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∗∗ Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Paulo, Brasil.
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Abstract: Somatotype is a metric that concerns human body shape and composition. It is
important in many applications, especially for the fields of physical education and health.
However, obtaining the somatotype is very time-consuming, it requires experts to take several
measurements manually on the individual’s body and demanding several anthropometric
devices.The proposal of this work is to obtain the somatotype using their body images in different
positions, based on image processing and machine learning techniques, which is a less expensive
alternative to obtain this information. Thus, a dataset of 46 bodybuilders was obtained along
the years from 2014 to 2016 in the state of Esṕırito Santo. The results obtained show that
the type of bodybuilders somatotype can be estimated reasonably based only on their images,
obtaining the best classification rate equal to 92%.
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1. INTRODUCTION

In the last centuries, various researchers have tried to
understand the human body and the relationships exist-
ing in the physical manifestations of body proportions.
However, research of this nature only began to be made
with scientific rigor in the early 20th century (Carter and
Heath, 1990), when Sheldon et al. (1940) coined the term
“somatotype” after performed various measurements from
photographs of different individuals. Years later, Heath
and Carter (1967) proposed a method in which measure-
ments were made directly on the subject’s body and they
used mathematical expressions to infer the somatotype.

Over the years, the classification of the individual by
his somatotype has become a fundamental tool for the
evaluation of the life quality and athletic performance
(Thorland et al., 1980; Bolonchuk et al., 2000; Massidda
et al., 2013; Gutnik et al., 2015).

Nowadays, the technique proposed by Heath and Carter
(1967) is still used in the same way. However, this method
has disadvantages, such as the fact that the method is
invasive, the time required to obtain the measurements,
the need for specific equipment, which are not so portable,
and the necessity of qualified professionals. Nevertheless,
the use of image processing with machine learning (Klafke,
2018; Santos, 2020) and the arrival of more affordable,
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higher-quality and cheaper photographic equipment, it is
possible to develop faster and less invasive methodologies.

The first work which proposed the automatic classification
of somatotype by digital images was (Gonçalves et al.,
2016). The authors manually collected measures from dig-
ital images and, subsequently, applied machine learning
techniques to estimate the somatotype from these mea-
surements. However, the manual collection of the measure-
ments keeps the same problem from the existing methods.

This work aims to perform the somatotype classification
by means of measurements obtained automatically from
images, using image processing techniques and machine
learning. For evaluating the proposed method, a dataset
composed by images of 46 bodybuilders will be used, and
the results will be compared with those obtained by the
method of Heath and Carter (1967).

The main contributions of this work are: proposing a pro-
tocol for acquisition of images to estimate somatotype; a
methodology for estimating somatotype components; and
the indication of the most relevant body measurements to
perform this task.

This work has the following structure. In Section 2 is pre-
sented the current procedures for calculating the somato-
type. In Section 3 the proposed methodology is discussed.
In Section 4 the results are shown. Finally, in Section 5
the conclusions and future paths are presented.
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2. SOMATOTYPE

Sheldon et al. (1940) were the first that coined the term
somatotype and defined that it is composed of three em-
bryonic tissues: ectoderm, mesoderm and endoderm. In
order to study and conceptualize the somatotype, they
used photographs of 4.000 naked students in front, profile,
and dorsal positions. Individuals were photographed with
the palmar region facing the thigh and their bodies in the
images were then divided into five regions for measure-
ments, comprising 16 measurements.

However, the technique proposed by Sheldon et al. (1940)
encountered a number of constraints, given the technology
of that period: the use of photographs and obtaining an-
thropometric measurements from them made the method
costly, requiring time and an adequate environment, and
the possibility of human mistakes (Fernandes Filho, 2003).

For this reason, Carter and Heath (1990) proposed a new
method, where ten measurements are obtained directly
from the body: stature (H), body mass (M), triceps skin-
fold (TR), supraspinale skinfold (SE), subscapular skin-
fold (SB), medial calf skinfold (PA), bi-epicondylar bone
diameter of humerus (DU), bi-epicondylar bone diameter
of femur (DF ), perimeter of flexed arm in maximum con-
traction (PB) and calf circumference (PP ).

To carry out the measurements, five devices are needed: a
scale (to measure body mass), a stadiometer with a mov-
ing head (equipment that measures height), an adipome-
ter/plicometer (for measuring skinfolds), a small caliper
(used to measure bone diameters) and a flexible metric
tape made of metal or fiberglass (which is used to measure
perimeters) (Fernandes Filho, 2003).

From these measurements, the components of endomor-
phism (Endo), mesomorphism (Meso) and ectomorphism
(Ecto) are estimated using Equations 1 to 3.

Endo = −0.7182 + 0.1451XC − 6.8x10−3XC2 + 1.4x10−6XC3 (1)

Meso = 0.858DU + 0.601DF + 0.188PcB + 0.161PcP - 0.131H + 4.5 (2)

Ecto =


0.1, if IP ≤ 38.25

0.463IP − 17.63, if 38.25 ≤ IP ≤ 40.75

0.732IP − 28.58, if IP ≥ 40.75

(3)

where Equations 4 to 7 are auxiliary expressions.

XC =
170.18

H
(TR + SB + SE) (4)

IP =
H

3
√
M

(5)

PcB = PB − TR (6)

PcP = PP − PA (7)

This way, the somatotype of an individual is represented
by the ordered triple with the values of the correspond-

ing Endo-Meso-Ecto measures. However, not all com-
binations of somatotype values are biologically possible,
for example, somatotypes 2-2-2 or 7-8-7 are impossible
(Carter, 2002). Generally, somatotypes are high in endo-
morphy and/or mesomorphy if, and only if, they are low
in ectomorphy (Carter, 2002). Components with values
from 0.5 to 2.5 are considered low, 3 to 5 are considered
moderate, 5.5 to 7 are high and above 7.5 are extreme
(Carter and Heath, 1990; Tóth et al., 2014).

The components should be rounded to multiples of 0.1
or 0.5 depending on the application (Carter, 2002). The
values are usually rounded to the nearest half unit, to
achieve simplicity of communication and summary of the
results (Carter, 2002). If any component resulting from
the equations is zero or negative, the value of 0.1 is
associated with that component, since by definition the
components must be positive, however, values smaller than
1 are extremely rare to be observed (Carter, 2002).

Beyond the errors inserted by the anthropometric devices,
there is also the possibility of human error in the applica-
tion of the method and, for this, it is necessary experts
during the measurement procedure. It is recommended
that the expert performs all measurements three times
and computes the average of such values (Carter, 2002).
This reduces the interference of human error, but makes
the application of the technique more repetitive and even
more time-consuming.

2.1 Somatochart

The most usual way to represent the somatotype is
through a two-dimensional space called somatochart (Carter
and Heath, 1990). The points of the somatochart are
determined by Equations 8 and 9.

X = Ecto− Endo (8)

Y = 2Meso− (Endo + Ecto) (9)

Note that the shift of the three-dimensional space from
the somatotype to the somatochart is associated with an
orthogonal linear projection (Figure 1).

Figure 1. Somatochart. Adapted from (Carter and Heath,
1990).

The origin of the axes of the somatochart locates the
individuals with somatotype with the three components of
the same value 4-4-4. The approximately circular region
around the axes of the somatochart represents the more
biologically common somatotypes to be observed.

A commonly used metric is the Somatotype Attitudinal
Distance (SAD), which is the Euclidean distance between
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two somatotypes A and B. This metric is commonly
used when an individual presents a given somatotype (A)
but wishes had another somatotype (B) through physical
exercises and planned diet. Equation 10 shows how to
obtain the SAD value between A and B (Carter, 2002).

SADA,B =
√

((EndoA − EndoB)2 + (MesoA −MesoB)2 + (EctoA − EctoB)2

(10)

2.2 Classes of Somatotypes

The somatochart can be divided into regions to group
individuals. The most commonly used division presents 4
classes (ecto, endo, meso and center), as shown in Figure
2a. Figures 2b and 2c show the somatochart divided into
7 and 13 regions, respectively.

Figure 2. Somatochart with four, seven e thirteen classes.

3. MATERIALS AND METHODS

Figure 3 presents a diagram of the methodology used in
this research. It will be discussed in the following sections.

3.1 Dataset

The data were collected with different resolutions, 960 ×
1280, 2448×3264, 2432×4320 and 4000×6000 pixels, with
the athletes positioned in front of a white background and
with artificial lighting. The cameras were positioned at the
same height. The images were captured from bodybuilders
in the regional championships of the International Federa-
tion of Bodybuilding (IFBB) during the years 2014 to 2016
in the State of Esṕırito Santo - Brazil.

Figure 3. Diagram with the proposed solution.

Figure 4. Example of images in frontal and lateral posi-
tions.

The images were recorded in JPG format, with two images
for each athlete, one at each position (Figure 4a and
4b). With these images all the necessary measures for the
proposed method are obtained.

For both images, it can be observed that the individual
should have legs and arms open, so that it is possible to
correctly segment the silhouette. It is also necessary to
wear tight bathing suits so that the real measures of the
body are not altered. Long hair should be tied to the back,
so that it does not hamper the measurements. A mark of
known size is also used to estimate the real size of the
measurements (rectangular element in the background).

The dataset is composed of images from 46 individuals (15
males and 31 females). The average age of individuals is
29.3± 6.9 years.

3.2 Identification of the Most Relevant Body Measurements

In order to automate the measurement extraction, it is
important to identify first which measurements are the
most relevant. For this, we can imagine the horizontal
(x), vertical (y) and depth (z) axes positioned in the
human body (frontal image). Considering these axes, 29
measurements of the body were proposed: height (y), neck
(x and z), shoulder (x), bust (x), waist (x and z), hip (x
and z), arm (x, y and z), elbow (x and z), forearm (x, y
and z), wrist (x and z), thigh (x, y and z), knee (x and z),
calf (x, y and z) and ankle (x and z). Figures 5a and 5b
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Figure 5. Manual measurements obtained from images.

show measurement points obtained manually in the image
of an athlete silhouette.

From these direct measurements, 17 indirect measure-
ments were proposed by Gonçalves et al. (2016): span;
perimeters (neck, waist, hip, arm, elbow, forearm, wrist,
thigh, knee, calf, ankle); ratios (arm, forearm, thigh, calf);
and the height-to-span ratio. As the span corresponds to
the distance between the fingertips of an individual when
with arms horizontally open, this was approximated by
the sum of the measurements: left forearm (y) + left arm
(y) + shoulder (x) + right arm (y) + right forearm (y).
To obtain the perimeter, the parts of the body involved
are approximated by ellipses of diameters equal to their
measurements obtained on the x and z axes. The ratio
measurements were obtained by dividing the area of the
ellipse by its respective part in the y direction. Finally,
the height-to-span ratio is obtained by taking the ratio
between height and span.

Additionally, two external information were added: gender
and body mass of the bodybuilders. Thus, a total of 48
characteristics are obtained for each individual (29 direct
measurements, 17 indirect measurements, gender, and
body mass). The proposed measurements were inspired
by the measurements taken by Sheldon et al. (1940), and
other ones were taken to capture more information from
the shape of the silhouettes.

To identify the most relevant measurements for each of the
three components of the somatotype, a Multiobjective Op-
timization with Genetic Algorithm (GA) was performed
(Deb, 2001), with settings: population of 200 individuals,
maximum of 100 generations, uniform mating and muta-
tion, and selection by tournament size 4 (2% of popula-
tion), each individual corresponds to a binary vector of
48 positions indicating whether the i-th characteristic is
selected.

The optimization has two objectives to be minimized:
the amount of measurements to be extracted from the
image and the mean square error for Endo, Meso and
Ecto obtained by a Multilayer Perceptron (MLP) with 10

hidden neurons. The Leave-One-Out method was used to
split the dataset (Witten and Frank, 2005).

The sets selected by the GA to estimate each of the three
components of the somatotype has 5 measurements each,
comprising 11 different measurements. Table 1 shows these
measurements. The measurements that appear more than
once are highlighted in bold. It is interesting to note that
the hip measurement appears to be relevant for the three
components of the somatotype.

Table 1. Selected measures by GA.

Endomorphism Mesomorphism Ectomorphism

Gender Stature (y) Gender
Stature (y) Hip (x) Hip (x)

Hip (x) Ankle (x) Arm (x)
Bust (x) Thigh (z) Thigh (x)
Knee (z) Arm (ratio) Arm (y)

After selecting the 11 most relevant measurements, an
approach was developed for automatic extraction of these
measurements through image processing. The approach is
divided into two phases: segmentation of the human body
and automatic measurement extraction. The next sections
will describe these procedures.

3.3 Image Segmentation of Human Body

In order to extract body measurements from an individual,
it is necessary that his body be segmented. This step is
divided in two parts: resizing the images to the height
of 1280 pixels preserving proportions; and application of
Gaussian low pass filter 3 × 3 with standard deviation of
0.5 to blur the image.

Given the pre-processed image, the segmentation of the
human body image follows another five steps:

(1) Separation of the image of the individual in disjoint
regions using the Statistical Region Merging (SRM)
technique (Nock and Nielsen, 2004) with parameter
Q = 128 defined by trial and error (Figure 6a).

(2) Then binarization using the Otsu method (Gonzalez
and Woods, 2011) on the saturation channel in the
HSV color space (Figure 6b) is applied.

(3) For removal the lateral objects, the number of pixels
in each column of the binarized image is counted and
a graph of pixel count is generated. The region with
the largest area of the graph is chosen and the others
regions is discarded.

(4) Low-intensity regions in general have low saturation
and therefore are not segmented by binarization.
Some regions of low intensity can be fundamental
parts of the composition of the individual’s silhouette,
such as shadow regions caused by lighting, clothing,
or hair. To reconstruct, Otsu’s limiar is calculated
over the SRM image. Regions that have an intensity
below otsu’s limiar and that are adjacent to some
already segmented regions are candidates for regions
for reconstruction. Then, three tests are applied: the
first checks if the centroid of the candidate region is
greater than 25% of the image height. If pass, then the
second test is applied, which checks the quantity of
image connected components. If when reconstructing
the region the amount of components decreases, then

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 1099 DOI: 10.20906/sbai.v1i1.2705



Figure 6. Steps realized for body segmentation.

the region is reconstructed; otherwise, a third test
is applied, which checks if the perimeter/area ratio
decreases, it is understood that the candidate causes
a change to a smoother region and its reconstructed.
Otherwise, the region is discarded.

(5) Morphological closing of empty regions (holes) result-
ing in the image of the silhouette in Figure 6c. Ini-
tially, a morphological closing operation is performed
on the image using a 5x5 mask of ones as a structuring
element. Then, the holes of the binarized image, can-
didates to be closed, are obtained. To decide whether
a hole should be closed, the height/width ratio is
calculated. If the height/width is lower than 2.1, the
hole is closed; otherwise, the region is not closed. This
limiar (2.1) was chosen after an extensive parameter
change.

Figure 6d shows the final contour of the segmentation over
the original image.

3.4 Automatic Measurement Extraction

For each silhouette (frontal and lateral), key points are
identified and used to extract the measurements. Each
key point is described with a label or a sequence of
letters. Figure 7 presents all key points and the details
are described below. For simplicity, when it is mentioned
silhouette, we are referring to the silhouette contour. To
walk on the silhouette, we used the Freeman chain code
(Gonzalez and Woods, 2011).

For the frontal image, the following key points are identi-
fied: The centroid of the individual (O) and, at the same
height, two points on the hip (OL and OR) and two points
on each arm (DLL and DLR, on the left arm, and DRL
and DRR, on the right arm). The centroid of the highest

Figure 7. Key points on human body.

points is used to represent the highest point (yMax) on
the silhouette. In order to compute the stature (y), it is
computed the centroid from the region that is 80% of
distance from O to the lowest point on the silhouette
(yMinF ). This centroid is projected (YMin) on the line
that passes on O and yMax. The difference between yMax
and YMin is the stature (y) in pixels.

For the bust (x), the points CL and CR are identified.
CL is the highest point on the silhouette in the path from
DLR to OL (in clockwise direction). The same procedure
is used to identify CR, but using the path from OR to
DRL. The difference between CL and CR is the bust (x)
in pixels.

For the ankle (x), a horizontal line is drawn in the middle
distance between yMin and yMinF . So, four points are
identified on the line that touches the silhouette: from left
to right, HLL, HLR, HRL and HRR. A key point E is
defined as the highest one in the path from HLR to HRL.
After then, a horizontal line at 20% of distance from yMin
to E is used to locate the points GLL, GLR, GRL, and
GRR. The left ankle (x) is obtained by looking for the
smallest horizontal distance in pixels between XL and XR
(which corresponds to the smallest width of the leg among
the points HLL, GLL, GLR and HLR). Similarly, the
right ankle (x) is obtained.

The hip (x) is the distance between the points on the
silhouette that touches the horizontal line that passes in
the half distance between O and E.

A 10th order polynomial regression (order defined by
trial and error) is applied to smooth the path between
GRR and CR and between GLL and CL. Figure 8 shows
these paths in red. Green asterisks correspond to a local
minimum and blue the local maximum points of the
polynomial regressions. With j1 (local minimum) and j2
(local maximum) being these points of the knee, (Figure
8), a horizontal line is drawn in the middle of the heights
of j1 and j2. This line cuts the individual’s edge into four
points, defined from left to right as FLL, FLR, FRL, and
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Figure 8. Polynomial regression between GRR and CR.

FRR. Then, in the half distance from hip x to FLL and
FLR is the left thigh (x), and in the half distance from
hip x to FRL and FRR is the right thigh (x). Figure 7
helps to visualize this procedure.

For the arm, initially, the clockwise direction on the
silhouette from DLL to DRR is coursed. Four points are
selected from the gradient angle of this path: pll, plr, prl
and prr. The first and last represent the most horizontal
gradients (probably, shoulder points), while the middle
ones represent head points (commonly on the ears). Two
straight line segments are created, the one on the left (sl)
joins pll and plr, while the one on the right (sr) joins prl
and prr. The key point AL is defined as the point between
pll and plr that is as far away as possible from sl. Similarly,
AR is the point of X between prl and prr that has the
greatest possible distance from sr. Defined AL and AR,
then, BL is defined as the first point on silhouette before
AL whose gradient angle is greater than 45◦. Similarly,
BR is the first point after AR whose gradient angle is less
than -45◦.

The arm (y) starting point is given by the center of mass
of the arm/forearm of each side (left and right). Thus, the
individual’s arm/forearm is divided into two parts: above
this starting point (arm) and below (forearm). To deter-
mine the measurement direction of the arm (y) from its
starting point, the Principal Component Analysis (PCA)
(Gonzalez and Woods, 2011) is used. Let v1 and v2 the
eigenvectors of the first and second greatest eigenvalues,
respectively. So, the ending point of measurement of the
arm y is the intersection of lines r1 and r2, where r1 and
r2 have the directions of v1 and v2, respectively, and r1
pass through the starting point of arm (y) and r2 passes
through BL (left arm) or BR (right arm). Finally, the arm
(x) is the greatest width of the arm at the v2 direction.

For the lateral image, the key points P (center of mass of
the individual), and PL, PR are defined, the last two are
the edge points respectively to the left and right of P , at
the same height. Then, the key points yMax, yMinL, and
yMinR are defined, where the first one is the highest point
of the individual to the left of PR. The points yMinL
and yMinR are taken as the smallest points that are,
respectively, to the left of PL and to the right of PR. The
point yMin is defined as the intersection of the lines r1
and r2, where r1 is the vertical line that passes through the
point yMax and r2 is the line that passes between yMinL
and yMinR. The distance between yMax and yMin is the
stature (y).

For the knee (z), the internal path from yMinL to yMinR
is obtained. The key point L is the highest point on the
path. Thus, the points LL and LR are located on the
silhouette and at the same height of L. So, the gradient

angles of the path from L and yMinR are obtained, and
the local minimum of these angles represents the moment
of contour change of the hind thigh to the calf. This is
the starting point of the knee (z). The end measurement
point is the point on the silhouette that is horizontally at
the right of the starting point.

For the arm (x), the path from PR to yMax is coursed in
the anticlockwise orientation. With the passage from the
chest to the arm, the gradient angle takes the value of 0◦,
and this point is identified as JL. When the path goes from
the arm (nearly horizontal) to the forearm (approximately
vertical), the gradient angle takes the value of 45◦, and this
key point is set to JR, and is found in the subject’s elbow.
With the path going around the individual’s hand, the key
point IR is defined, which assumes an angle value of 225◦.
With the shift from the arm to the individual’s neck/head,
the gradient angle decreases and assumes a value of 135◦,
setting the key point IL.

Similar to the measurement of the frontal arm (x), the
PCA is applied, obtaining the vector v1 and v2, consider-
ing the region delimited by JR, IR, IL, and JL. The arm
start point (y) is the midpoint of IR and JR and the end
point is the intersection of lines r3 and r4, where r3 is the
line that passes through the arm start point (y) and has
v1 direction; and r4 is a vertical line that passes through
IL. Finally, the arm (z) is obtained by taking the longest
width of the arm in the v2 direction which is to the right
of JL and to the left of IR.

For the thigh (z), a path from the key point LL and PL
is created. From this path, the local minimum is extracted
and defined as the key point KL (Figure 7). Similarly,
with a path from the key point LR to PR, another local
minimum is extracted, defined as key point KR. Then, the
thigh is extracted from a region defined by for lines: r1 is
the line that connects the key point KL to KR; r2 is the
vertical line that passes on the final knee (z). r3 is the
horizontal line at knee height (z), and r4 is the line that
connects KL to the initial knee point (z). By applying
PCA, the eigenvectors v1 and v2 are obtained, where v1
is the most representative. The initial point of the thigh
(z) starts at L and the ending point is the border obtained
of L extending in the direction of v2. So, thigh (z) is the
distance between these two points, in pixels.

All measurements are made in pixels. For measures taken
more than once, we computed the average value. In order
to convert to the metric system, it is used a reference (as
shown in Figure 5), whose real dimensions are known and,
by proportion, the real human body measurements are
estimated.

4. EXPERIMENTS

4.1 Experimental methodology

Due to the limitation of the dataset, the Leave-One-
Out method was used to maximize the amount of data
(samples) of individuals for training. In this method, n−1
samples are used to train and 1 sample to test, where n
is the total number of samples. The method is repeated n
times, so that each sample is used once as a test. At the
end, the result is averaged.
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An MLP with one hidden layer was used to estimate
the somatotype and the measurements. The number of
neurons in the hidden layer was adjusted between even
values from 2 to 20.

Five different metrics were used to evaluate the re-
sults: Mean Error (ME), Mean Absolute Percentage Error
(MAPE), Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE). Equations 11 to 14 show the calcu-
lation of each metric, where n is the number of samples, ŷi
is the given output by the estimators and yi is the desired
output (target). For each metric, the closer to zero, the
better the performance of the model is.

ME =
1

n

n∑
i=1

(ŷi − yi) (11)

MAPE =

(
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
)
× 100% (12)

MAE =
1

n

n∑
i=1

|ŷi − yi| (13)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (14)

4.2 Results

Table 2 shows the value of the metrics for each mea-
surement extracted from the image. The values obtained
automatically were compared with the measurements that
were taken manually in the images.

Table 2. Errors of Automatic Measurements.

Measurement ME MAPE MAE RMSE
cm % cm cm

Stature (y) 5.00 3.48 6.17 8.66
Arm (x) -0.23 7.75 3.10 3.85
Hip (x) 2.85 9.04 3.34 3.96
Arm (x) 0.19 6.15 0.66 0.88

Thigh (x) 1.01 6.97 1.31 1.57
Ankle (x) 0.00 6.12 0.38 0.46
Thigh (z) -2.01 10.97 2.67 3.63
Knee (z) -0.24 5.11 0.70 0.93
Arm (y) -0.62 11.37 4.00 4.83

Arm (ratio) 0.19 14.00 0.51 0.65

Most of the measurements present relatively low MAPE
values (below 10%). The measurement with the highest
error is Arm (ratio), because it is a function of other mea-
sured variables that also already contain approximation
errors. The measures Thigh (z) and Arm (y) also pre-
sented MAPE above 10% due to the difficulty of precisely
determining the starting point of such measurement. The
Stature (y) was the measurement that presented the great-
est error from the point of view of ME, MAE and RMSE,
this is also due to the difficulty of accurately obtaining the
start and end points of this measurement.

Another measure that had a polarized estimate was Hip
(x), with the second highest ME and, moreover, almost
10% of MAPE. In some cases of the dataset, this measure-
ment was being taken at a less than adequate height at the
beginning of the thigh and, therefore, the estimation of this

measurement is overestimated, reflected in the relatively
high value of ME.

For modeling the classifier, 11 features (10 measurements
and gender) were used to infer the somatotype according
to Table 3. The entries were normalized to have zero
mean and unit variance, the target values were taken by
professionals and kept without rounded values, rounded to
multiples of 0.1 and 0.5.

Table 3. Errors of Somatotype Estimating.

Component ME MAPE MAE RMSE
cm % cm cm

Endo
Floating Value -0.04 10.98 0.17 0.26

Multiple 0.1 -0.04 11.87 0.17 0.28
Multiple 0.5 -0.02 8.13 0.13 0.27

Meso
Floating Value -0.02 21.97 0.37 0.57

Multiple 0.1 0.02 18.35 0.33 0.52
Multiple 0.5 -0.06 11.62 0.33 0.55

Ecto
Floating Value 0.08 15.01 0.15 0.24

Multiple 0.1 -0.06 19.42 0.16 0.26
Multiple 0.5 -0.01 8.38 0.12 0.26

MAPE had a better result with a multiple rounding of
0.5 in all three classes. For the MAE, the results show
that the MLP estimates, for example, that endomorphism
and ectomorphism of the dataset individuals, on average,
does not distance more than 0.13 in the representation of
multiples of 0.5. In general, the use of a multiple rounding
of 0.5 presents a satisfactory result for the somatotype
classification.

The distances between the three and two-dimensional so-
matotypes, that is endo-meso-ecto and somatochart com-
ponents, are shown in Table 4.

Table 4. SAD and Distance in the Average
Somatochart.

Representation
SAD Average Distance

Average in Somatochart

Floating Value 0.53 0.52
Multiple 0.1 0.52 0.51
Multiple 0.5 0.50 0.50

Figure 9 shows the real somatotypes (in blue) and the
ones estimated (in red) by MLP when using a multiple
of 0.5. The straight segments (in black) connects the
estimated points with their respective real values. The
green points represent error-free matching between the real
and the estimated value. The radius around of the black
point within the somatochart indicates the region where
an estimate of an arbitrary somatotype is considered a
true value if located inside and, as can be observed, its
area is considerably reduced when compared to the total
area. This suggests that the somatopoint location on the
somatochart presents reasonable accuracy when estimated
by the proposed system.

Table 5. Accuracy in the Classification.

Classification Type 13 Classes 7 Classes 4 Classes

Accuracy 72.14% 89.29% 92.86%

Table 5 shows the results obtained for the somatotype
classification considering the three subdivisions of classes
presented in Section 2.2. The best result was for the
classification into 4 classes, with an accuracy of 92.86%.
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Figure 9. Real somatotypes (in blue) and estimated ones
(in red). Green points represent estimates without
significant errors.

5. CONCLUSION

In this work, we proposed a method to automatically esti-
mate the somatotype of the individuals by digital images.
The proposed methodology includes: 1) protocol for image
acquisition; 2) identification of the most relevant body
measurements; 3) automatic segmentation and extraction
of measurements from the body; 4) estimate of somatotype
using the extracted measurements.

The experiments have shown the approach is effective,
mainly when the values are represented in multiples of
0.5, and for this situation many estimates were without
errors. Regarding classification, the accuracy was higher
than 92% for the case of 4 classes.

Thus, the research provided the development of a system
that estimates with acceptable precision the somatotype
of bodybuilders based on only two images, being a faster
option, without needing physical contact with the indi-
vidual, equipment, and specialists, costing much less than
the current method. The main drawback is the necessity
of a controlled environment to take photos. Future work
can be done to improve the work by (i) apply the method
in a larger and more diversified dataset; (ii) use of other
methods, such as deep learning, for segmentation of the
human body in a non controlled environment.
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(2013). Somatotype of elite Italian gymnasts. Collegium
Antropologicum, 37(3), 853–857.

Nock, R. and Nielsen, F. (2004). Statistical region merging.
IEEE Transactions on pattern analysis and machine
intelligence, 26(11), 1452–1458.

Santos, A.A. (2020). Sistema automático para a inspeção
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