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Abstract: In this paper, a method for the reconfiguration of the operation of DC-DC boost
converters is proposed using sliding mode observers (SMOs). Open and high gain sensor faults
are analyzed. The reconfiguration strategy involves mainly a fault detection and identification
stages. In the fault detection stage, a SMO is designed for generating a residual and in the fault
identification stage, an algorithm using neural network with pattern recognition is proposed.
Two auxiliary SMO are used to estimate the sensor outputs to provide a proper feedback signal
to keep the system stable in case of occurrence of fault. Simulation results of a DC-DC boost
converter in the presence of faults illustrate the efficiency of reconfiguration strategy.
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1. INTRODUCTION

The increasing interest in DC microgrids emerges from
the growing use of renewable energy sources and, in
general, the DC-DC converters are employed since they
may guarantee maximum energy extraction, as well as
adequate levels of voltage/current from the main power
supply (Chaturvedi et al., 2021; Magossi et al., 2021). For
instance, in photovoltaic systems the output voltage of the
photovoltaic arrays needs to be increased in order to be
connected to the grid (Vázquez et al., 2013). There are
several topologies of DC-DC converters in the literature
which can provide output voltage greater than input, and
among them, the boost converter has a simple structure
(Ivanovic et al., 2014; Magossi et al., 2020).

As the DC-DC converters operate in an on-off mode, the
sliding mode control (SMC) is an appropriate method
for regulating its voltage and current, allowing a natural
way of control by combining the converter state variables
in its operating modes (Utkin, 2013; Martinez-Treviño
et al., 2019). Furthermore, the SMC technique is very
attractive due to its robustness in relation to parametric
uncertainties and simplicity in its design (Yazici and
Yaylaci, 2016; Komurcugil et al., 2020).

? This research was supported by CNPq - Conselho Nacional de
Pesquisa, Brazil, under grant 305892/2017-7, by FAPESP - Fundação
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Although DC–DC converters may operate with robust
controllers, they are commonly used in practical environ-
ments with harsh conditions and are likely to be damaged,
moreover, in many industrial applications the power inter-
ruption is not tolerated since it affects not only the main-
tenance cost but also the operational cost, thus reliability
and failure analysis for DC–DC converters are critical to
making reliable products (Yao et al., 2013; Ferreira Costa
and Liserre, 2018; Tarzamni et al., 2021). There are several
works in the literature enhancing the reliability of DC-DC
converters, such as in Li et al. (2019) where a sliding mode
observer (SMO) for sensor faults detection in a buck boost
converter is proposed. A method for sensor fault detection
and reconfiguration for a boost converter is proposed by
Li et al. (2018) using a state observer for fault detection.
Silveira and Araújo (2020) proposes a fuzzy logic based
scheme for faults in voltage and current sensor, switch and
capacitor for DC-DC converters.

Methods for fault detection and isolation of actuator’s
fault in DC-DC converters can be seen in Espinoza-Trejo
et al. (2016), Givi et al. (2017). In Bento and Cardoso
(2018) a comprehensive survey for general techniques
for fault diagnosis of open circuit and short-circuit is
presented.

In this work, a reconfiguration strategy for a DC-DC boost
converter considering current and voltage sensors faults
is proposed. A pattern recognition with a neural network
was developed to identify the type of fault. This approach
can be also used as a framework to detect actuator
and component faults for similar DC-DC converters. The
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contribution of this work is on the identification of the
class of faults and on the reconfiguration strategy which is
based on the change of the estimates of current or voltage
depending on the type of sensor fault.

Following this introduction, in Section II, the boost DC-
DC converter control and observer based on the sliding
mode technique are described. In Section III, the proposed
identification method and the reconfiguration strategy is
presented. In Section IV, simulation scenarios with current
and voltage sensors faults are checked with and without
the reconfiguration strategy. Finally, in Section V, some
concluding remarks are presented.

Notation: The augmented system with the sensor fault
model error and its estimate are denoted by ẽ and ˆ̃e,
respectively. The inductor current and capacitor voltage
estimate are denoted by x̂iL and x̂vC , respectively. The
symbols || · || denote the euclidean norm and in symmetric
matrices, ? denotes the transposed element of the matrix,
A ≺ 0 (A � 0) means that A is a negative (positive)
definite matrix and He(M) = M +M ′.

2. PRELIMINARIES

In this section, results from the literature of SMC and
SMO designs for a boost converter are summarized.

2.1 Sliding mode control of DC-DC converters

The operation of a boost DC-DC converter without par-
asitic resistances can be described by the control input
d(σ(t)) for the off state and for the on state of the active
switching device and the circuit equations can be written
as:

ẋ(t) = Aσ(t)x(t) + b

y(t) = Coutx(t)
(1)

where

x(t) =

[
iL(t)
vc(t)

]
, Aσ(t) =

[
−R
L

−(1−d(σ(t)))
L

(1−d(σ(t)))
C

−1
RoC

]

b =

[
V in

L
0

]
, Cout =

[
1 0
0 1

]

d(σ(t)) =

{
0, if σ(t) = 1

1, if σ(t) = 2
(2)

with iL the inductor current, vc the output capacitor
voltage, L the inductance, C the capacitance, R the
inductor resistance, Ro the load resistance, Vin the input
voltage source (constant).

The SMC project can be divided into two stages. Firstly,
it is necessary to define a sliding surface that is attractive
for the trajectories of the converter. In the sequence, a
switching control law is built such that the state reach
the previously established surface and evolve on it until
reaching the system equilibrium point (Zhao et al., 2019;
Utkin, 2013), in a family of the system equilibrium points
given by Deaecto et al. (2010):

Xe = −A−1λ b (3)

where Xe is from a convex combination of matrices Aλ =∑2
i=1 λiAi with

∑2
i=1 λi = 1.

The objective of the SMC is to control the output voltage
of the converter with zero steady-state error and fast
dynamic response. The sliding surface is thus defined by:

S = Kg(x(t)− xe) +

∫ t

0

Kint(x(t)− xe) dτ. (4)

where Kint = [0 Ks] and Kg = [Ki Kv]. This sur-
face (4) is designed to reach an equilibrium point xe =
[ie ve]

′ ∈ Xe.

The control law must be chosen such that the trajectory
reaches the surface S in a finite time and remains there,
reaching the desired equilibrium point (Utkin et al., 2020).
A continuous component ueq and a discontinuous com-
ponent un form the signal u that yields the duty cycle
to generate the converter switch signal via a pulse-width
modulation (PWM) technique:

u = ueq + un. (5)

The continuous component acts when the trajectory
reaches the surface S, ensuring the movement over it.
Therefore, ueq must satisfy the condition Ṡ = 0, being

Ṡ the time derivative of S that can be obtained as:

Ṡ = Kgẋ+Kint(x(t)− xe). (6)

Using (1), (6) can be expressed as:

Ṡ =

[
−KiR

L
+
Kv(1− d(σ(t)))

C

]
iL

+

[
Kv

RoC
+
Ki(1− d(σ(t)))

L

]
vC . (7)

When the steady state is reached, the equivalent control
corresponding to the equilibrium point xe can be calcu-
lated making Ṡ in (7) equal to zero, yielding:

ueq = 1− RoLC (KiRie −KiVin) + L2Kvve
KvLie −KiCve

. (8)

The discontinuous component acts by switching between
positive and negative values above and below the surface S
and can be defined using the signal function un = sign(S).

Finite frequency switching of the control signal leads to
undesirable oscillations of finite amplitude, characterizing
the phenomenon known as chattering, which reduces the
control precision and generates excessive wear on the
mechanical components of the converter (Utkin, 2013).
However, the implementation of a discontinuous control
law by the signal function requires an infinite frequency
switching when the trajectory reaches the surface, which
is not applicable (Yazici and Yaylaci, 2016).

Thus, a solution to reduce chattering is to use smooth
continuous control signals (Shtessel et al., 2014). However,
there is a trade-off between reduced chattering and control
accuracy. The control law must be adequately smoothed,
seeking an appropriate point between control bandwidth
and tracking precision (Slotine et al., 1991). A way to
smooth the control signal is to use a layer of hysteresis
ε given by:

un =

{
sign(S), |S| > ε
S/ε, otherwise

(9)

As the SMC control u yields the duty cycle to generate
the converter switch signal via a pulse-width modulation
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(PWM) technique, the surface gains are selected such that
0 < ueq < 1 in (8).

2.2 Sensor fault detection and identification

In a standard fault detection, identification and recon-
figuration (FDIR) strategy, a residual is generated when
the system output differs from an expected value. If this
residual is greater than a threshold, an alarm is triggered
and a fault is detected. Meanwhile, some reconfiguration
techniques require a fault identification, that is, along with
detecting the presence of fault, the type of fault and its
location estimation can be very important. After fault
detection and identification, a decision must be made to re-
configure the system operation by changing the controller
input or gain (Hwang et al., 2009).

The fault detection technique used here follows the work of
Li et al. (2019) which is based on a sliding mode observer.
In this technique, there must be a control law u(t) that
leads system (1) to a constant equilibrium state xe ∈ Xe

when t → ∞. Define the error between the state and the
equilibrium state as:

e(t) = x(t)− xe (10)

rewrite (1) considering (10), an affine switched error sys-
tem can be obtained as:

ė(t) = Aσ(t)e(t) + kσ(t)
kσ(t) = Aσ(t)xe(t) + b

ye(t) = Coute(t).

(11)

The fault affects the system output directly and system
(11) with sensor faults can be described as:

ė(t) = Aσ(t)e(t) + kσ(t)
yef (t) = Coute(t) +Dfs(t)

(12)

where fs(t) represents sensor faults andD = I is the sensor
fault distribution matrix with appropriate dimensions and
yef (t) = ye(t) +Dfs(t). Transforming the sensor fault in a
pseudo-actuator fault, a new variable z is defined, and an
augmented system is:[

ė(t)
ż(t)

]
=

[
Aσ(t) 0
Cout 0

] [
e(t)
z(t)

]
+

[
kσ(t)

0

]
+

[
0
D

]
fs(t)

ż(t) = Coute(t) +Dfs(t). (13)

Since z = [0 I] [e z]
′
, the augmented error state vector

is defined as ẽ = [e z]
′

and ỹe = z. System (13) can be
written as:

˙̃e(t) = Ãσ(t)ẽ(t) + k̃σ(t) + D̃fs(t)

ỹe(t) = C̃outẽ(t)
(14)

where

Ãσ(t) =

[
Aσ(t) 0
Cout 0

]
, k̃σ(t) =

[
kσ(t)

0

]
, D̃ =

[
0
D

]
,

C̃out = [ 0 I ] .

A model-based sensor fault observer should be designed to:
(1) estimate the plant state from its output measurements
in nominal conditions; (2) Produce a fast error between
the output and estimated states in fault conditions; (3)
Yield stable error dynamic in fault conditions.

From the first requirement, it is reasonable to design an
observer with similar dynamics as the plant model, there-
fore, the fault observer structure is assumed as follows:

˙̂
ẽ(t) = Ãσ(t) ˆ̃e(t) +Gey(t) + D̃ν

ˆ̃ye(t) = C̃out ˆ̃e(t)

ey(t) = ỹe(t)− ˆ̃ye(t).

(15)

Denoting ē(t) = ẽ(t)− ˆ̃e(t), the SMO error is given by:

˙̄e(t) = (Ãσ(t) −GC̃out)ē(t) + D̃(fs(t)− ν) + k̃σ(t) (16)

with the term ν given by a sliding law of the form:

ν =

{
ρ

Fey(t)
||Fey(t)|| , if ey(t) 6= 0

0, if ey(t) = 0
(17)

where ρ is a given constant and matrices G in (16) and F
are to be found. The matrix F can be calculated assuming
that there exists a matrix P > 0, S that satisfies:[

P
S ′

]
D̃ = C′F ′, with C =

[
C̃out 0n

]
(18)

the matrix F can be found as:

F = D̃′
[
P
S ′

]
C′. (19)

The fault observer must be asymptotically stable in pres-
ence of fault and the observed output must differ from
the system output in fault situations, generating a residual
error signal r̄(t). Assume that the sensor fault is a bounded
fault, such that ‖fs(t)‖ < ρ and define the residual error
as r̄(t) = ey −Dfs(t). The augmented system for residual
error generation is:

˙̄e(t) = (Ãσ(t) −GC̃out)ẽ(t) + D̃(fs(t)− ν) + k̃σ(t)

r̄(t) = C̃outē− D̃fs(t).
(20)

To deal with the effect of the fault in the error dynamics
(16), faults in residual are minimized by a H∞ perfor-
mance, such that:∫ ∞

0

r̄′(t)r̄(t)dt < γ2
∫ ∞
0

fs(t)
′fs(t)dt. (21)

The observer matrix G in (16) and the matrix F of (19)
can be obtained by Theorem 1.

Theorem 1. (Li et al. (2019)). If there exist matrix vari-
ables G,W,S and P � 0 satisfying the inequalities (22),
then system (20) is asymptotically stable and guarantees
the robust performance (21).

He(PÃ` − G) 0 P k̃` + Ã′`S −W C̃ ′out
∗ −γ2I 0 0

∗ ∗ 2k̃′`S 0
∗ ∗ ∗ −I

 ≺ 0

(22)
where ` = 1, 2.

When (22) is feasible, G = P−1GC̃ ′out(C̃outC̃ ′out)−1 is the
gain matrix of (16) and F can be found using (19).

3. MAIN RESULTS

A diagram of the FDIR process is presented in Figure 1. To
make the system control reconfiguration possible, a sliding
mode observer for fault detection was implemented.
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Figure 1. Diagram of fault detection, identification and reconfiguration for the boost DC-DC converter. The switch logic
in the reconfiguration box selects the SMC feedback input: current, voltage estimate or the actual plant state.

In the reconfiguration strategy, two state observers were
designed for estimating the inductor current and capacitor
voltage, denoted by iLest

and vCest
, respectively. Both cur-

rent and voltage estimators designs follow the structure:

˙̂x(t) = Aσ(t)x̂(t) + b+ Lest(sign(yf (t)− ŷ(t)))

y(t) = Cestx̂(t)
(23)

where yf (t) represents the sensors outputs with the pres-
ence of fault, Lest is the gain observer, Aσ(t) and b is the
same of the boost converter and CiL = [0 I] for iLest

and
CvC = [I 0] for vCest

. Note that the current estimator
considers only the voltage measurement and the same logic
is applied to the voltage estimator. This consideration is
very important for the reconfiguration strategy and it will
be discussed later on this paper. The matrix L is obtained
by considering extremely negative poles in the equation
Aσ(t)−LC, because the dynamic of the observers must be
faster than the plant.

Since Cout of the boost converter is an identity matrix,
it is possible to access all system states, that is, the
inductor current and capacitor voltage are measured. A
reference xe corresponds to an equilibrium point attainable
for a nominal system and it was considered constant. The
strategy for the reconfiguration is based on the observer
estimates for the current and voltage. The observer input
is the equilibrium state, and the feedback signal is changed
to the estimate state when fault is detected. The observed
estimates are called virtual measurements. To evaluate the
residual signal, the function J (·) is defined:

J (ey) = Jey =

√
1

T

∫ t

T0

ey(τ)ey(τ)d(τ) (24)

where T0 is the initial evaluation time, T is the time step
and ey is obtained through (15). A fault is detected if
J (ey) > Jth and an alarm flag (Alarm) value goes to
one, or zero otherwise. A threshold can be defined by:

Jth = sup
fs(t)=0

J (ey) (25)

which corresponds to the maximum J (ey) for a no fault
test. However, it was noticed that when the system load
Ro or source Vin values change, which is clearly possible
in practical situations, the alarm is takes the value 1, even
though there is no fault. A possible strategy to circumvent
these false alarms is to increase the threshold. Meanwhile,
high values of Jth will make the fault identification slower,
leading the system to high values of current or voltage
when the sensor signal is incorrect.

3.1 Classification of the sensor faults

A pattern recognition with neural network is an efficient
classification method that produce a rapid output and it is
a good alternative for fault identification, since the whole
classification consists in simple algebraic operations, which
is a good advantage comparing to model-based approach
in terms of computational efforts.

In this work, two classes of fault are considered: an
open sensor fault meaning a null signal in the sensor
measurement and a high gain sensor fault corresponding
to a large deviation of sensor measurement comparing to
nominal conditions. There are two sensors, with two types
of fault each resulting in four classes of faults and a class
No fault in no fault situation, resulting in five classes
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(fClass). A representation of these classes can be seen in
Table 1.

Table 1. Fault classes

Classes Number Label

No fault 1 NOFT
Inductor current sensor open fault 2 ILOP

Inductor current sensor high gain fault 3 ILHG
Capacitor voltage sensor open fault 4 VCOP

Capacitor voltage sensor high gain fault 5 VCHG

In fault identification, the goal is to determine which class
belongs the system, given a set of inputs. For this pur-
pose, a multi layer perceptron neural network for pattern
recognition (Prnn) was used. The Prnn was designed with
the following characteristics: one hidden layer containing
four neurons with sigmoid activation functions; one output
layer containing five neurons with softmax activation func-
tion. The scaled conjugate gradient backpropagation algo-
rithm with the cross entropy performance index was used
for training the Prnn with the following parameters: change
in weight for second derivative approximation equals to
5 × 10−5; parameter for regulating the indefiniteness of
the Hessian equals to 5 × 10−7. The samples distribution
in the network training, validation and test are given by
70%, 15% and 15%, respectively.

For the data gathering process, some assumptions were
made: (a) only one type of fault in one sensor occurs in
the time window analyzed; (b) both faults and change in
parameters occur in steady state (that is, at the equilib-
rium point); (c) only changes in Ro or Vin are allowed
in the time window; (d) parameters changing occurs only
before the fault. In the diagram of Figure 2, all the tests
executed were described in a tree, such that each branch,
from the left to the right, represents a combination in the
test. That is, the first level represents one of two sensors,
then the type of fault, followed by each parameter that
changes in a defined time with the respective value. For
high gain faults, two variations were considered.

Figure 2. Diagram of simulation cases for the gathered
data. Hs is the nominal gain of the sensor.

3.2 FDIR Algorithm

A function of inputs that returns a number in a finite
array corresponding to a class of faults can be defined
as Prnn(·). For this paper, three inputs were applied:

Jey ,JvC , and ∆V̂C , where ∆V̂C is the error between the
capacitor voltage of the current estimator and the voltage
estimator, respectively. The fault identification output will
be used for reconfiguration only if Alarm = 1, otherwise,
no reconfiguration strategy is required since there is no
fault. According to the Prnn(·) output, a reconfiguration
strategy will be enabled selecting the control feedback
signal. For the whole FDIR strategy, there are two parallel
routines, one is responsible for the fault detection and
identification as can be seen in Algorithm (1) and the other
for the system reconfiguration (Algorithm (2)).

Algorithm 1 Fault detection and identification

• Initialize: Alarm = 0, ˆ̃ye(0) = 0
for t = 0, . . . , tstop do

• Augment e(t) into ẽ

• Calculate ey(t) = ỹe(t)− ˆ̃ye(t)
• Calculate J = Jey ,JvC ,∆Vc
if J > Jth then

• Alarm← 1;
• fClass ← Prnn(J,JvC ,∆Vc)
• Call(Algorithm 2)

else
• Alarm← 0;

end if
end for

Algorithm 2 Reconfiguration

if îL1
> 50 + ie & fClass = 1 then

• xreconfig(t)← x̂iL(t)
else

switch fClass do
case 1

• xreconfig(t)← x(t)

case 2, 3
• xreconfig(t)← x̂iL(t)

case 4, 5
• xreconfig(t)← x̂vC (t)

end if

Remark: Note that in the reconfiguration algorithm there
is a comparison with îL1

and a value of 50 + ie. It means
that if the inductor current exceeds 50A from its equilib-
rium point and the Alarm goes on, but the fault identifica-
tion indicates no fault situation, there is a high probability
that the neural network has a delay in generating the fault
identification in this specific scenario, thus assume that
the fault in the inductor current sensor occurred and feed
the controller with the state of inductor current estimator.
When the identification is ready, this condition will not be
necessary. The time delays for nominal conditions and the
four types of faults can be seen in Table 2.

Table 2. Classification delays

Fault Label Time delay (ms) Fault Label Time delay (ms)

ILOP 10 VCOP 7
ILHG 147 VCHG 0

4. SIMULATION RESULTS

For the evaluation of the neural network performance in
classification, a confusion matrix is shown in Figure 3. The
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results represent the best performance of 20 trainings using
the test set.
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99.4%
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O
u
tp

u
t

C
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ss

Figure 3. Confusion matrix for Prnn.Rows corresponds
to the true class (Target Class) accordingly to the
Table 1 and Output Class represents the actual pre-
dicted output. Both the number of observations and
the percentage of the total number of observations
are shown in each cell. The last column illustrates the
percentage of examples predicted correctly (in green)
and incorrectly (in red) for each class. Elements in
off-diagonal correspond to examples predicted in the
wrong target class. The overall performance is 99, 42%
which means that the network can classify the faults
situations very well.

To evaluate the reconfiguration strategy, four conditions of
fault were tested: inductor current open sensor fault and
high gain fault, capacitor voltage open sensor fault and
high gain fault, that is represented by Figures 4, 5, 6, 7,
respectively. The softwares Matlab™ and Simulink™ were
used, with a variable step size and ‘ode45’ solver with
the following parameters for fault simulation: Ro =
100Ω, Vin = 190V,R = 0.082Ω, C = 2.85mF,L =
5mH, ρ = 5, xe = [ 7.6251 380 ]

′
and the matrices:

G = 105

 1.4025 0.1162
−0.0493 −0.0032

0 0
0 0

 F =

[
0.9073 0.0637
0.0637 0.8591

]
Kg = [ 0.80 8 ] Kint = [ 0 2.3 ]

Lest1 = 106 [ 1.5944 0.0662 ]
′
, Lest2 = [ 61200 1 ]

′

P =

 0.0000 0.0001 −0.0000 −0.0000
0.0001 0.0038 −0.0010 −0.0002
−0.0000 −0.0010 0.9073 0.0637
−0.0000− 0.0002 0.0637 0.8591


S = [ 0.0000 0.0004 1.2072 1.2448 ]

′
.

The faults occur in 0.60s and the capacitor voltage with
reconfiguration and no reconfiguration were represented
and compared. A set of two redundant sensors for current
and voltage measurement were implemented, since for
voltage sensor faults it would be impossible to make any
conclusion with the broken sensor.

0 0.5 1 1.5
0

200

400

Time (s)

v C

Reconfiguration
No reconfiguration

Figure 4. Capacitor Voltage for ILOP.

0 0.5 1 1.5
0

200

400

600

Time (s)

v C

Reconfiguration
No reconfiguration

Figure 5. Capacitor Voltage for ILHG.

0 0.5 1 1.5
0

200

400

Time (s)

v C

Reconfiguration
No reconfiguration

Figure 6. Capacitor voltage for VCOP.

In extreme situations of faults in the voltage sensor, the
system has a poor performance after the open fault and
high gain fault leads the system to instability without a
reconfiguration strategy. On the other hand, for all faults
simulated, the reconfiguration proved to be very satisfac-
tory in terms of system performance and reliably, with
the benefit of taking measurements of the well function-
ing sensor, which makes possible to detect uncertainties
after a fault situation. In addition, the fault detection and
identification stage can detect if the fault sensor was fixed.
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Figure 7. Capacitor voltage for VCHG.

5. CONCLUSION

The fault detection observer with a fault identification
neural network makes it possible to identify four different
faults situations with 99.42%. The reconfiguration strategy
worked very well and could maintain the stability and
performance in the presence of all faults scenarios. In fu-
ture works, uncertainties can be considered in the observer
design to improve performance.
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