions, which will then be parsed by the WOOM Flow.

Modelio only supports the distribution of the designed
diagrams via image exporting. One of the purposes of the
developed extension is to interact with the integrated FSM
diagram models in order to export the diagrams into the
SCXML standard. Therefore, the state machine can be
stored into a file format that can be shared and interpreted
by external tools, as well as being used to generate a
WARC Table in a more user-friendly manner.

2.3 Finite State Machine

Wang (2019) describes a Finite State Machine (FSM) as
a mathematical model of an abstract machine that stores
information in different stages of execution called ”states”.
Starting at the ”initial state” or ”start state”, it can change
from the current to next one through an operation called
”transition”. A transition can only occur if its condition has
been fulfilled and/or through external input. Generally,
the execution ends at a ”final state” or ”terminal state”,
where there are no additional transitions.

Usually, the representation of a FSM is made by circles
that characterize different states of a system, additionally
with arrows that denote transitions, and the conditions for
these transitions to occur, as stated by Stallmann (1999);
Pearce (2014). Starting at a specific state referred to as
the initial state (usually represented by a black circle), the
user can know the flow of the internal state of a system
through a simple graphical representation.

It is possible to express a Finite State Machine in UML no-
tation. Samek (2009) claims that the UML State Machine
is more advanced than traditional state machines, due
to its ability to divide similar behaviour between several
states, which avoids the ”explosion of complexity”. Wagner
et al. (2006) affirms this quality turns it into a powerful
tool for describing the behaviour of hardware and software,
as well as for testing them.

In order to make use of WOOM Flow, it is expected from
the user the definition of a system that will be developed
and the modelling of the different parts of the project
as a Finite State Machine. For demonstration purposes,
Figure 1 illustrates the operation of an FSM of a simplified
crop irrigation system. This system will also be used to
exemplify the tools offered by the module.

Figure 1. Example of a Finite State Machine created using
Modelio.

Figure 1 presents an FSM with five states (including the
initial and final states) and six transitions:

• Initial State: it’s the point of the beginning of
the FSM. It transitions to the Idle state with no
conditions;

• Idle: the system’s default state. It can transition to
Moisture Meter state with no condition, to Irrigator
state depending on a condition and to Final State
when the system is turned off;

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 796 DOI: 10.20906/sbai.v1i1.2661

• Moisture Meter: entering the state, it calls a func-
tion that accesses a soil moisture sensor and stores the
obtained information. When the operation finishes, it
returns to the Idle state;

• Irrigator: using the value of soil moisture, the
system transitions from Idle state to the Irrigator
state when the moisture is lower than a threshold.
When this happens, the system calls the ”Irrigate”
function that will activate the irrigation system. After
it ends, the FSM transition back to Idle state;

• Final State: the state in which the system finishes
working. The transition from Idle to Final State only
happens if the variable ”is turned off” is assigned to
false, which means the user shut the system down.

This example denotes how a user can, through the appli-
cation of diagramming, know all the internal states of the
operation of a given system and the requirements to per-
form changes to it. In this way, these benefits can also be
generally applied in software and hardware development
as documents that seek to be informative and a mean to
elaborate and improve the design of these systems during
the development phase.

3. SCXML

SCXML or State Chart XML is a markup language. An
XML extension, it is used to describe finite state machines
in a standardized form. It was formally specified and
launched by the W3C (or World Wide Web Consortium)
in 2015 according to Rosenthal et al. (2015).

3.1 Usage

SCXML is used in this project as an intermediate form
to store information about the overall structure of the
system. Modelio does not offer the use of SCXML in a
standardized way in its schematics. Instead, it makes use
of a State Machine Diagram. Thus, there was an incentive
to develop an extension that exports this diagram to a
local file of extension .scxml.

This file can then be used subsequently as a basis for
interaction between other systems. In this case, the file is
read so that it can be integrated and managed in a WARC
Table.

3.2 Example

Listing 1 below demonstrates an example of an exported
code corresponding to the Finite State Machine in Fig-
ure 1.

Listing 1. Example of a generated .scxml file
<?xml ver s i on=”1 .0 ” encoding=”UTF−8”?>
<scxml xmlns=”h t t p : //www. w3 . org /2005/07/

scxml ” ver s i on=”1 .0 ” name=”State
Machine1 State Machine diagram ”>
<s t a t e id=” I d l e ”>

<t r a n s i t i o n event=” I d l e to
I r r i g a t o r ” cond=” s o i l m o i s t u r e
< th r e sho ld ” t a r g e t=”

I r r i g a t o r ” />

<t r a n s i t i o n event=” I d l e to
Moisture ” cond=”” t a r g e t=”
Moisture Meter ” />

<t r a n s i t i o n event=” I d l e to Fina l ”
cond=”i s tu rned on == False ”

t a r g e t=”Fina l State ” />
</ s t a t e>
< i n i t i a l id=” I n i t i a l State ”>

<t r a n s i t i o n event=”Star t to I d l e ”
cond=”” t a r g e t=” I d l e ” />

</ i n i t i a l>
< f i n a l id=”Fina l State ”>
</ f i n a l>
<s t a t e id=” I r r i g a t o r ”>

<onentry>
<s c r i p t> i r r i g a t e ()</ s c r i p t>

</ onentry>
<t r a n s i t i o n event=” I r r i g a t o r to

I d l e ” cond=”” t a r g e t=” I d l e ” />
</ s t a t e>
<s t a t e id=”Moisture Meter ”>

<onentry>
<s c r i p t>ge tSo i lMo i s tu r e ()</

s c r i p t>
</ onentry>
<t r a n s i t i o n event=”Moisture to

I d l e ” cond=”” t a r g e t=” I d l e ” />
</ s t a t e>

</ scxml>

To describe the FSM, the following tags defined by
SCXML standardization are used:

• state: defines the different states of an FSM. The id
attribute states the title for the event;

• initial: indicates the first state of the system;
• final: indicates the last state of the system, where

execution would end;
• transition: defines the transitions between different

states of a system and composes the action that this
system must apply before reaching the next state;

• onentry: composes the reaction that the system must
apply when arriving at the new state.

4. MODULE

The module was developed for Modelio using its API and
libraries such as the Standard Widget Toolkit (SWT), used
to create a graphical interface that directly interacts with
Modelio and its existing tools, expanding the software
functionalities.

4.1 Background

de Carvalho and de Campos (2006) employs WOOM in
their ERP5 project and they explain that despite having
been created for generic applications, the method takes
into consideration that the software platform supports an
object-oriented language and a state-based workflow ma-
chine, which is compatible with that environment. Because
of these considerations, the validity of the application of
the method in the software here presented is based on the
genericity of the method that allows compatibility with a
UML State Machine.

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 797 DOI: 10.20906/sbai.v1i1.2661

WOOM Workflow, Object-Oriented Method (WOOM)
is a method of modelling information systems in a struc-
tural format. It is described by de Carvalho and de Cam-
pos (2006) as a set of steps for modelling the structure
and behaviour of an information system, using established
UML and Contracts concepts. These steps include: identify
process documents, identify classes, write use case, draw
the state diagram and fill the WARC table.

WARC Table WARC Table (Workflow-Action-Responsible-
Collaborators) is an artifact defined by de Carvalho (2005)
that associates actions and reactions expected by the sys-
tem.

According to de Carvalho and de Campos (2006), the
WARC Table is used to associate structure to behaviour.
Due to its prioritization on the process flow, there is a
reduction in the loss of information during the system
modelling phase, in addition to assisting in the execution
and control of changes. The data displayed on the table
allows the developer to simultaneously generate both the
structure of the system to be developed (such as an
embedded system) and the testing procedures of this
system.

5. OPERATION

The program automates parts of WOOM and considers
that certain steps have already been carried out before-
hand. The changes take place as follows: it is assumed
that both the identification of the process documents and
the identification of classes have already occurred. It is
also understood that the state diagram has already been
drawn on the Modelio interface and, finally, it enables the
contracts to be written on the user’s account.

Based on these considerations, the detection of the classes
and the design of the finite state machine must be built be-
fore the initialization of the program. With the completion
of these steps, the module can be utilized. In it, classes can
be inserted from the detections made previously; use cases
are inferred as a consequence of the diagram and therefore
do not need to be redefined. So, the user is left to fill the
WARC table independently.

5.1 Usage

To use the module, it is necessary to open a Finite State
Machine previously developed in Modelio. By using the
design of the diagram, with its states and transitions
constructed through the drag and click graphical interface,
the module can be correctly executed. The project will
appear similar to the one seen in Figure 1.

The program permits the user to export the created
diagram in a SCXML file. The information from this file
can be used by the software, by presenting it in the form
of tables that can be edited by the user.

Several fields will be automatically filled in the tables, with
information from the selected FSM. They can be adjusted
in any way the user wants to reflect the architecture of the
system being developed. Finally, all information can be
stored in a file to be shared and uploaded by other users
as a process document and tests can be generated.

5.2 Tabs

The module is divided into several tabs that allow the
user to visualize and modify the information of the system
that’s being developed in a modularized format. These
guides are used in the following workflow:

Home Shown in Figure 2, this tab is the extension’s
home screen, offering the user five buttons with the inten-
tion of saving and loading information.

Figure 2. A screenshot of the program on the ”Home” tab.

Under the ”Finite State Machine” section:

• Import: opens a dialog for the user to select a
”SCXML” state machine file. This data will then be
used by the Use Cases and WARC tab.

Under the ”Classes and WARC” section:

• Export: exports the data from the tabs ”Classes” and
”WARC” to a ”json” file format, triggering a window
dialogue where the user can choose the saving location
and the file’s name;

• Import: import the WOOM data previously stored on
a ”json” file format and populate the tables ”Classes”
and ”WARC” in the extension with it.

Under the ”Tests” section:

• Generate feature: uses the contents from the use
cases in the WARC tab to generate a .feature file
compatible with BDD development;

• Generate tests: generates a Python file with empty
test cases for each of the use cases defined in the
WARC tab. This serves the purpose of a starting
point for testing the components being currently
modelled;

Classes Displayed in Figure 3, it is an initially empty
one-column table. The user can fill it by adding differ-
ent classes. The user derives this information from the
”Identify process documents” step of the WOOM process,
intending to create classes that match the requirements
of the system currently being developed. The contents of

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 798 DOI: 10.20906/sbai.v1i1.2661

this tab will be used in the WARC tab and can be later
exported into a .json file for future reuse.

Figure 3. A screenshot of the program on the ”Classes”
tab.

Use Cases Illustrated in Figure 4, it is a two-column
table in which the first includes all the actions specified
in the diagram, and the following with the reactions
associated with each one. It is automatically populated by
the contents of the SCXML file by reading the states, their
transitions, and internal attributes. This tab’s purpose is
to be an alternative method of visualizing the information
provided by the FSM. This tab’s function is purely for an
alternative way of visualizing the information given from
the FSM.

Figure 4. A screenshot of the program on the ”Use Case”
tab.

WARC Shown in Figure 5, it is a table with three
columns: the first is labelled ”Use Cases”, populated with
all actions and reactions on the ”Use Case” tab; the second
”Responsible” where the user can assign which of the
classes specified in the ”Classes” tab is responsible for the
event (action or reaction), and the third ”Collaborators”,
in which multiple classes can be designated that contribute
to the operation of a given action or reaction of the system.

Figure 5. A screenshot of the program on the ”WARC”tab.

6. TESTS

Given that tests are useful aggregation to the system
development, they can be used to drive the effective
development of a software, since the developer has the
overview of its requirements, behaviours and expected
responses.

This philosophy is compatible with the application of Be-
havior Driven Development. The information presented by
the extension can be used by a developer in order to iden-
tify the behaviours that should be tested, just as the classes
responsible by them and all their collaborators. This way,
testing can be done at the same time the project is being
built, which decreases the time demanded to identify and
produce tests, while also serving as documentation for the
expected behaviours.

6.1 Code Example

Listing 2 presents an example of a feature file for the Idle
to Irrigator, onEntry Irrigator and onEntry Moisture use
cases, using the Gherkin Syntax. This is automatically
generated by using the information in the WARC Table,
and it’s expected that the user customizes them to fit the
system.

Each use case receives a Scenario block in the feature
file. In this example, the scenario Idle to Irrigator has
as its responsible a class called ”Microcontroller” and has
only one collaborator named ”Irrigator”. In the ”Given”
segment, the data that will be used is identified and stored
in the test case; in the ”When” section, the event is run
and the results of that action are stored; and finally, in
the ”Then” part the result is verified against the expected
result. All other scenario blocks follows the same principle.

Listing 2. Example of a feature file for event testing
Feature : Test system behaviour

S c e n a r i o : I d l e to I r r i g a t o r
Given the r e s p o n s i b l e ”

M i c r o c o n t r o l l e r ”
When I r r i g a t o r i s run
Then the expected r e s u l t i s : ”

True ”

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 799 DOI: 10.20906/sbai.v1i1.2661

S c e n a r i o : o n E nt r y I r r i g a to r
Given the r e s p o n s i b l e ”

M i c r o c o n t r o l l e r ”
And the c o l l a b o r a t o r ”S p r i n k l e r ”
When o n En t r y I r r i g a to r i s run
Then the expected r e s u l t i s : ”

True ”
S c e n a r i o : onEntry Moisture Meter

Given the r e s p o n s i b l e ”
M i c r o c o n t r o l l e r ”

And the c o l l a b o r a t o r ”Sensor ”
When onEntry Moisture Meter i s

run
Then the expected r e s u l t i s : ”

True ”

7. CONCLUSION

The extension conceived for Modelio assembles UML mod-
eling artifacts with the WARC table, efficiently support-
ing the development of embedded systems by explicitly
presenting the information necessary for its elaboration.
Another essential aspect for which this tool was conceived
is in the development of tests cases for the project, since
it is possible to readily visualize what are the current
action and reaction events, which of them will be carried
out by the system in different stages, which classes are
responsible for every one of these events, and who are their
collaborator classes.

Easy access to information, which is presented in an
accessible format, is a remarkably important factor in
the efficient elaboration of an embedded system. The
application of agile methods such as BDD is encouraged
in the development of tests that are used in every stage of
the system so that it undergoes verification and validation.

Currently, the conversion of the elements from the dia-
grams to SCXML files only considers the information that
is relevant for building a WARC Table. In the future, this
conversion system can be made more versatile and embrace
more complex behaviours such as state nesting. For this,
the future task would be to implement the remaining of
the SCXML standard as established by the W3C, and that
can be mapped to UML elements. Another possible task
would be better integration of SCXML as a file type that
can produce a visual diagram in Modelio, instead of being
used exclusively to generate the WARC Table. This would
provide Modelio with an extensive SCXML capability for
handling state machines.

ACKNOWLEDGEMENT

Thanks to the Instituto Federal Fluminense Campus Cam-
pos Centro and to the Polo de Inovação Campos dos
Goytacazes.

REFERENCES

Beck, K. (2003). Test-Driven Development: By
Example. Kent Beck signature book. Addison-
Wesley. URL https://books.google.com.br/books?
id=gFgnde_vwMAC.

de Carvalho, R.A. (2005). Device and method for informa-
tion systems modeling. Brazilian Patent PI0501998-2.

de Carvalho, R.A. and de Campos, R. (2006). A devel-
opment process proposal for the erp5 system. In 2006
IEEE International Conference on Systems, Man and
Cybernetics, volume 6, 4703–4708. IEEE. doi:10.1109/
ICSMC.2006.385047.

de Carvalho, R.A., e Silva, F.L.d.C., Manhães, R.S., and
de Oliveira, G.L. (2013). Implementing behavior driven
development in an open source erp. In Enterprise
Information Systems of the Future, 242–249. Springer.
doi:10.1007/978-3-642-36611-6 22.

Dijkstra, E.W. (1972). The humble programmer. Com-
mun. ACM, 15(10), 859–866. doi:10.1145/355604.
361591.

Hsu, H. (2009). Connections between the software crisis
and object-oriented programming.

Janzen, D. and Saiedian, H. (2005). Test-driven develop-
ment concepts, taxonomy, and future direction. Com-
puter, 38(9), 43–50. doi:10.1109/MC.2005.314.

Li, Q. and Chen, Y.L. (2009). Unified modeling lan-
guage. In Modeling and Analysis of Enterprise and
Information Systems, 209–224. Springer. doi:10.1007/
978-3-540-89556-5 11.

Pearce, J. (2014). Finite State Machines. URL
http://www.cs.sjsu.edu/faculty/pearce/modules/
lectures/uml/fsm.htm.

Rosenthal, N., Hosn, R., Bodell, M., Roxendal, J., Hel-
bing, M., Auburn, R., Barnett, J., Carter, J., Bur-
nett, D., Lager, T., Akolkar, R., Raman, T., Mc-
Glashan, S., and Reifenrath, K. (2015). State
chart XML (SCXML): State machine notation for
control abstraction. W3C recommendation, W3C.
Https://www.w3.org/TR/2015/REC-scxml-20150901/.

Samek, M. (2009). Chapter 2 - a crash course in
uml state machines. In M. Samek (ed.), Practical
UML Statecharts in C/C++ (Second Edition), 55–
99. Newnes, Burlington, second edition edition.
doi:10.1016/B978-0-7506-8706-5.00002-7. URL
https://www.sciencedirect.com/science/article/
pii/B9780750687065000027.

Smart, J. (2014). BDD in Action: Behavior-Driven De-
velopment for the whole software lifecycle. Manning
Publications.

Snyder, A. (1986). Encapsulation and inheritance in
object-oriented programming languages. SIGPLAN
Not., 21(11), 38–45. doi:10.1145/960112.28702.

Solis, C. and Wang, X. (2011). A study of the charac-
teristics of behaviour driven development. In 2011 37th
EUROMICRO Conference on Software Engineering and
Advanced Applications, 383–387. doi:10.1109/SEAA.
2011.76.

Stallmann, M. (1999). Finite-State Machines. URL https:
//people.engr.ncsu.edu/efg/210/s99/Notes/fsm/.

Wagner, F., Schmuki, R., Wagner, T., and Wolsten-
holme, P. (2006). Modeling Software with Finite
State Machines: A Practical Approach. doi:10.1201/
9781420013641.

Wang, J. (2019). Formal Methods in Computer Science.
CRC Press. doi:10.1201/9780429184185. URL https://
books.google.com.br/books?id=OUyeDwAAQBAJ.

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 800 DOI: 10.20906/sbai.v1i1.2661

