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∗ Pontif́ıcia Universidade Católica do Rio de Janeiro, RJ, (e-mail:
lucascastro.mec@aluno.puc-rio.br).
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Abstract: This paper presents a comparative study between two different approximation
approaches for the traditional Magic Formula tire model based on Artificial Neural Network
(ANN), in specific, Radial Basis Function Network and Multilayer Perceptron Network, with
the view to approximate longitudinal and lateral friction coefficients curves. Simulation results
are considered satisfactory, showing that, the MLP network presented better results compared to
the RBF network which indicates that the prediction of the friction coefficients curves is driven
close to the reference derived from the Magic Formula. A nonlinear physical-mathematical model
is used as the real plant for the comparison between the MLP tire model and the Magic Formula,
considering torque and different steering angles as input. Moreover, the results show that the
implemented network is adequate for applications in simulated ground vehicles.
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1. INTRODUCTION

Tires are the components that most contribute to ground
vehicle dynamics (Pacejka, 2012). In fact, tires are the
link between the vehicle and the environment with the
capability to transmit forces that influence vehicle motion.
Therefore, the knowledge of friction aspects on the contact
patch is a key point for the vehicle safety systems as
well as in the improvements of noise emission and fuel
economy (Cabrera et al., 2018). Moreover, one of the most
important topics of vehicles research has been the design of
traction/braking control systems since the loss of adhesion
between the tire and the surface leads to vehicle instability.

Different approaches to measure, estimate and predict the
friction between the tire and the road have been devel-
oped and are still an important topic for research groups
(Cheng and Lu, 2017; Cabrera et al., 2018; Olazagoitia
et al., 2020). Tire models are frequently used to provide
friction coefficients approximation and can classified as
physical models, in which the tire is modeled by differential
equations, and empirical models based on experimental
results Wong (2008). Within the empirical models, one
of the most popular models is known as Pacejka’s tire
model or “Magic Formula”, firstly proposed by Bakker
et al. (1987), where measured (or simulated) data have to
fit the parameters of predefined equations. These equations
can be used to predict friction coefficients with certain
precision with longitudinal slip and sideslip angles as input
(Jazar, 2017; Savaresi and Tanelli, 2010).

Previous work have used tire models in order to predict
friction coefficients, such as Lyapunov-based observers to
estimate parameters of LuGre friction model (Alvarez
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et al., 2005; Patel et al., 2008). In Long and Chen (2010),
a neural network tire model is applied to predict both
longitudinal and lateral forces on the tire by means of
the estimation of the Magic Formula parameters. Cabrera
et al. (2018) proposed a modification of the original Magic
Formula in which effects of road composition, tire type
and slippery are included. Cheng and Lu (2017) proposed
an interpolation method to identify Magic Formula pa-
rameters. Olazagoitia et al. (2020) investigated the use
of Artificial Neural Networks (ANNs) to predict Magic
Formula parameters. Chen et al. (2018) used online gradi-
ent descent algorithm to estimate both sideslip angle and
lateral friction coefficient. Bardawil et al. (2020) applied
the similarity method on Pacejka’s tire model to estimate
the friction coefficient in the longitudinal direction.

Previous studies have used different methodologies to
approximate tire models as López et al. (2010) which
used approximation theory to obtain different types of
approximations to the traditional Magic Formula, such
as, rational functions, expansions in a series of Chebyshev
polynomials, and a series of rational orthogonal functions.
Wang et al. (2018) applied a multilayer feed-forward neural
network to build an intelligent tire. The peak-value of the
tire–road friction curve to control the slip using linear
methods is the main topic of the work presented by Satzger
et al. (2014); Corno et al. (2009).

In these researches, the friction curves are commonly de-
termined by the prediction of Magic Formula parameters
which may lead to high computational effort. Alterna-
tively, friction curves can be approximated by means of
ANNs which are a class of models that can find patterns
from data. These approaches present characteristics of
learning and adaptation to any complex problems with
accuracy (Engelbrecht, 2007). One of the main advantages
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Figure 1. Nonlinear bicycle model used as the real plant.

of these methods is that Neural Network does not require
prior information knowledge of the system, which may
leads it to be classified as black-box models and is, in fact,
a function that interpolates the systems output (Ljung,
2010).

Therefore, the aim of this work is to provide a contri-
bution towards tire models approximation techniques, in
specific, ANNs, and their influence in a dynamic vehicle
model. This paper presents a comparative study between
two different networks, Multilayer Perceptron (MLP) and
Radial Based Functions Neural Networks (RBFNNs) ar-
chitectures in order to obtain an approximate model for
Magic Formula.

The remainder of this paper is organized as follows. In
section 2, the vehicle model and the lateral and longitu-
dinal mathematical equations of the Magic Formula are
presented and discussed. In section 3, MLP and RBFNNs
architectures are described. Section 4 exposes the numer-
ical results in terms of synthesis and accuracy. Finally,
Section 5 draws the final remarks and point future research
directions.

2. VEHICLE DYNAMIC MODEL AND MAGIC
FORMULA

The bicycle model (Figure 1) is a simple and functional
model that has been used in vehicle dynamics and control
(Wang et al., 2019). In this model, the vehicle is assumed to
move on a rigid surface with aerodynamic and suspension
efforts neglected to simplify the model. Let x and y be
the directions (longitudinal and lateral, respectively) in
the vehicle frame, X and Y the same directions in the
absolute frame, ψ and Ψ the yaw angle in the (x, y) and
(X, Y ) frames, respectively. The governing equations of
motion in the vehicle frame, considering wheels dynamics
can be derived as follows:

mẍ = mẏψ̇ + 2(Fxfcosδ − Fyf sinδ) + 2Fxr , (1a)

mÿ = −mẋψ̇ + 2(Fxf sinδ + Fyfcosδ) + 2Fyr , (1b)

Iψ̈ = 2lf (Fxf sinδ + Fyfcosδ)− 2lrFyr , (1c)

Iωf ω̇f = −2Fxfrd + Tt , (1d)

Iωrω̇r = −2Fxrrd , (1e)

where m and I are the vehicle mass and the moment of
inertia, respectively, lf and lr are the front and rear axle
distance from the center of gravity (CG), Fxf and Fxr as

well as Fyf and Fyr are the longitudinal and lateral forces
acting on front and rear axles. Besides, Iωf and Iωr are the
moment of inertia of the front and rear wheels, rd is wheel
radius, Tt is the total torque applied to the driven wheels.
The front and rear wheel rotational speed are given by ωf

and ωr, respectively. Finally, δ is the steering angle.

The vehicle coordinates in the global frame are determined
based on the kinematic model given by:

Ẋ = ẋcosΨ− ẏsinΨ , (2a)

Ẏ = ẋsinΨ + ẏcosΨ , (2b)

Ψ̇ = ψ̇ . (2c)

Tire efforts can be determined by the “Magic Formula”
which is an important method in vehicle dynamics ei-
ther in academic or throughout industry to predict the
interaction at the contact patch. This model consists of
conduct real/virtual tests with the tire to fit the equation
parameters to the test data, and consequently, lateral
and longitudinal efforts can be determined with accuracy
(Blundell and Harty, 2015; Jazar, 2017). In this work, this
model is used to determine both longitudinal and lateral
friction coefficients at the contact region between the tire
and the road. The Magic Formula can be expressed by

F (λ) = Dsin{Catan[Bλ− E(Bλ− atan(Bλ))]} , (3)

where λ coefficient should be replaced by longitudinal slip
(s) or sideslip angle (α) for longitudinal and lateral forces
(F ), respectively. Moreover, sideslip angles for the front
(αf ) and rear (αr) tires can be determined, respectively,
by (4) and (5), as follows

αf = δ − ẏ + lf ψ̇

ẋ
, (4)

αr = − ẏ − lrψ̇
ẋ

. (5)

On the other hand, the longitudinal slip present on the tire
takes the form

s =
ẋ− ωrd

max[ẋ, ωrd]
. (6)

The other parameters present inside the Magic Formula
are expressed by

bx = (a3Fz
2 + a4Fz)/(exp(a5Fz)) , (7a)

by = a3sin(a4atan(a5Fz)) , (7b)

B = bx,y/CD , (7c)

C = a6 , (7d)

D = a1F
2
z + a2Fz , (7e)

E = a7F
2
z + a8Fz + a9 . (7f)

where Fz is the vertical effort at the contact point and
bx, by are parameters related to longitudinal and lateral
directions, respectively. Moreover, ap, with p = 1, 2, ...9,
are coefficients with different values for longitudinal and
lateral directions.
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It is important to point out that both longitudinal and
lateral efforts depend on different features of the road and
tire. Thus, they generally can be described as:

Fx = Fx(Fz, s), (8)

Fy = Fy(Fz, α). (9)

A normalized expression of the vertical forces, (8) and (9),
is typically considered, and therefore the proportionally
longitudinal (µx) and lateral (µy) friction coefficients can
be defined as

µx(s) :=
Fx

Fz
, (10)

µy(α) :=
Fy

Fz
. (11)

3. ARTIFICIAL NEURAL NETWORK (ANN)

ANN is a mathematical representation inspired in the
manner of how the brain performs a particular task. It
can train and adapt itself considering different datasets
by adjusting its connections and parameters (Haykin,
2009). Despite their particular differences, ANNs have the
same pattern: they are composed by simpler elements
(neurons) which build complex structure considering a
set of inputs to produce a set of approximations as a
mapping (Wasserman, 1993). Relevant networks are the
multilayer perceptron (MLP), and radial basis functions
neural networks (RBFNNs) (Haykin, 2009).

The radial basis function network is a network with a
simple architecture since uses radial basis functions as
an activation function (Mazhar et al., 2019). Besides,
one important characteristic of RBFNNs is the presence
of linear-in-the-parameters weighting coefficients resulting
in faster learning algorithms (Ayala, 2016). Essentially,
RBFNNs are composed of the input, hidden and output
layers. The input layer connects the input data with the
source nodes without weighting these inputs. On the other
hand, the hidden layer is composed of different neurons
of the activation functions with their outputs weighted
and summed in the output layer, which is the RBFNN
final approximation. A RBFNN can be mathematically be
written as

ŷ(t) =
M∑
i=1

ωiφ(r(t), ci, σi) , (12)

where ŷ(t) is the network identified output, M is the
quantity of neurons in the hidden layer, ωm is the output
weights coefficient, r(t) is the input vector, ci and σi
are the center and the width of the i -th hidden node,
respectively.

Typical choices for activation function are the Gaussian
(13a) and the multiquadratic function (13b) which can be
determined by

φg(l) = exp

(
l2

σ2
i

)
, (13a)

φm(l) =
√
l2 + σ2

i , (13b)

where l stands for the Euclidean norm between the input
of the neural network r to a given center c, i.e. l = ‖r− c‖
Some parameters of a RBFNN can be adjusted to obtain a
better final result, among them, the number of neurons in
the hidden layer, the width and the position of the centers
of the RBFs, as well as, the output weights. In order to
achieve results with accuracy, the RBFNN parameters are
defined by means of a supervised method. To this end, in
this work, the minimization of the sum of squared errors is
assumed and solved by the Genetic Algorithm where the
optimization problem is expressed by

minf(x) =< y(t)− ŷ(t) >, (14)

x̂ = [cT1 , ..., c
T
i , σ1, ..., σi, ω1, ..., ωi]

T , (15)

where y(t) is the vector of observations until time t, namely

y(t) =


y(1)
y(2)

...
y(n)

 . (16)

The vector of decision variables x̂ contains the RBFNN
parameters to be derived from the supervised fashion.

Another important type of network is the Multilayer Per-
ceptron network which was proposed to solve nonlinearly
separable problems. Some features include: differentiable
activation functions, presence of one or many hidden lay-
ers, high degree of connectivity. Mathematically, MLP ar-
chitecture is more complex when compared to the RBFNN,
and therefore, this network only deemed viable when
researchers found a way to train these architectures by
means of the backpropagation algorithm (Haykin, 2009).
Considering a MLP network having two layers of weights
and linear output units with a set of inputs xi and outputs
yk. The output of the MLP network takes the form:

ŷ
j

= f

(
Z∑

i=1

ωijxij + ωj

)
, (17)

where ŷ
j
(t) is the network identified output, Z is the

number of hidden layers, ωij are the weights coefficient
between the i-th neuron, in the prior layer, and the j-th
neuron in the actual layer, ωj is the bias weight, i is the
number of neurons that have been connected to the j-th
neuron, while xij are the input signals from the i-th neuron
to the j-th neuron.

In the present work, we use a MLP network composed
by two hidden layers with nodes totally connected by
means of a Feed-Forward method, activated through the
sigmoid (“tanh”) function that allows training through the
Backpropagation Algorithm (Bishop, 2006).
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4. NUMERICAL RESULTS

In this section, both MLP and RBF networks are com-
pared with the traditional Pacejka’s tire model for lon-
gitudinal and lateral friction approximation. The datasets
containing 200 data points are generated by calculating the
friction coefficients µx and µy using Pacejka’s tire model by
means of the parameters listed in Table 1, which are based
on a military vehicle with a weight distribution 50/50 .

Table 1. Vehicle Parameters

Parameter Description Value Unit

m Vehicle mass 2500 kg
I Moment of inertia of the vehicle 2200 kg.m2

Iωf/ωr Moment of inertia of the wheel 2.5 kg.m2

lt Wheelbase 2.7 m
r Wheel radius 0.42 m

The coefficients ap for the Pacejka’s model were obtained
from the work developed by Bakker et al. (1987) and are
listed in Table 2.

Table 2. Coefficients from Pacejka model
(Bakker et al., 1987)

µx µy
Parameter Value Parameter Value

a1 -21.3 a1 -22.1
a2 1144 a2 1011
a3 49.6 a3 1078
a4 226 a4 1.82
a5 0.069 a5 0.208
a6 1.65 a6 1.30
a7 -0.006 a7 0
a8 0.056 a8 -0.354
a8 0.486 a8 0.707

In order to compare the simulation results, two error-based
metrics are considered in this work: Root Mean Squared
Error - RMSE (in decibels) and Multiple Correlation
Coefficient (R2). These metrics are formulated as

RMSE = 10 log10

√√√√ 1

N

N∑
t=1

[y(t)− ŷ(t)]2 , (18)

R2 = 1−

N∑
t=1

[y(t)− ŷ(t)]2

N∑
t=1

[y(t)− y
mean

(t)]2
, (19)

where y is the reference input, ŷ is the approximated data,
y
mean

is the mean value of the input signal, and N is the
length of the set.

4.1 Neural Network Results

Gaussian and multiquadratic functions are used as activa-
tion functions for RBF networks, considering 2, 3, and 4
neurons in the hidden layer. Besides, in order to determine
the spread and the centers, the sum of squared errors is
applied as the cost function to be minimized for the GA
algorithm. In this case, only the centers are limited by
lower and upper bounds [-1;1].

The results for the longitudinal friction (µx) and lateral
friction (µy) are shown in Figure 2 and 3. It can be

Figure 2. Longitudinal friction approximation using RBF
network for different activation functions and number
of neurons in the hidden layer.

Figure 3. Lateral friction approximation using RBF net-
work for different activation functions and number of
neurons in the hidden layer.

seen that the gaussian function does not perform well
if compared with the multiquadratic function even for a
large number of neurons. The results near to zero slip
are satisfactory for gaussian function, but far from the
origin, the responses oscillate around the actual (ideal)
curve, specifically 2 and 3 neurons. On the other hand,
the multiquadratic function presents a satisfactory result
when 3 and 4 neurons are considered. In particular for
lateral friction, the curve is smoother than the longitudinal
curve, and therefore, the results from 3 and 4 neurons are
closer to the ideal.
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The results can be corroborated by the metric results
(Table 3), in which the RBF network with 4 neurons in
the hidden layer that considers the multiquadratic function
presents the best results for both RMSE (dB) and R2.

Table 3. RBF results for longitudinal and lat-
eral friction coefficients.

Parameter Metric Activation Neurons
Function 2 3 4

µx

RMSE
Multiquad -9.88 -14.35 -21.98
Gaussian -5.22 -7.63 -10.12

R2 Multiquad 0.98 0.98 0.99
Gaussian 0.85 0.95 0.98

µy

RMSE
Multiquad -16.29 -23.34 -28.11
Gaussian -6.11 -8.85 -11.44

R2 Multiquad 0.99 1.00 1.00
Gaussian 0.91 0.97 0.99

For the MLP network, two hidden layers with 1, 2, and 3
neurons in each hidden layer are used to the comparison.
The metric results for both longitudinal and lateral friction
coefficients are listed in Table 4. It can be noted that the
results are closer to the ideal considering (R2 metric), if
compared to the RBF network, even when one neuron in
each hidden layer is considered.

Table 4. MLP results for longitudinal and
lateral friction coefficients.

Friction Metric [1,1] [2,2] [3,3]
Coefficient Neurons Neurons Neurons

longitudinal RMSE (dB) -9.685 -20.294 -19.809
R2 0.982 0.999 0.998

lateral RMSE (dB) -15.615 -22.996 -24.426
R2 0.998 1.00 1.00

Thus, the MLP network with two neurons in each hidden
layer yields the best result for longitudinal and lateral
friction coefficients considering all the metrics evaluated.
From Figure 4, we can see the results for the best MLP
case.

4.2 Dynamic Tests

At this section, we perform vehicle dynamic virtual tests
considering the best neural network tire model obtained in
the previous analysis, which was the MLP network with
two hidden layers and two neurons in each layer.

A constant torque equals to 1200 N.m is applied to the
driven wheels, as well as, different steering angles are
used as input for the nonlinear bicycle model (1). Three
comparative tests considering sinusoidal trajectories are
performed to investigate the comparison between pacejka
and MLP tire models. Curved trajectories allow the visu-
alization of discrepancies due to the presence of nonlinear-
ities in vehicle dynamics, including tire models.

In the first test (Test 1), a steer angle based on a sinusoidal
function (amplitude of −0.05 m and angular frequency of
0.4 rad/s) is given to the steering wheel. From Figure 5 we
can see that the performance of the dynamic model with
MLP tire model is satisfactory compared with the Pacejka
tire model. Besides, some deviation can be noted through
the simulation representing a lateral offset mean error of
0.10 m. However, these discrepancies are not sufficient to
impact the final result.

Figure 4. Longitudinal and lateral friction approximation
using MLP network for different number of neurons
in the hidden layer.

Figure 5. Trajectory comparison between vehicle dynamic
model with Pacejka and MLP network tire models -
Test 1.

In second test (Test 2), a steering angle based on a sinu-
soidal function (amplitude of 0.08 m and angular frequency
of 0.4 rad/s), is given to the steering wheel. Here, we can
see that the trajectory response obtained from the MLP
network (Figure 6) is close to the Pacejka tire model. In
this case, a lateral offset mean error of 0.12 m is measured
through the simulation. This is due to the high amplitude
of the motion compared to the previous test.

In the latter test (Test 3), a steering angle based on
a sinusoidal function (amplitude of 0.08 m and angular
frequency of 0.4 rad/s) followed by a zero angle, is given
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Figure 6. Trajectory comparison between vehicle dynamic
model with Pacejka and MLP network tire models -
Test 2.

Figure 7. Trajectory comparison between vehicle dynamic
model with Pacejka and MLP network tire models -
Test 3.

to the steering wheel. From Figure 7, we also can see that
the MLP response achieve satisfactory performance. The
straight direction, after 60 m (in longitudinal direction),
maintains constant the lateral offset mean error through
the simulation. In this case, the error value is equal to 0,02
m.

5. CONCLUSIONS

The present work dealt with the application of artificial
neural network to approximate the well-known “Magic
Formula” tire model since numerous difficulties in mod-

eling, control, and simulation of vehicle emerge due to the
complexity related to tire and contact soil properties which
may lead to a high difference between physical and virtual
models.

Multilayer Perceptron and radial basis functions networks
are compared by means of different number of neurons
and activation functions. Based on the results, we conclude
that the MLP network performed better for all tests when
compared with RBF network. However, it is important
to point out that the RBF network, with the multi-
quadratic activation function, also presented satisfactory
results when three or more neurons are considered.

A bicycle dynamic model was derived to test the MLP
network. The results, supported by the metric results,
demonstrate the potential of ANNs in identification and
estimation of vehicle dynamics characteristics.

In the future we shall focus on implement a trajectory
tracking control by means of a model predictive control
(MPC); improve the dynamic model adding a more com-
plex tire model for off-road situations as presented by
Taghavifar and Rakheja (2020).

REFERENCES

Alvarez, L., Yi, J., Horowitz, R., and Olmos, L. (2005).
Dynamic friction model-based tire-road friction estima-
tion and emergency braking control. Transactions of the
ASME, 127, 22–32.

Ayala, H.V.H. (2016). Computational intelligence meth-
ods applied to nonlinear black-box system identification.
Ph.D. thesis, Pontifical Catholic University of Paraná,
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