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Abstract: This paper presents the design of a robust disturbance rejection control scheme for
Stewart platforms. To fully take into account the system nonlinearities, the quaternion based
description is used along with Quasi-Linear Parameter Varying representation. In order to
provide robust output regulation, in the presence of frequency-varying disturbances, we propose
the design of a multi-resonant internal model controller. The closed-loop stability is guaranteed
by a state-feedback law synthesized via a convex optimization problem subject to linear matrix
inequalities. Simulations show the effectiveness of the multi-resonant controller applied to a
Stewart platform in the case that the platform is used as a stabilization device on the ocean,
where the ocean waves generate frequency-varying harmonic disturbances.
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1. INTRODUCTION

The Stewart platform has several different applications,
from motion platform for flight simulators (Villacis et al.,
2017) to offshore cargo transfers (de Faria et al., 2016).
The platform consists in a six degrees of freedom (6-DOF)
parallel kinematic system given by a closed-kinematic
chain (CKC) mechanism. Since it was proposed by Stewart
(1966), the Stewart platform has been studied by many
researchers. Due to the complexity of the Stewart plat-
form dynamics, several methods such as Newton-Euler
(Do and Yang, 1988), Lagrangian Formulation (Hajimirza-
alian et al., 2010), Kane’s equation (Liu et al., 2000),
Quaternion-based Dynamic (de Faria et al., 2016) and
Elman recurrent network (Guo et al., 2013) have been used
for the analysis of this manipulator.

In the last three decades, disturbance rejection strategies
have also been proposed, as inverse dynamic controller
(IDC) (Lee et al., 2003), auto-disturbance rejection con-
troller (ADRC) (Su et al., 2004). Normally, these methods
use simplified models that inevitably have some modeling
error, and the stability of the whole system cannot be
guaranteed. In the other sense, adaptive control (Nguyen
et al., 1993), sliding mode control (Kim and Lee, 1998),
higher order sliding mode control (Kumar and Bandy-
opadhyay, 2012) schemes have been proposed to cope with
the modeling errors, however these solutions still have the
input chattering problem.

This chattering problem becomes an important issue when
the application of the Stewart platform must deal with
frequency-varying harmonic disturbances. Different con-

? This work was supported in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior — Brasil (CAPES) —
Finance Code 001.

trol strategies can be found in the literature to handle
this issue, for instance, Castro et al. (2017) proposed a
solution to the frequency-varying version of the Resonant
Controller for load reduction in wind turbines. In that
paper, the state-feedback law is synthesized via an op-
timization problem subject to linear matrix inequalities
(LMIs), which is a systematic way to design a controller,
but there are very few studies using LMIs for Stewart
platforms control (de Faria et al., 2016).

Considering these issues, this paper proposes a robust dis-
turbance rejection scheme for Stewart platforms subjected
to frequency-varying harmonics disturbances. In order to
achieve the proposed goal, the dynamic equations of the
platform must be represented in such a way that can
be used in the LMI framework. For this reason we use
an inverse kinematic quaternion-based model, which allow
us to deal with the platform translational and rotational
dynamics in a simple and straightforward way. In order
to address the rotational nonlinearities of the platform,
we propose to represent the system dynamics in a Quasi-
linear parameter varying (Quasi-LPV) model, that allows
us to use a linear design tool as the LMI framework in a
complex nonlinear system (Rotondo et al., 2013) as the
Stewart Platform.

The paper is organized as follows: Section 2 briefly presents
quaternion representation as well as geometric and dy-
namic descriptions of the Stewart platform. Section 3
formally addresses the problem statement of the paper and
Section 4 presents the proposed control design. Section
5 shows a numerical example and result discussion and
Section 6 concludes the paper.

Notation: xi is the i-th element of vector x. Ai is the i-
th row of matrix A. A> is the transpose of matrix A.
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A > 0 and A < 0 means respectively that matrix A is
positive-definite and negative-definite. diag(A,B) denotes
a diagonal matrix obtained by A and B. tr(A) is the trace
of matrix A. He{A} := A + A> and ? denotes symmetric
elements in a matrix. V(∆) represents the vertices of the
polytope ∆.

2. PRELIMINARIES

2.1 Quaternion Representation

A quaternion is originally defined as a extension of the
complex domain and was proposed by W. R. Hamilton
between 1844 - 1850. The vector form of quaternions can
be represented as

q =

[
η
ε

]
, (1)

where η ∈ R and ε ∈ R3.

This representation simplifies analytical and numerical
manipulations with angles, as presented in the following
definitions.

Definition 2.1. (Quaternion Norm). The norm of q is de-
fined as

||q|| =
√
q>q. (2)

Definition 2.2. (Attitude Quaternion). A unit quaternion
of the form

q =

[
cos(φ)
r sin(φ)

]
(3)

is an attitude quaternion and can be used to represent a
rotation of angle φ around the unit vector r ∈ R3.

Definition 2.3. (Rotational Quaternion Matrix). Consider
a vector z ∈ R3 in global coordinates, if z′ ∈ R3 is the
same vector in the rigid-body coordinates, then the follow
relation holds:

z′ = R(q)z, (4)

where R(q) ∈ R3×3 is the rotation matrix, given by:

R(q) = I + 2ηS(ε) + 2S2(ε), (5)

where I is the 3× 3 identity matrix and S(x) is the skew-
symmetric matrix function S : R3 → R3×3.

2.2 Stewart Platform

The Stewart platform consists in a 6-DOF parallel kine-
matic system given by a CKC mechanism. It has an static
base platform and movable top platform, the latter also
called end effector.

This system has three reference frames: a global inertial
frame OI and two local reference frames: one in the
bottom platform OB , and another in the top platform
OT . Both local reference frames have the coordinate origins
coinciding with the center of mass of its respective body.
Assuming that the global inertial frame origin coincides
with the bottom platform local reference frame origin, and
assuming that the perturbation applied on the bottom
platform naturally propagates to the top platform, the
there exists a Jacobian matrix which transforms the linear
velocities of the six actuators l̇ ∈ R6 to the linear and
angular velocities of the platform, as follows (de Faria
et al., 2016):

l̇ = J

[
ṗ
ω

]
, (6)

where ṗ ∈ R3 is the top platform linear velocity vector
regarding the global inertial frame OI and ω ∈ R3 is
the top platform angular velocity vector regarding the
local reference frame OT . The Jacobian matrix transpose
J> may also be used to relate the linear forces of the
six actuators fl = [fl1 . . . fl6]> to the forces and torques
applied on the center of mass of the top platform (Ft and
τt) that is

F =

[
Ft
τt

]
= J>fl. (7)

As a result of this Jacobian matrix (6), we can formulate
the platform mathematical model disregarding the geo-
metric aspect of the platform. Thus the platform dynamics
can be represented as generic quaternion based 3D rigid
body model, where the coordinate frame origin coincides
with the center of mass (de Faria et al., 2016): ε̇ωṗ
υ̇

 =


1

2
(ηI + S(ε))ω

−I−1m S(ω)Imω
υ
0

+

 0 0
I−1m 0
0 0
0 m−1

([uτuF
]

+

[
dτ
dF

])

(8)
where Im ∈ R3 is the inertia matrix, m is the top platform
body mass, uτ ∈ R3 and dτ ∈ R3 are the input and
exogenous perturbation torques referenced on the local
body reference frame, uF ∈ R3 and dF ∈ R3 are the input
and the exogenous perturbation force vector referenced
on the global referenced frame that includes the gravity

force.
[
η ε>

]>
is an attitude quaternion that represents the

rigid body orientation, as the states variables η and ε are
intrinsically connected by the unit quaternion constraint
η2 + ε>ε = 1, we may drop the variable η without any loss
of generality, ω ∈ R3 is the angular velocity vector, p ∈ R3

is the position vector, υ ∈ R3 is the linear velocity vector.
The exogenous signals dτ and dF are unmeasured, but
their fundamental frequencies is assumed to be measured.

3. PROBLEM STATEMENT

Having all the above descriptions in mind, now we can
formally address the problem statement. Considering the
open-loop system representation, the perturbation signals
d are generated by the exogenous system{

ẇ = Ψ(δ)w

d = Ωw
, (9)

where w ∈ R12h, Ψ(δ) ∈ R12h×12h, Ω ∈ R6×12h and δ ∈ ∆
is the time-varying parameter vector, which is assumed
to be measured and bounded by the following polytope
∀ t > 0:

∆ = {δ ∈ R : δ ∈
[
δ, δ̄
]
}. (10)

It is essential that we describe the exogenous system (9)
associated to the production of perturbation signals. In
this study, we deal with periodic resonant disturbances,
such as ocean waves, whose the dynamics can be simply
described as follow:

Ψ(δ) = diag (Ψr(δ), 2Ψr(δ), . . . , hΨr(δ)) . (11)
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Ω = diag([1 0] , . . . , [1 0]) (12)

where

Ψr(δ) = diag

([
0 δ
−δ 0

]
, . . . ,

[
0 δ
−δ 0

])
︸ ︷︷ ︸

6 times

, (13)

where δ ∈ ∆ is the time-varying resonant frequency, h is
the number of considered harmonics components.

Therefore, this work proposes a solution to the follow
problem:

Problem 3.1. Design a control law such that the trajecto-
ries x(t) of the closed-loop dynamics asymptotically ap-
proach the origin for some admissible set of initial condi-
tions (x(0), w(0)) ∈ Dx×Dw ⊆ R6×R12h and admissible
time-varying parameters δ ∈ ∆. Furthermore, we intend
to guarantee the exponential convergence of x(t) to zero
within a minimum user-defined decay rate α > 0.

4. PROPOSED CONTROL STRATEGY

4.1 Quasi-LPV Formulation

With the purpose to design the control via optimization
problem subject to LMIs, the system dynamic equations
must be represented in such a way that can be solved by
convex tools. One of the ways to comply with this issue
is to represent the system in the Quasi-LPV form. The
Quasi-LPV representation can be defined as a linear time-
varying plant, whose state-space matrices are functions of
the system states vector itself. Now consider the following
open-loop system representation{

ẋ = A(θ(x))x+Bu+Bd

y = Cx
, (14)

where A(θ(x)) ∈ R12×12, B ∈ R12×6 and C ∈ R6×12 are

the states space matrices, x =
[
ε> ω> p> υ>

]> ∈ X ⊂
R12 is the system states vector, u =

[
u>τ u>F

]> ∈ R6 are

the control inputs vector, y ∈ R6 is the system output

vector, θ(x) =
[
η ω>

]>
: X → Θ is a vector of polytopic-

bounded state-dependent parameters and d =
[
d>τ d>F

]> ∈
R6 is the unmeasured disturbance vector. Thereby, we can
write the state-space matrices of the system (8) as follow

A(θ(x)) =


−1

2
S(ω)

1

2
ηI 0 0

0 I−1m S(ω)Im 0 0
0 0 1 0
0 0 0 0

 , B =

 0 0
I−1m 0
0 0
0 m−1

 ,
C =

[
I 0 0 0
0 0 I 0

]
.

(15)
The state-feedback control law of the Quasi-LPV system
can be design by using the LMI framework, provided
that we ensure the trajectories of the system states are
contained inside the set ∀ t ≥ 0:

X = {x ∈ R12 : |xi| ≤ sin

(
φ̄

2

)
∀ i = 1, 2, 3,

|xi| ≤ ω̄ ∀ i = 4, 5, 6}
(16)

where φ is the maximum admissible orientation angle and
ω̄ denotes the maximum admissible angular velocity in

every coordinate. Consequently, for each of the scheduling
parameters in the vector θ, their minimum and maximum
values over the allowed values of x are calculated:

Θ = {θ ∈ R4 : cos
(
φ̄/2
)
≤ θ1 ≤ 1, |θi| ≤ ω̄, i = 2, 3, 4} ∀ t ≥ 0.

(17)

Note that the polytope Θ is valid only if 0 ≤ φ̄ < π, thus
we will limit our analysis accordingly. The control law must
ensure that the trajectories of x(t) are contained in the set
X , consequently we will guarantee that the trajectories of
θ are contained inside the set Θ.

4.2 Control Scheme

A perturbation signal can be asymptotically tracked or
rejected if its dynamics are reproduced by the states of
the controller, provided that the stability of the closed-loop
system is ensured. The proposed closed-loop is illustrated
by Figure 1, where the ‘IM’ block is the controller internal
model given by: {

ξ̇ = Φ(δ)ξ + Γy

u = Hξ +Kx
, (18)

where ξ ∈ R12h is the control internal states vector. The
gain matrices K ∈ R6×12 and H ∈ R6×12h are obtained
via a optimization problem subject to LMIs, the ‘System
Plant’ block represents the dynamics given by (8) and
the Jacobian matrix is represented by the J block, the
‘Exogenous System’ represent the dynamics from (11).
With the internal model control, the open-loop dynamics
of the system can be describe by the follow augmented
system:

ẋ =

[
ẋ

ξ̇

]
=

[
A(θ(x)) 0

ΓC Φ(δ)

]
x +

[
B
0

]
u+

[
BΩ
0

]
w. (19)

Considering the control law u = Kx+Hξ, thus the closed-
loop dynamics can be defined as follow:

ẋ =

[
A(θ(x)) +BK BH

ΓC Φ(δ)

]
x +

[
BΩ
0

]
w. (20)

IM H

Exogenous System

+ J−> System Plant

K

y(t) ξ(t) Hξ(t) u(t) + d(t) y(t)

x(t)

Kx(t)

d(t)

δ

Figure 1. Proposed Control Loop Plant

4.3 Design of the Internal Model terms Φ and Γ

To solve the Problem 3.1 we must find conditions that
guarantees a setM invariant and attractive, such that the
output y(t) will be zero insideM. The following definition
express these conditions.

Definition 4.1. (Center Manifold). A Center Manifold is
defined as follows

M = {(x, ξ, w, δ) ∈ R12×R12h×R12h×∆ : x = 0, ξ = Σw},
(21)

which is said to be invariant with respect to the trajectory
(x(t), ξ(t), w(t)) if

(x(t0), ξ(t0), w(t0)) ∈M⇒ (x(t), ξ(t), w(t)) ∈M ∀ t > t0,
(22)
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and regionally attractive in D if

lim
t→∞

(x(t), ξ(t), w(t)) ∈M ∀ (x(0), ξ(0), w(0))

∈ D × R12h.
(23)

Consider the follow theorem that solves Φ and Γ ensuring
theM invariance, such that the output y will be zero inside
M.

Theorem 4.2. Consider the augmented system (19), the
M will be invariant if the output y is zero within it with
the follow internal model:

Φ(δ) = Ψ(δ)

Γ = diag

([
1

1

]
, . . . ,

[
1

1

])
(24)

Proof. Consider the augmented system (19), the manifold
M will be invariant with respect to the trajectories of the
system (14) with the control internal structure (18), if the
substitution of x by Πw and ξ by Σw is feasible. Thus Σ
and Π must satisfy the follow regulator equations:

ΠΨ(δ) = A(θ(x))Π +BU +BΩ

ΣΨ(δ) = ΦΣ(δ) + ΓCΠ

U = HΣ +KΠ

∀ δ ∈ ∆, ∀ θ ∈ Θ,

(25)
where U is auxiliary variable, Π is the steady states map.
Note that Π and Σ can be obtained by solving the follow
Sylvester equation[

Π
Σ

]
Ψ(δ) =

[
A(θ(x)) +BK BH

ΓC Φ(δ)

] [
Π
Σ

]
+

[
BΩ
0

]
. (26)

Therefore the unforced system stabilization ensures a
uniqueness M descrbied by Σ and Π. Note that the
regulators equation must satisfies the follow relation:

ΣΨ(δ) = ΦΣ(δ) + ΓCΠ, (27)

if we force Φ(δ) = Ψ(δ), the unique solution of the
regulator equations is with Π = 0, in other words, the
output y will be zero within M.

The value of Γ must ensure that all internal model outputs
are controllable by their inputs, thus we choosed a matrix
filled by ones. 2

4.4 LMI-based design of the feedback terms K and H

Now consider the follow coordinate changes

z ,

[
x

ξ − Σw

]
, (28)

if we assume thatM is invariant,the system dynamics can
be described as follow

ż =

[
A(θ(x)) +BK BH

ΓC Φ(δ)

]
z = (A(θ(x), δ) +BK)z. (29)

Noting that K = [K H] and the augmented state-space
matrices are given by

A(θ(x), δ) =

[
A(θ(x)) 0

ΓC Φ(δ)

]
, B =

[
B
0

]
. (30)

Therefore, in order to M be regionally attractive in D,
we must ensure asymptotic stability of the system (29) for
all z(0) inside the ellipsoid D. Now let one consider the
following theorem.

Theorem 4.3. Consider the closed-loop dynamics described
by (29), a predefined scalars α > 0 and κ. Suppose there
exists a symmetric positive-definite matrix F ∈ Rn×n
and a generic matrix G such that the following LMIs are
satisfied:

He{(A(θ, δ)F + BG) + αF} < 0 ∀ δ ∈ V(∆), θ ∈ V(Θ)
(31)[

σ2
i Fi
? F

]
> 0 ∀ i ∈ {1, ..., 6}, (32)[

−κF A(θ, δ)F + BG
? −κF

]
< 0 ∀ δ ∈ V(∆), θ ∈ V(Θ), (33)

where σ =
[
sin(φ̄/2) sin(φ̄/2) sin(φ̄/2) ω̄ ω̄ ω̄

]>
. Then

considering the feedback gain matrix

K = GF−1 (34)

it follows that the trajectories x(t) of the closed-loop
system exponentially approach the origin for every initial
condition z(0) inside:

D = {z ∈ Rn : z>Pz ≤ 1}, P = F−1. (35)

where n = 12 + 12h.

Proof. Consider the follow Lyapunov candidate function

V (z) = z>Pz, (36)

for a symmetric and positive-definite matrix P ∈ Rn×n.
The exponential convergence of x(t) to zero within a
minimum user-defined decay rate α > 0 can be satisfied if:

αV (z) + V̇ (z, δ) < 0∀ z 6= 0. (37)

By evaluating V̇ (z, δ) along the trajectories of system (19),
we can rewrite (37) as:

He{P(A(θ, δ) + BK) + αP} < 0, (38)

which guarantees the target criteria. Now assume z ∈
X ∀ t ≥ 0, where:

X = {z ∈ Rn : |zi| < σi} ∀ i ∈ {1, . . . , 6}, (39)

and σ is a vector with the maximum admissible values for
the states vector z. To ensure that this last condition is
always true, we consider that the system initial state z(0)
is within a positively-invariant set D ⊂ X , where

D = {z ∈ Rn : V (z) ≤ 1}, (40)

consider the relation zi = piz, so this last condition is
ensured if(

zi
σi

)2

< z>Pz ≤ 1⇔ z>
(
p>i pi
σ2
i

)
z < z>Pz ≤ 1. (41)

From Schür’s complement, the above relation becomes[
σ2
i pi
? P

]
> 0 ∀ i ∈ {1, ..., 6}. (42)

Therefore, the trajectories x(t) of the closed-loop system
(19) exponentially approach the origin ∀ z(0) ∈ D if the
matrix inequalities (38), (42) are satisfied. Additionally
the aforementioned criteria, we limited the closed-loop (19)
eigenvalues λ to a radius κ. Then consider the follow set

Dr = {λi ∈ C : |λi| < κ} ∀ i ∈ {1, . . . , n}, (43)

and put Dr in the form {λ ∈ C : L+ sΥ + s?Υ> < 0} we
have

|λ| < κ⇔ λλ? < κ2 ⇔< 0⇔
[
−κ λ
λ? −κ

]
. (44)
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Figure 2. Simulation with δ = 0.3rad/s
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Figure 3. Simulation with δ = 0.5 rad/s

Therefore, the matrix L and Υ can be described as follow

L =

[
−κ 0
0 −κ

]
, (45)

Υ =

[
0 1
0 0

]
. (46)

Considering the D-Stability definition, we can formulate
the follow constraint[

−κP P (A(θ, δ) + BK)
? −κP

]
< 0 ∀ δ ∈ ∆, θ ∈ Θ. (47)

From convexity arguments, the relations (38), (42) and
(47) also holds if we satisfies just on the vertices of the
polytopes Θ and ∆. Also these relations are not LMIs
with respect to decision variables P and K. In order to
circumvent this issue, let us introduce the following change
of variables:

F = P−1, G = KP−1 (48)
which yields the LMIs (31), (32) and (33). 2

Based on Theorem 4.3, we propose to design K and H,
such that the region of admissible initial conditions D is

maximized. This can be achieved by solving the following
convex optimization problem

minimize tr(P)
F,G

subject to {F > 0,(31), (32), (33)}. (49)

5. SIMULATION RESULTS AND DISCUSSION

This section presents two simulation results where we
considered a top platform with m = 1.36 kg and Im =
10−4diag (1.705, 1.705, 3.404) kgm2 (the simulation code
is available at https://github.com/jonculau/sba-matlab).
The initial conditions of the system and the exogenous
generator were selected in such a way that V (z) ≈ 0.9987.
The simulation with the initial values close to the border of
the ellipsoid D proves that the trajectories does not leave
the ellipsoid as expected for all initial values contained
inside the set D.

The controller was synthesized with α = 0.05, κ = 15,
h = 3, δ = 0.5 rad/s and δ = 0.3 rad/s. Additionally, the
bounds of Θ and X were calculated with a φ = 25◦ and
ω = 5 rad/s.
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Figures 2 and 3 illustrate two simulations varying the fun-
damental exogenous resonant frequency δ. In both simula-
tions, the system had an expected behavior with a settling
time smaller than 30 seconds for all system outputs. These
simulations with the value of δ at the vertices of ∆ prove
that the multi-resonance internal model can reject any
resonant disturbance up to the third harmonic with fun-
damental frequency within the polytope. The simulations
also show that we guarantee the exponential convergence
of the output y(t) to zero within a minimum user-defined
decay rate α without any input chattering problem. Note
that, we considered a control internal model with the
number of harmonics h = 3, a larger number would reduce
the set of admissible initial conditions or would create
a infeasible solution. Nonetheless, the simulation results
show that the proposed control internal structure rejects
all disturbances generated by a exogenous system with the
same eigenvalues of the term Φ.

Also, it is important to mention that in this work we design
the controller for the complete system (translation + ori-
entation), but the Jacobian matrix allow us to represent
the system by two decoupled subsystems: a linear sub-
system, which represents the translational dynamic and
a non-linear subsystem, which represents the orientation
aspects. Therefore, the task of controlling the position
and the orientation of the platform may be performed
separately. Both subsystem have different properties, in
this way we may improve the performance by an individual
parametrization of each controller.

6. CONCLUSION

This paper presented a quaternion based model for Stewart
platforms, which is a compact model representation of
the system. In addition, using its Jacobian matrix, it is
possible to transform the linear forces of the six actuators
in to forces and torques applied on the center of mass of
the top platform, which allow us to describe the system
dynamics with decoupled inputs. Following the proposed
procedure, representing this system in a Quasi-LPV model
allowed us the use of convex mathematical tools, which
permitted a systematic way to design the feedback terms
K and H by using the LMI framework. Moreover, the
proposed control scheme ensured the exponential perfor-
mance, the system closed-loop stability and the rejection
of harmonic disturbances with time-varying fundamental
frequency for an admissible set of initial conditions. We
also presented in this paper the stability proof of the
closed-loop system taking into account the nonlinearities of
the platform rotational aspect. In future work, an impor-
tant and useful contribution would be the addition of the
actuator saturation in the control design and its stability
proof.
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