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Abstract: Adjusting the controller’s parameters using a data-driven (DD) methodology usually
requires data gathered from a specific experiment performed in the process, which may be a
time consuming task for the designer. To avoid this task, routine operating data could be used
instead. However, combining those raw data along with a DD method almost certainly results
in inappropriate tuning. Therefore, it is advisable to pre-select the useful information before
estimating the controller’s parameters. The present work is an extension of our previous works,
where two data selection criteria were applied to the Virtual Reference Feedback Tuning (VRFT)
method. In the present work, we have combined the application of those criteria to select the
relevant data subsets. Moreover, the controller’s parameters are estimated using not only VRFT’s
original solution, known as Ordinary Least Squares (OLS), but also the Data Least Squares
(DLS) solution. The feasibility of the proposed solution is evaluated through experiments carried
out in a thermal process.

Keywords: Data-driven control, VRFT, data selection criteria, singular values, condition number,
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1. INTRODUCTION

In the data-driven (DD) control framework, a parametrized
controller structure is chosen a priori, and the controller’s
parameters are estimated directly using data collected from
the process, without knowing the model of this process. The
quality of the estimate depends on the informativity of the
data collected, therefore, it is a common practice to collect
data from a specific experiment where a sufficiently rich
signal excites the process’ input (Bazanella et al., 2011).
However, in some cases, performing this specific experiment
can be a very costly and even undesirable task (Bittencourt
et al., 2015; Shardt and Huang, 2013).

Aiming to avoid this task, one could use routine operating
data to adjust the controller’s parameters, but, applying
such data along with a DD methodology may lead to
inappropriate tuning, due to their low informativeness and
the presence of noise. However, this does not mean that
routine operating data does not have any useful information
to tune the controller’s parameters. In fact, it is not unusual
the presence of relevant intervals inside those data that, if
correctly identified, may result in a satisfactory estimate.

The task of searching for relevant subsets is a matter
already studied in the system identification framework.
As can be seen through several works in the literature
(Gevers et al., 2009; Carrette et al., 1996; Bittencourt
et al., 2015; Arengas and Kroll, 2017; Shardt and Huang,
2013). However, the task of searching for useful data
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subsets is a subject that has received little attention
in the DD framework. In our previous works, we have
adapted two data selection criteria, originally developed for
system identification, to be used with the Virtual Reference
Feedback Tuning (VRFT) method (Garcia and Bazanella,
2019, 2020). Garcia and Bazanella (2019) approached the
case of full-order controllers, that is, the ideal controller
may be constructed using the available controller structure.
The reduced-order controllers case was considered in Garcia
and Bazanella (2020), where we have shown that only one of
the criteria could be applied to this specific case. However,
in those works, we have separately applied the criteria and
considered only the original solution for the VRFT method,
known as Ordinary Least Squares (OLS). Moreover, the
feasibility of the proposed solution was presented through
Monte Carlo simulations.

In the present work, we have combined the application
of those two criteria to select the relevant data subsets.
Another contribution of the present work is to apply a
different solution for the VRFT method. This solution is
known as Data Least Squares (DLS) and treats the case
when the noise contributions are in the controller’s virtual
input, which suits well to the VRFT problem when the data
are collected during an open-loop experiment. Finally, the
applicability of the proposed solution is evaluated through
experiments performed in a thermal process.

The remaining of the paper is organized as follows. Section 2
presents the preliminaries. The VRFT method and the
OLS and DLS solutions are shown in section 3. Section 4
introduces the data selection criteria. The experimental
results are presented in section 5. Finally, section 6 presents
the conclusions and future work.
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2. PRELIMINARIES

2.1 Background

Consider a linear discrete-time single-variable process

y(t) = G(q)u(t) +H(q)v(t), (1)

where q is the forward-shift operator, G(q) is the process
transfer function, H(q) is the noise model, whereas y(t) is
the output signal, u(t) is the input signal, and v(t) is a
zero-mean white noise with variance σ2

v . It is assumed that
G(q) and H(q) are rational and causal transfer functions.

The process (1) is controlled by a linear time-invariant
controller with a fixed transfer function. The control action,
u(t), is given by

u(t) = C(q, ρ) [r(t)− y(t)] , (2)

where C(q, ρ) is the controller’s transfer function, which is
parametrized by a parameter vector ρ ∈ Rm, where m is the
number of parameters, whereas, r(t) is the reference signal.
Is is assumed that r(t) is a quasi-stationary signal and
uncorrelated with the noise, that is, E [r(t)v(t− τ)] = 0 ∀τ ,

and E [f(t)] , limN→∞
1
N

∑N
t=1 E [f(t)] with E [·] denoting

expectation. When collecting data from a closed-loop
experiment the input-output signals are

y(t) = T (q, ρ)r(t) + S(q, ρ)H(q)v(t), (3)

u(t) = S(q, ρ)C(q, ρ) [r(t)−H(q)v(t)] , (4)

S(q, ρ) = [1 + C(q, ρ)G(q)]
−1
, (5)

T (q, ρ) = S(q, ρ)G(q)C(q, ρ), (6)

where (3) is obtained replacing (2) in (1), and (4) is ob-
tained replacing (1) in (2). Moreover, S(q, ρ) and T (q, ρ) are
the sensitivity function and the complementary sensitivity
function, obtained with the controller C(q, ρ), respectively.
On the other hand, when collecting data during an open-
loop experiment G(q) is assumed to be bounded-input
bounded-output (BIBO) stable, u(t) is an exogenous signal,
and the output signal is given by (1).

2.2 Model reference control

In the model reference control, the desired closed-loop
behaviour is defined a priori, through the reference model,
Td(q). The objective is to find the optimal parameter vector
ρ?mr that minimizes, for a specified reference signal, the
following cost function

ρ?mr = arg min
ρ
Jmr(ρ), (7)

Jmr(ρ) , E [y(t, ρ)− yd(t)]2

= E [(T (q, ρ)− Td(q)) r(t)]2 , (8)

where yd(t) = Td(q)r(t) is the desired closed-loop response,
and y(t, ρ) = T (q, ρ)r(t) is the closed-loop response
obtained with the controller C(q, ρ).

The controller parametrization delimits a subset within
the controller set, known as the controller class, defined
as C = {C(q, ρ)|ρ ∈ Ω ⊆ Rm}, where Ω is the subset of all
implementable parameter vectors. From (8) and considering
(6), the ideal controller could be calculated as

Cd(q) = [G(q)−G(q)Td(q)]
−1
Td(q).

Considering that the ideal controller is in the controller’s
class C, i. e., the full-order controllers case, one may have
the following assumption.

Assumption 2.1. (Matching condition).

∃ ρd ∈ Ω |C(q, ρd) = Cd(q),

where ρd is the ideal parameter vector.

A very common choice for the controller’s structure is
a linearly parametrized (LP) controller as described by
Definition 2.1.

Definition 2.1. (Linear parametrization). The controller’s
transfer function can be written as C(q, ρ) = ρTC(q), where
C(q) is a vector ofm rational transfer functions independent
of ρ.

3. VIRTUAL REFERENCE FEEDBACK TUNING

VRFT is based on the model reference paradigm, this
way, the controller’s parameters are estimated using the
reference model and the controller structure, both chosen
a priori, and a batch of input-output data collected from
the process (Campi et al., 2002; Bazanella et al., 2011).

Those informations are used to generate the signals of
the VRFT’s virtual experiment. From the output data
collected the virtual reference signal is generated as r(t) =
T−1
d (q)y(t), which is the signal that should be applied

to the desired closed-loop to generate the output signal
collected. Using r(t), the virtual error is calculated as
e(t) =

[
T−1
d (q)− 1

]
y(t). Considering a LP controller,

Definition 2.1, and the virtual error, e(t), the regressor
vector ϕ(t) is defined as

ϕ(t) = C(q)
[
T−1
d (q)− 1

]
y(t), (9)

which is the input of the ideal controller.

From the above information, the VRFT recasts the problem
of minimizing Jmr(ρ), (8), into a least squares identification
of the controller

Jvr(ρ) = E
[
uL(t)− ρTϕL(t)

]2
, (10)

where

ϕL(t) = L(q)ϕ(t) (11)

uL(t) = L(q)u(t) (12)

and L(q) is a filter whose structure depends on the problem
to be considered. The minimum of Jvr(ρ) is proven to
coincide with the minimum of Jmr(ρ) when it is assumed
that the process is not affected by noise (meaning v(t) = 0
in (3) and (4), for the closed-loop case, or in (1), for the
open-loop case), and that there is an ideal controller Cd(q)
such that Jmr(ρd) = 0, that is, T (q, ρd) = Td(q).

3.1 Solutions for the VRFT problem

A general formulation for the problem of estimating the
parameter vector ρ is

(ΦL −∆Φ) ρ = uL − δu, (13)

where the regressor matrix ΦL ∈ RN×m and the output
vector uL ∈ RN are given by

ΦL = [ϕL(1) ϕL(2) . . . ϕL(N)]
T
, (14)

uL = [uL(1) uL(2) . . . uL(N)]
T
, (15)

whereas ∆Φ ∈ RN×m and δu ∈ RN represent the noise
contributions in ΦL and uL, respectively, and N is the
number of samples. Notice that, ΦL = Φ0 + ∆Φ and
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uL = u0 + δu where Φ0 ∈ RN×m is the noise-free regressor
matrix and u0 ∈ RN is the noise-free output vector, given
by

Φ0 = [ϕ0(1) ϕ0(2) . . . ϕ0(N)]
T
,

u0 = [u0(1) u0(2) . . . u0(N)]
T
.

Therefore, in the noise-free case the problem is Φ0ρd = u0,
that is, ∆Φ = 0 and δu = 0.

3.2 Original solution

The estimated parameters are obtained by minimizing the
squares of the difference between ρTϕL(t) and uL(t), (10),
solving the following normal equation:

ρ̂ =

[∑N

t=1
ϕL(t)ϕT

L(t)

]−1∑N

t=1
ϕL(t)uL(t), (16)

where N is the number of samples collected in the
experiment. In vector form, (16) is rewritten as

ρ̂ =
(
ΦT
LΦL

)−1
ΦT
LuL, (17)

where the regressor matriz ΦL and the output vector uL
are given by (14) and (15), respectively.

This solution is known in the literature as OLS and it gives
a unbiased estimate under the assumption that only uL is
affected by noise (Van Huffel and Lemmerling, 2013). The
OLS problem is formulated setting ∆Φ = 0 in (13) as

min
δu,ρ
‖δu‖22 s. t. ΦLρ = uL − δu.

However, the VRFT problem is not a standard identifica-
tion problem, because the virtual input of the controller to
be identified is always affected by noise, see (1), while the
virtual output is affected by noise only when closed-loop
data is used, see (3) and (4). Therefore, the OLS solution
gives a biased estimate in the presence of noisy data.

An instrumental variable (IV) method is usually employed
to reduce the bias of the estimate. However, the decrease
in the bias comes with the cost of increasing its variance
(Bazanella et al., 2011). Because of that, the IV approach
is not used in the present work.

3.3 Data Least Squares solution

The DLS solution is formulated considering that the
regressor matrix is affected by noise and the output
vector is known exactly, that is, uL is not corrupted by
noise (DeGroat and Dowling, 1993). The DLS problem is
formulated, setting δu = 0 in (13), as

min
∆Φ,ρ

‖∆Φ‖2F s. t. (ΦL −∆Φ) ρ = uL,

where ‖·‖F is the Frobenius norm, that is, ‖X‖2F =∑
i,j |xi,j |2. The solution for this problem is given in

Theorem 3.1.

Theorem 3.1. (from DeGroat and Dowling (1993)). The so-
lution for the DLS problem is given by

ρ̂ =
uT
LuL

uT
LΦLv

v,

where v is the smallest right singular vector of P⊥b ΦL,

and P⊥b ∈ RN×N =
[
I − uL

(
uT
LuL

)−1
uT
L

]
is a projection

matrix that projects the column space of ΦL into the
orthogonal complement of uL.

4. DATA SELECTION CRITERIA

The objective of this section is to briefly present the
data selection criteria applied to the VRFT problem.
Subsection 4.1 apresents the Smallest Singular Value (SSV)
criterion, the Condition Number (CN) criterion is presented
in Subsection 4.2, and the combination of those two criteria
is presented in Subsection 4.3.

4.1 SSV criterion

This criterion was adapted to the VRFT problem as
presented in Garcia and Bazanella (2019, 2020), and
originally developed to the system identification framework
in Carrette et al. (1996). The criterion’s main idea relies
on the fact that when the regressor matrix ΦL presents
a singular value significantly smaller than the others, the
associate eigenparameter is the most affected by noise,
therefore, it is enough to evaluate only the SSV of the
regressor matrix.

Consider the square of the SSV of ΦL(t) given by
σ2 (ΦL(t)) = λ (P (t)), where σ2 is the square of the smallest
singular value of the regressor matrix, calculated up to the
t-th data sample, λ(P (t)) is the smallest eigenvalue of the
information matrix P (t), defined as

P (t) = ΦT
L(t)ΦL(t), (18)

also calculated up to the t-th data sample, and t =
m, . . . ,N to ensure that the information matriz will be
non-singular.

This criterion is based on tracking the evolution of the first
difference of σ2 (ΦL(t)). This quantity is defined as

∆σ2 (ΦL(t)) = σ2 (ΦL(t))− σ2 (ΦL(t− 1)) , (19)

where ∆σ2 (ΦL(t)) is the first difference of σ2 (ΦL(t)) and
t is the sample index. The criterion is

∆σ2 (ΦL(t)) > ηssv, (20)

where ηssv is a threshold chosen by the designer. How
to choose a reasonable value for this threshold will be
presented in Section 5. Therefore, the regressor vector ϕL(t)
and the output sample uL(t) are maintained whenever
the inequality in (20) is satisfied. The SSV criterion is
summarized in Algorithm 1. The regressor matrix Φssv and
the output vector ussv selected with the SSV criterion are
employed to estimate the controller’s parameters using the
OLS solution, (17), and the DLS solution in Theorem 3.1.

4.2 CN criterion

The condition number is calculated as

κ (P (t)) =
σ (P (t))

σ (P (t))
, (21)

where σ (P (t)) and σ (P (t)) are the largest and smallest
singular values of P (t), respectively.

This criterion considers that as the input signal u(t) is
little informative and its contributions dominate over the
noise, the information matrix P (t) becomes ill-conditioned
with time. Therefore, the idea is that reducing the number
of samples may prevent the degradation of the condition
number. This data selection criterion is applied separately
for each step change, and consists in maintaining the
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Algorithm 1: SSV criterion

Data: Reference model Td(q), vector C(q), filter L(q),
threshold ηssv, number of paramters to be
estimated m, input vector u and output vector y.

Result: Regressor matrix Φssv and output vector ussv

selected with the criterion.
1 calculate ΦL as in (14) using (11) and (9) ;
2 calculate uL as in (15) using (12) ;
3 Φssv ← 0 ;
4 ussv ← 0 ;
5 t← m+ 1 ;
6 while t < N do
7 calculate ∆σ2 (ΦL(t)) as in (19) ;
8 if ∆σ2 (ΦL(t)) > ηssv then
9 Φssv ← [Φssv ϕL(t)] ;
10 ussv ← [ussv uL(t)] ;
11 end
12 t← t+ 1 ;
13 next iteration;
14 end

regressor rows ϕL(t), and the corresponding output rows
uL(t), while the following inequality holds:

κ (P (t)) > ηcn, (22)

where ηcn is a threshold chosen by the designer, and the
sample index t varies from the start of the transient until
the end of the interval. This way, the informative subset is
delimited by the start of the transient caused by an input
change, up to, but not including, the sample when the
inequality (22) stops holding. Algorithm 2 summarizes the
CN criterion. The regressor matrix Φcn and the output
vector ucn selected with the CN criterion are employed to
estimate the controller’s parameters using the OLS solution
(17) and the DLS solution in Theorem 3.1.

4.3 Combining the criteria

The combination of the criteria is accomplished this way:
the lines of Φssv are maintained if they also correspond to

Algorithm 2: CN criterion

Data: Reference model Td(q), vector C(q), filter L(q),
threshold ηcn, number of parameters to be
estimated m, input vector u and output vector y.

Result: Regressor matrix Φcn and output vector ucn

selected with the criterion.
1 Φcn ← 0 ;
2 ucn ← 0 ;
3 t← m ;
4 calculate ΦL as in (14) using (11) and (9) ;
5 calculate uL as in (15) using (12) ;
6 while t ≤ N do
7 calculate P (t) as in (18) ;
8 calculate κ (P (t)) as in (21) ;
9 if κ (P (t)) ≥ ηcn then execution ending;

10 Φcn ← [Φcn ϕL(t)] ;
11 ucn ← [ucn uL(t)] ;
12 t← t+ 1 ;
13 next iteration;
14 end

lines of Φcn. Equivalently, the lines of ussv are maintained if
they correspond to lines of ucn. The controller’s parameter
vector is estimated using the OLS and DLS solutions and
the regressor matrix and output vector selected combining
the criteria.

5. EXPERIMENTAL RESULTS

In order to evaluate the application of the data selection
criteria, presented in the previous section, an experiment in
a thermal process is executed to collect data. This thermal
process is composed by a heating element, a temperature
sensor, and a commercial Proportional-Integral-Derivative
(PID) controller (Novus, 2021). The heating element is a
resistor that dissipates heat by the Joule effect, and the
sensor is a type K thermocouple that converts temperature
into a voltage difference. The voltage on the heater is
controlled by a pulse width modulated (PWM) signal, and
the process’ input is the signal pulse width percentage.
The process’ output is the voltage on the thermocouple
converted into a temperature in Celsius degrees.

To estimate the controller’s parameters, first, the data are
collected from an open-loop experiment where the input
signal is composed by two steps with PWM amplitudes of
7% and 8%, respectively. Each step comprises 1800 samples.
Figure 1 presents the input u(t) and the output y(t) signals
collected during the experiment. Observe in this figure that
there are measurement errors in the output signal.

The open-loop settling time is approximately 500 samples,
inferred from Figure 1. Observe that, this process can be
approximated by a first-order transfer function. Therefore,
by choosing a desired closed-loop behaviour faster than
open-loop and using a controller with a PI structure, it
is expected a resulting behaviour with overshoot. Because
of that, the reference model was chosen with a complex-
conjugate pole pair, as given by

Td(q) =
0.051064(q − 0.9546)

(q2 − 1.94q + 0.9419)
, (23)

providing settling time of 100 samples. The controller to
be estimated is a PI with the following structure

C(q, ρ) = [Kp Ki]
[
1

q

q − 1

]T
, (24)

where ρ = [Kp Ki]
T is the parameter vector to be

estimated.
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Figure 1. Open-loop data collected.
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The controller’s parameters are estimated using the OLS
and DLS solutions, considering L(q) = Td(q), presented in
Sections 3.2 and 3.3, respectively. The input-output signals
are preprocessed to remove the offsets, and the trending
was also removed from the output signal. The data used are
either the entire data set or the relevant subsets selected
by the criteria, presented in Section 4.

Figure 2 presents through the blue continuous line the
first difference of the SSV, ∆σ2 (ΦL(t)), calculated using
the data collected during the experiment. This figure also

00.020.040.060.080.1

0 400 800 1200 1600 2000 2400 2800 3200 3600

A
m
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e

∆�2(ΦL(t))�ssv
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Sample (t)
Figure 2. Evolution of ∆σ2 (ΦL(t)), threshold, and selected

intervals.

presents the threshold chosen ηssv (black dashed line) and
the relevant interval (red vertical lines). As mentioned
before, one may use this plot to choose a reasonable value
for ηssv. Recall that low values of ∆σ2 (ΦL(t)) are produced
by the rows of ΦL that are strongly affected by noise.
Observe in Figure 2 that it is possible to choose a threshold
in order to avoid the small peaks. However, notice in this
same figure that ∆σ2 (ΦL(t)) presents large values which
do not come from the input signal exciting the process,
but from the measurement errors in the output signal.
Therefore, those rows of ΦL are misclassified as informative
by the criterion. Here, it was chosen ηssv = 0.02 reducing
ΦL to about 164 relevant lines, that is, the parameters are
estimated using 4.56% of the entire data set.

In a similar way, the CN was calculated using the data col-
lected during the open-loop experiment. Figure 3 presents
κ(P (t)) through the blue continuous line, along with the
threshold ηcn = 60 (black dashed line) and the relevant
intervals (yellow vertical lines). Observe in this figure that
the CN not only increases with time, there are parts in
which it actually decreases. That is the effect of the mea-
surement noise. However, those samples are not classified
as informative because the criterion is applied individually
to each step change and uses the samples while the CN
is smaller than the threshold. With the threshold chosen,
220 rows of ΦL were classified as informative, meaning that
the controller’s parameters are estimate using 6.11% of the
entire data set.
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Figure 3. Evolution of κ(P (t)), threshold, and selected
intervals.

Table 1 presents the parameter vector estimated in each
case with the OLS solution. Observe that, the parameters
obtained using the entire data set and the relevant intervals
selected with the SSV criterion are quite similar. The reason
relies on the fact that the SSV criterion misclassified as
relevant the measurement error data. Table 2 presents the

Table 1. Controller’s parameters estimated in
each case with OLS.

ρ All data SSV CN Combined

Kp 0.1130 0.1176 0.5255 0.4532
Ki 0.0330 0.0325 0.0296 0.0335

controller’s parameters estimated with the DLS solution
and either the entire data set or the informative subsets
selected with each criteria.

Table 2. Controller’s parameters estimated in
each case with DLS.

ρ All data SSV CN Combined

Kp 2.0049 1.2972 0.9675 1.0278
Ki 0.0326 0.0179 0.0265 0.0245

Each set of parameters presented in Tables 1 and 2 were
used to configure the PID controller attached to the
process, where the derivative term was set to zero. For each
controller a new closed-loop experiment was performed.
During those experiments the reference signal was a step
from 80 ◦C to 90 ◦C. Figure 4 shows the collected output
y(t) obtained with each controller estimated with the OLS
solution along with the desired output yd(t). Observe the
oscillatory behaviour obtained with the controller estimated
with the entire data set and with the SSV criterion. This
is expected because the SSV criterion misclassifies as
informative the variations in the output signal produced by
the measurement errors. On the other hand, notice that the
responses obtained with the informative subsets selected
with the CN criterion and combining the criteria are much
more closer to the desired one than the ones obtained using
the entire data set.

Figure 5 presents the output signal collected in each
experiment performed with the controllers estimated with
the DLS solution. This same figure also shows the desired
output yd(t). Observe that the responses obtained with
the selected subsets are closer to the desired one than the
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Figure 4. Closed-loop data collected with the controller’s
obtained with the OLS solution, and desired output.
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Figure 5. Closed-loop data collected with the controller’s
obtained with the DLS solution, and desired output.

one obtained using the entire data set. Observe also that
those responses do not present oscillatory behaviour. That
occurs because DLS considers that the regressor matrix
is affected by noise, which suits well the VRFT problem
when using open-loop data, as mentioned before.

Finally, the results are numerically compared using an
estimate of the performance criterion cost function given
by

Ĵmr(ρ̂) =
1

N

∑N

t=1
[y(t, ρ̂)− yd(t)]2 ,

where ρ̂ is the parameter vector estimated with each
criterion and solution (OLS and DLS) and N = 150,
which is the number of samples collected in the experiment.
Table 3 presents the values of Ĵmr(ρ̂) calculated for each
case. Observe that the smallest values were found using
the CN criterion and combining the criteria, regardless the
solution. Those results agree with the closed-loop responses
obtained in Figures 4 and 5.

Table 3. Cost function estimated using each
criterion and solution.

Ĵmr(ρ̂)

Criterion All data SSV CN Combined

OLS 0.3181 0.3045 0.0745 0.1054
DLS 0.1279 0.0832 0.0629 0.0618

6. CONCLUSIONS AND FUTURE WORK

The data-driven control design usually requires data col-
lected from a specific experiment to adjust the controller’s
parameters. A convenient option to avoid performing this
specific experiment is to use data collected during routine
operation. However, applying those raw data along with a
data-driven method may lead to inappropriate tuning, as
illustrated in the experimental results. In the present work,
we have applied and combined, two data selection criteria to
select the relevant intervals for use with the VRFT method.
Besides, we have proposed to use the data least squares
solution to tune the controller’s parameters with VRFT.
From the results, we conclude that it is advantageous
to select the informative data. In fact, considering the
OLS solution, we have obtained closed-loop performances
approximately 3 (combined criteria) and 4 (CN) times
closer to the desired one compared to using the entire data

set. On the other hand, with the DLS solution, we have
obtained closed-loop performances approximately 2 times
closer to the desired one (combined criteria and CN) than
using the whole data set. However, the SSV criterion did
not present the same improvement, because it misclassified
as informative the output signal variations produced by the
measurement errors. We also conclude that it is preferable
to use the selection criteria along with the DLS solution,
because, it resulted in closed-loop performance closer to
the desired one than with the original solution, even when
using the entire data set.

As future work we intend to investigate how to automati-
cally adjust the thresholds used in the criteria. Moreover,
we also intend to apply the data selection criteria and the
DLS solution to other DD methods.
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