
Collision avoidance with differential drive robots

using MPC-ORCA

Glauber R. Leite ∗ Arthur da C. Vangasse ∗ Ícaro B. Q. Araújo ∗

Heitor J. Savino ∗

∗ Instituto de Computação, Universidade Federal de Alagoas, AL,
(e-mail: {grl, vangasse, icaro, heitor.savino}@ic.ufal.br).

Abstract: This work describes a distributed solution using Model Predictive Control (MPC),
including the Optimal Reciprocal Collision Avoidance (ORCA) algorithm applied to mobile
robots following individual trajectories. Differential drive robots are used, defined by their
position on the plane and controlled by velocity commands. Based on an explicit system
model and velocity constraints designated by the collision avoidance algorithm, the MPC-
ORCA computes optimal control actions to minimize a cost function over a prediction horizon.
The methodology can efficiently handle multivariable control systems using state-space model
representation and convex quadratic programming (QP). Simulation results show that the
combined strategy MPC-ORCA provided smooth and collision-free trajectories in a changing
environment. It also requires no trajectory replanning neither direct communication between
agents.

Keywords: Model Predictive Control; Autonomous Mobile Robots; Distributed Control;
Collision Avoidance; Cooperative Robots

1. INTRODUCTION

The growing employment of robots in diverse industry
domains, due to increasing demands in productivity and
flexibility, leads to the densification of robots in the factory
place (Graetz and Michaels, 2018). Thus, autonomy and
decentralization have become essential in the paradigm
of Industry 4.0, mainly when it comes to scalability (Lu,
2017).

Distributed robotic systems have inherent advantages such
as parallelism to achieve global objectives faster and sim-
plifying problems due to decomposition and task allo-
cation. Also, there are situations where multiple simple
robots can perform particular functionalities better than
a unique complex robot (Arkin and Balch, 1998). Con-
versely, coordinating distributed robots is a challenging
problem since group performance is not programmed di-
rectly and the behavior of each agent limits the develop-
ment of the solution (Ota, 2006; Sycara, 1998). In the con-
text of collision avoidance, providing collision-free trajec-
tories requires eventual or continuous replanning through
algorithms such as A*, D*, or Potential Fields (Stentz,
1995; Mouad et al., 2012).

An approach for this problem relies on local control
actions for online reaction to robots and obstacles in
route of collision, ensuring collision-free trajectories while
keeping the smallest deviation from predefined routes.
These algorithms compute regions in velocity space that
would put the agent into collision risk in some future
moment, then choose a velocity command close to the
one computed offline by the global planner outside those
collision regions.

Velocity Obstacles (VO), proposed by Fiorini and Shiller
(1993), is one of these first algorithms to handle moving
obstacles. However, some scenarios present unrealistic os-
cillations when those obstacles are other agents. For that,
Van den Berg et al. (2008) adapted the VO algorithm to
consider reciprocity between agents, resulting in the Recip-
rocal Collision Obstacles (RVO) approach. Later, RVO was
reformulated as the Optimal Reciprocal Collision Avoid-
ance (ORCA) by Van Den Berg et al. (2011), generating
optimal halfspaces solvable with convex optimization.

Model predictive control (MPC) is an approach to design
optimal control actions through predictions of the output
of a system aware of its model and constraints. Convex
optimization can properly implement MPC. Thus, Cheng
et al. (2017) assigned ORCA halfspaces as constraints
on an MPC problem so that each robot generates its
collision-free trajectories. Cheng et al. (2017) focused on
holonomic mobile robots and considered only the desired
target position to generate trajectories online. Mao et al.
(2020) follows a similar direction with non-holonomic
mobile robots, still relying on online generated trajectories.

The contribution of this paper is to extend the MPC-
ORCA approach from Cheng et al. (2017) considering two
aspects: i) differential drive robots controlled by linear (for-
ward) and rotational velocities; ii) and an offline trajectory
planner for each robot, that produces single-agent trajecto-
ries unaware of neighbors, which provides greater planning
freedom for distinct tasks strategies, such as maximum
coverage tasks. The second contribution differentiates this
work from Mao et al. (2020).

The state-space model is used to write the linearized
robot’s kinematics, written as a MPC problem with ORCA

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1556 DOI: 10.20906/sbai.v1i1.2774

(a) Robot model. (b) Mobile robot linearization.

Figure 1. Model of a mobile robot and assumption of an
operation point for linearization.

constraints related to its neighbors. The problem is con-
verted into a convex optimization problem and solved us-
ing quadratic programming, which provides unique global
minimum solutions.

This paper is organized as follows: Section 2 presents the
model and linearization for the differential drive robot.
Section 3 shows the construction of the MPC problem and
its formulation as quadratic programming optimization
problem. Section 4 explores the ORCA algorithm, which is
integrated with the MPC in Section 5. Section 6 presents
a simulation scenario, while results are given in Section 7.
Concluding remarks and future directions are summarized
at the end.

2. ROBOT MODEL

Figure 1a shows the representation of each robot. The
world frame is defined by F0 = {O0, x0, y0, z0}, fixed at O0

and with coordinate system with the unitary orthogonal
axes {x0, y0, z0}. We assume each agent bounded by a
circle of radius λ ∈ R. The coordinate system of the
robot is defined by the frame FR = {OR, xR, yR}, with
origin at the coordinate OR = (px0

, py0) at the center of
the circle in global coordinates, with px0

, py0 ∈ R, and
{xR, yR, zR} unitary orthogonal axes. The rotation of the
robot’s reference system FR relative to the global F0 is
given by θz0 ∈ S1. Thus, the configuration of a robot can
be written as

q = [px0
py0 θz0]

T ∈ Q,
with Q ⊂ R2×S1 the set of possible configurations given in
the global reference system. At the local frame, the velocity
is given by

vR = [vxR vyR ωzR]
T ∈ R3,

where vxR = ṗxR , vyR = ṗyR , and ωzR = θ̇zR are the robot
linear velocities in xR, and yR, and angular velocity around
zR, respectively.

Differential drive robots are subjected to non-holonomic
constraints reducing the admissible velocity space. This
model considers that (Ahmad Abu Hatab, 2013) the robot
cannot move sideways, i.e., vyR = 0, and no sideslip over
axes xR or yR. Thus, the control action for each robot
actuated by accelerations is

uR =

[
v̇xR
ω̇zR

]
.

The presented non-holonomic constraints restrain the con-
struction of a linear time-invariant model. To circumvent
this problem, define a maneuvering frame as shown in
Figure 1b within a small distance d from the center of the
robot to perform the linearization as explored by Ren and
Atkins (2007). The frame is defined in the same orientation
as the global frame with origin (p′x0

, p′y0) as[
p′x0

p′y0

]
=

[
px0

py0

]
+ d

[
cos θz0
sin θz0

]
. (1)

Taking a double derivative and considering the transfor-
mation from the robot to the global frame, one can obtain[

v̇xR
ω̇zR

]
=

[
cos θz0 −d sin θz0
sin θz0 d cos θz0

]−1
[
p̈x0 + vxRωzR sin θz0 + dω2

zR cos θz0
p̈y0 − vxRωzR cos θz0 + dω2

zR sin θz0

]
(2)

Through feedback linearization, the control actions

u0 =

[
p̈x0

p̈y0

]
=

[
ax0

ay0

]
applied at the operation point dismiss the kinematic con-
straints, presenting the behavior of a holonomic robot.
Discretizing the model, with step-time Ts, the second-
order model of the robot ispx0

(k + 1)
py0(k + 1)
vx0

(k + 1)
vy0(k + 1)

 =

1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1


px0

(k)
py0(k)
vx0

(k)
vy0(k)



+


0.5T 2

s 0
0 0.5T 2

s

T 2
s 0
0 T 2

s

[ax0
(k)

ay0(k)

]
. (3)

Finally, Equation (3) is a discrete second-order state space
model (Ogata, 1995), that describes the dynamic behavior
of a state vector x(k), in this case the position and
velocity of the vehicle, in the presence of a input u(k), i.e.
acceleration of the vehicle. Therefore, Equation (3) can
be represented by the generalized discrete second order
model, presented in Equation (4).

x(k + 1) = Fx(k) + Gu(k) (4)

3. MODEL PREDICTIVE CONTROL

Model Predictive Control is a methodology of control sys-
tems design that employs prediction strategies and opti-
mization based on an explicit model (Camacho and Bor-
dons, 2007), considering the constraints that the system’s
variables must obey. Usually, the optimization problem
considers a limited prediction horizon of states and control
actions, being employed to the actual plant the first control
action only, leaving the rest. The updated problem is
again resolved at the next iteration, with newly acquired
measurements, a characteristic known as receding horizon.

There are many ways to implement a MPC, with dif-
ferent combinations of models, prediction strategies, and
optimization algorithms. An example is the DMC (Dy-
namic Matrix Control) and its improved version QDMC

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1557 DOI: 10.20906/sbai.v1i1.2774

(Quadratic Dynamic Matrix Control) in treating con-
straints with low computational cost (Qin and Badgwell,
2003). Some of the characteristics of QDMC are:

• a linear model for the system;
• a quadratic objective function in a finite prediction

horizon;
• the future behavior of the variables of interest must

follow the reference and is subject to a term that pun-
ishes abrupt changes on the input (move suppression);
• the solution of the quadratic problem provides the

optimal inputs.

Considering that the system’s model is linear as expressed
in Equation (3), a QDMC implementation was chosen.
Thus, it is possible to design a quadratic objective func-
tion, which provides efficient computation and unique
global minimum solutions (Boyd et al., 2004). The MPC
problem with a QDMC implementation is formulated as

minimize
N∑
k=0

(x(k)− r(k))TQ(k)(x(k)− r(k))

+
N−1∑
k=0

u(k)TR(k)u(k),

subject to x(k + 1) = Fx(k) + Gu(k),

xmin ≤ x(k) ≤ xmax,

umin ≤ u(k) ≤ umax,

x(0) = x0.

(5)

As all state variables are observable, the state vector
may be considered the very output of the system. The
expression to be minimized is composed of weighted sums
of quadratic components, where x(k)− r(k) defines a mo-
bile robot’s trajectory error along the prediction horizon
N . Also, the Q and R matrices are positive semidefinite
and can vary along the prediction horizon. Q and R are
essential tuning parameters of the controller, associating
weights to the reference distance criteria and the control
action, respectively. The problem constraints bound the
optimization region to respect the system’s dynamics, the
robot’s physical limitations related to position and veloc-
ity, in xmin, xmax, and acceleration in umin and umax.
They also impose the initial condition x0 given by the
current position and velocity readings.

The MPC problem was written as a Quadratic Program-
ming (QP) problem. A QP problem is defined as

minimize J(z) =
1

2
zTPz + cTz,

subject to zmin ≤ Az ≤ zmax,
(6)

where the positive semidefinite matrix P and c ∈ Rn
associate weights to the quadratic and linear components
of the objective function. In the constraints, zmin and zmax
determine the maximum and minimum limits of the Az
operation.

The z vector of the variables of interest consists of all
states and inputs of the prediction horizon N , given as

z = [x(0)> ... x(N)> u(0)> ... u(N − 1)>]>. (7)

The Kronecker product is used to define the quadratic
matrix component P and the linear component c from
the objective function considering the prediction horizon,

(a) Velocity obstacles region. (b) ORCA halfspace.

Figure 2. ORCA halfspace for agent B relative to agent A.

using Q, R, and the reference trajectory r formulated
in the MPC problem (5). It is also used to compute the
constraint matrix A and its limits, using the robot model
and its motion constraints.

4. OPTIMAL RECIPROCAL COLLISION
AVOIDANCE

A local control algorithm can avoid collision when fol-
lowing a trajectory provided by a global trajectory plan-
ner. Hence, the agent reacts to a changing environment,
handling trajectory perturbation from the movement of
near agents. Besides, since first-order methods such as VO
(Fiorini and Shiller, 1993), RVO (Van den Berg et al.,
2008), and ORCA (Van Den Berg et al., 2011) are calcu-
lated with only position and velocity data from immediate
neighbors, they do not require explicit communication
between agents, becoming efficient approaches for decen-
tralized systems.

To illustrate the ORCA algorithm as seen in (Van
Den Berg et al., 2011), consider a scenario with two circu-
lar robots A and B, described by their respective positions
(pA, pB), radius (rA, rB), and absolute velocities (vA,
vB). As shown in Figure 2a, a velocity obstacle region
VOτ

A|B(vB) for agent B relative to A is computed for a
time window τ applying the Minkowski sum

VOτ
A|B(vB) = CC τ

A|B ⊕ vB . (8)

between a collision cone

CCτ
A|B = {v | ∃t ∈ [0, τ] :: vt

∈ B(pB − pA, rA + rB)}, (9)

and velocity vB from agent B, where B(p, r) is an open
ball centered in p with radius r.

Considering that vA is inside the region VOτ
A|B(vB), the

algorithm computes an uORCA vector that represents the
smallest move that leads the agent to the border of the
velocity obstacle region, depicted as ∂VOτ

A|B(vB) in

uORCA =

(
argmin

v∗
A
∈∂VO τ

A|B(vB)

||v∗A − vA||

)
− vA (10)

Along with uORCA, it is calculated a normal vector n,
which is normal to the contour of VOτ

A|B(vB) at vA + u
pointing inside the velocity object region.

It is defined as the ORCAτ
A|B region, the set of velocities

for agent A containing the highest number of velocities
closest to vA which prevents collision to agent B. It uses

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1558 DOI: 10.20906/sbai.v1i1.2774

the principle of reciprocal effort share between two agents.
Thus, ORCAτ

A|B is a halfplane described by equation (11)
and presented in Figure 2b.

ORCAτ
A|B = {v∗A | (v∗A− (vA +

1

2
uORCA)) ·n ≤ 0} (11)

In a multiagent scenario, the ORCA halfplanes calculated
for each neighbor are convex regions, so their intersection
results in a convex polytope. Therefore, ORCA halfplanes
can be used in convex optimization problems as constraints
for collision-free agent movement.

5. MPC-ORCA

Using a combined strategy with MPC and ORCA of-
fers advantages over a pure ORCA algorithm application
(Cheng et al., 2017). The receding horizon from MPC
provides safer operation, reacting earlier to probable col-
lision scenarios and reducing the times that the optimiza-
tion problem becomes infeasible. Also, incorporating the
second-order model dynamics from equation (3) provides
smoother trajectories because it does not assume sudden
changes in agents’ velocities.

The MPC problem (5) can be rewritten to incorporate
ORCA constraints. It is defined g(x(k), {xneigh(k)}) ≤ 0
as the resulting velocity constraints from ORCA in the
current agent. Besides, ORCA constraints for future states
are generated applying the algorithm over the prediction
horizon N , considering that agents keep their velocity
constant. The combined MPC-ORCA strategy is defined
as follows:

minimize

N∑
k=0

(x(k)− r(k))>Q(k)(x(k)− r(k))

+

N−1∑
k=0

u(k)>R(k)u(k),

subject to x(k + 1) = Fx(k) + Gu(k),

xmin ≤ x(k) ≤ xmax,

umin ≤ u(k) ≤ umax,

g(x(k), {xneigh(k)}) ≤ 0,

x(0) = x0.

(12)

The ORCA halfplanes can be implemented in Equation
(6), adding rows for zmin, zmax, and A. So, the region
computed for each neighbor at each step in the prediction
horizon is a row defined in terms of vA, uORCA, and n,
such as [

0
n

]>
x(k) ≤ (vA +

1

2
uORCA)n. (13)

When in very dense scenarios with conflicting trajecto-
ries, it is possible to get infeasible optimization problems
because of too many constraints. Some strategies can be
employed in this case. In this work, a velocity damping
with a norm close to zero is applied. It assumes that MPC
predictions can anticipate infeasible situations. Besides,
other agents could be moving, making the environment
non-static, leading to the optimization problem out of
infeasible regions.

6. SIMULATION SCENARIOS

The algorithms developed were written in Python lan-
guage over the Robot Operating System (ROS) environ-
ment. ROS is a middleware intended to design robot soft-
ware, counting with a library collection, tools, and simu-
lation interfaces. In this work, we used Gazebo with the
physics engine Open Dynamics Engine (ODE). Through
Gazebo functionalities, a differential wheeled robot was
built in the markup language Unified Robot Description
Format (URDF), and forces and torques as disturbances
acting over the vehicle.

Each ROS independent routine or application is defined
as a node. The communication between nodes is made
through message channels known as topics. The robots
are controlled in simulation through a velocity command
published in the topic /cmdvel of each agent. It is worth
mentioning that the controllers do not communicate di-
rectly among themselves but can make environment read-
ings. So, robots in simulation receive commands through
velocity messages as input variables, although the model
in the algorithm considers acceleration too.

In this work, we used a general-purpose solver for opti-
mization problems involving quadratic programming, the
Operator Splitting Quadratic Program (OSQP), capable
of high precision solutions and based on the Alternating
Direction Method of Multipliers (ADMM) algorithm, that
applies a first-order method to find a zero of the sum
of monotone operators (Stellato et al., 2018; Boyd et al.,
2010).

In the optimization problem, the matrices P and A are
sparse, presenting a significant number of zero values,
which could occupy memory space inefficiently and harm
the operation of the system. Thus, these matrices are allo-
cated in Compressed Sparse Columns (CSC) structures,
compatible with OSQP, and available in the scientific
computing library SciPy.

Two multiagent scenarios were designed for the validation
of the combined MPC-ORCA strategy implementation.
The parameters utilized in the controller were Q(1) =
diag (3.0 3.0 0.0 0.0) 1 , Q(k) = diag (1.5 1.5 0.0 0.0),
R(k) = diag (0.55 0.55), N = 10 and Ts = 0.1s. Choos-
ing Q will penalize position error only, disregarding the
velocity variables, as long as the velocity constraints are
respected. Q(1) presents slightly higher values for the
controller to find a solution that tries to reduce the position
error in the next immediate interaction but still considers
the error originated by the prediction. The assumed R
values apply a small penalty to the acceleration, intending
to smooth the velocity behavior, therefore no umin and
umax constraints were needed. It is considered that the
vehicles operate in a velocity range of ±5m/s, imple-
mented as the only state constraints in xmin and xmax.
With a sample time of Ts = 0.1 seconds, a prediction
horizon N = 10 allows predictions of 1 second. The ORCA
parameter for the collision cone truncation τ = 5s was set
for the algorithm computation.

1 The function diag : Rn → Rn×n returns a diagonal matrix with
elements defined by the arguments.

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1559 DOI: 10.20906/sbai.v1i1.2774

-8 -6 -4 -2 0 2 4 6 8

X-Axis

-8

-6

-4

-2

0

2

4

6

8

Y
-A

x
is

Robot 1

Robot 2

Robot 3

Robot 4

Figure 3. Resulting path for scenario 1.

Without loss of generality, both scenarios assume four
differential drive robots using the linearized model afore-
mentioned, which are initially positioned at opposed and
equidistant places related to one another. Trajectories are
assigned to intentionally induce a collision of all agents

approximately at point p = [0 0]
T

and time t = 10
seconds. Table 1 inform where robots were placed and their
goals in each different scenario purposed.

Table 1. Robots initial positions and goals by scenario.

Robot Scenario 1 Scenario 2
pstart pgoal pstart pgoal

1 [−7 0]> [0 7]> [−7 − 7]> [7 7]>

2 [7 0]> [−7 0]> [−7 7]> [7 − 7]>

3 [0 − 7]> [7 0]> [7 − 7]> [−7 7]>

4 [0 7]> [0 − 7]> [7 7]> [−7 − 7]>

Without loss of generality, the reference trajectory for the
experiments was computed using a logistic function from
the robot’s initial position to a destination, defined with
a duration of 20 seconds. It emulates smooth and realistic
movements, as the position and velocity components are
differentiable. The trajectory is computed offline, disre-
garding moving obstacles or neighbor agents.

7. RESULTS

Figure 3 presents a view for the movement of the robots
during simulation. Despite the reference trajectory gener-
ating a straight path, the robots perform predictive devia-
tions to avoid a collision 1 . The same is shown in Figure 4
from the second experiment simulation. After that, there
is no collision risk, and the agents try to return to their
reference trajectory 2 .

It is stated that MPC-ORCA makes it possible to react
anticipated to collision, reducing occurrences of optimiza-
tion infeasible situations. However, the closer the velocity
maximum and minimum limits from one another, it is
more difficult for the controller to return an agent to its
desired trajectory after a case of infeasibility, since vmax
and vmin are hard constraints in all prediction horizon.
That requires softening of those constraints, i.e., increasing
the admissible velocities interval.

-8 -6 -4 -2 0 2 4 6 8

X-Axis

-8

-6

-4

-2

0

2

4

6

8

Y
-A

x
is

Robot 1

Robot 2

Robot 3

Robot 4

Figure 4. Resulting path for scenario 2.

Smoother collision avoidance turns are achieved when
there is a penalty for acceleration, as in Equation (12).
These lighter deviations are more straightforward to cor-
rect afterward than heavier ones, both from the perspec-
tive of smaller control effort and optimization algorithm
computation.

To discuss the trajectory tracking behavior, Figure 5
presents the positions and velocities for a robot during
simulation of the first scenario. As seen in Figure 5a, the
robot was able to start following its trajectory in the
x-axis and y-axis without great deviations. However, at
approximately t = 5.75 seconds, it predicts a possible
collision path, i. e. enters a velocity obstacle region in the
following prediction steps. In fact, as declared before, a
collision was intentionally programmed for all robots in
t = 10 seconds. That results in the deviation that can be
seen more clearly in the y-axis at time t = 5.75 seconds.

The same analysis is valid in the velocity plots, shown
in Figure 5b. If there were no collision predictions in that
scenario, the angular velocity would remain zero. However,
it changes the same time when linear velocity changes
a little its behavior and y-axis position starts to show
the needed deviation from reference trajectory to avoid
collision. To ease the results discussion, the y-axis position
and angular velocity plots scales were zoomed in for that
experiment.

8. CONCLUSION

This work presented an application of model predictive
control combined with a collision avoidance algorithm in
a distributed system of mobile robots with individual ob-
jectives, without the need of recurrent trajectory replan-
ning neither direct communication between agents. For
each prediction horizon iteration, velocity constraints that
would result in a collision were computed, then inserted in
a quadratic optimization problem among other kinematic
constraints, such as velocity and acceleration limits.

Differential wheeled robots were used, presenting non-
holonomic constraints, demanding model linearization in

1 Scenario 1 exhibition video in: https://youtu.be/0seApw2HIsA
2 Scenario 2 exhibition video in: https://youtu.be/rRNrDTNMQBc

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1560 DOI: 10.20906/sbai.v1i1.2774

0 10 20 30

Time (s)

-8

-6

-4

-2

0

2

4

6

8

P
o
s
it
io

n
 (

X
-A

x
is

)

Reference

Robot

0 10 20 30

Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
o
s
it
io

n
 (

Y
-A

x
is

)

Reference

Robot

(a) Output positions for Robot 1.

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

L
in

e
a
r

V
e
lo

c
it
y
 (

)

0 10 20 30 40

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
n
g
u
la

r
V

e
lo

c
it
y
 (

)

(b) Input velocities for Robot 1.

Figure 5. Output and Input variables for Robot 1 in
Scenario 1.

the implemented controller. However, the robots could
perform smooth and collision-free trajectories, making mi-
nor deviations from reference trajectories. An agent using
that approach can handle highly mutable environments
where other agents can move with high velocity. Aside
from supporting non-holonomic robots, an advantage of
the developed solution from other studies is operating with
an arbitrary preplanned trajectory as a reference instead
of a single objective position.

As possible future work efforts, the proposed algorithm
could be implemented in real robot scenarios, running
over a navigation stack. Although this study focused on
planar robots, the employed techniques could be extended
to control and collision avoidance for robots operating
in configuration space with higher dimensions, such as
aerial vehicles or robotic manipulators. Furthermore, there
could be works on implementing MPC-ORCA in a lower
control level, delivering commands for wheel torque or
acceleration.

ACKNOWLEDGES

We would like to thank our research group Easy Engineer-
ing and Systems that is part of the Computing Institute
(IC) from Federal University of Alagoas (UFAL).

REFERENCES

Ahmad Abu Hatab, R.D. (2013). Dynamic Modelling of
Differential-Drive Mobile Robots using Lagrange and
Newton-Euler Methodologies: A Unified Framework.
Advances in Robotics & Automation, 02(02). doi:10.
4172/2168-9695.1000107.

Arkin, R.C. and Balch, T. (1998). Cooperative Multiagent
Robotic Systems, 277–296. MIT Press, Cambridge, MA,
USA.

Boyd, S., Boyd, S., Vandenberghe, L., and Press, C.U.
(2004). Convex Optimization. Berichte über verteilte
messysteme. Cambridge University Press. doi:10.1017/
CBO9780511804441. URL https://books.google.
com.br/books?id=mYm0bLd3fcoC.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2010). Distributed optimization and statistical learning
via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1), 1–
122. doi:10.1561/2200000016.

Camacho, E.F. and Bordons, C. (2007). Model Pre-
dictive control. Advanced Textbooks in Control and
Signal Processing. Springer London, London, 2nd edi-
tion. doi:10.1007/978-0-85729-398-5. URL http://
link.springer.com/10.1007/978-0-85729-398-5.

Cheng, H., Zhu, Q., Liu, Z., Xu, T., and Lin, L. (2017).
Decentralized navigation of multiple agents based on
ORCA and model predictive control. IEEE Inter-
national Conference on Intelligent Robots and Sys-
tems, 2017-Septe, 3446–3451N. doi:10.1109/IROS.2017.
8206184.

Fiorini, P. and Shiller, Z. (1993). Motion planning
in dynamic environments using the relative velocity
paradigm. Proceedings IEEE International Conference
on Robotics and Automation, 560–565. doi:10.1109/
robot.1993.292038.

Graetz, G. and Michaels, G. (2018). Robots at Work. The
Review of Economics and Statistics, 100(5), 753–768.
doi:10.1162/rest a 00754.

Lu, Y. (2017). Industry 4.0: A survey on technologies,
applications and open research issues. Journal
of Industrial Information Integration, 6, 1–10.
doi:https://doi.org/10.1016/j.jii.2017.04.005. URL
http://www.sciencedirect.com/science/article/
pii/S2452414X17300043.

Mao, R., Gao, H., and Guo, L. (2020). A novel collision-
free navigation approach for multiple nonholonomic
robots based on orca and linear mpc. Mathematical
Problems in Engineering, 2020, 1–16. doi:10.1155/2020/
4183427.

Mouad, M., Adouane, L., Khadraoui, D., and Mar-
tinet, P. (2012). Mobile robot navigation and
obstacles avoidance based on Planning and Re-
Planning algorithm, volume 45. IFAC. doi:10.3182/
20120905-3-HR-2030.00170. URL http://dx.doi.
org/10.3182/20120905-3-HR-2030.00170.

Ogata, K. (1995). Discrete-time Control Systems, vol-
ume 2. Prentice Hall. URL https://books.google.
com.br/books?id=owQqAQAAMAAJ.

Ota, J. (2006). Multi-agent robot systems as distributed
autonomous systems. Advanced Engineering Infor-
matics, 20(1), 59–70. doi:10.1016/j.aei.2005.06.002.
URL https://linkinghub.elsevier.com/retrieve/
pii/S1474034605000509.

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1561 DOI: 10.20906/sbai.v1i1.2774

https://books.google.com.br/books?id=mYm0bLd3fcoC
https://books.google.com.br/books?id=mYm0bLd3fcoC
http://link.springer.com/10.1007/978-0-85729-398-5
http://link.springer.com/10.1007/978-0-85729-398-5
http://www.sciencedirect.com/science/article/pii/S2452414X17300043
http://www.sciencedirect.com/science/article/pii/S2452414X17300043
http://dx.doi.org/10.3182/20120905-3-HR-2030.00170
http://dx.doi.org/10.3182/20120905-3-HR-2030.00170
https://books.google.com.br/books?id=owQqAQAAMAAJ
https://books.google.com.br/books?id=owQqAQAAMAAJ
https://linkinghub.elsevier.com/retrieve/pii/S1474034605000509
https://linkinghub.elsevier.com/retrieve/pii/S1474034605000509

Qin, S. and Badgwell, T.A. (2003). A survey of in-
dustrial model predictive control technology. Con-
trol Engineering Practice, 11(7), 733–764. doi:10.1016/
S0967-0661(02)00186-7. URL https://linkinghub.
elsevier.com/retrieve/pii/S0967066102001867.

Ren, W. and Atkins, E. (2007). Distributed multi-vehicle
coordinated control via local information exchange. In-
ternational Journal of Robust and Nonlinear Control,
17(10-11), 1002–1033. doi:10.1002/rnc.1147. URL
http://doi.wiley.com/10.1002/rnc.1147.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and
Boyd, S. (2018). OSQP: An Operator Splitting Solver
for Quadratic Programs. 2018 UKACC 12th Interna-
tional Conference on Control, CONTROL 2018, 339.
doi:10.1109/CONTROL.2018.8516834.

Stentz, A. (1995). The focussed D* algorithm for real-
time replanning. 14th International Joint Conference on
Artificial intelligence (IJCAI), 95(August), 1652–1659.
doi:10.1080/0305792950250302. URL http://portal.
acm.org/citation.cfm?id=1643031.1643113.

Sycara, K.P. (1998). Multiagent Systems. AI Magazine,
19(2), 79–92. doi:10.1609/aimag.v19i2.1370.

Van Den Berg, J., Guy, S.J., Lin, M., and Manocha,
D. (2011). Reciprocal n-body collision avoidance. In
C. Pradalier, R. Siegwart, and G. Hirzinger (eds.),
Robotics Research, 3–19. Springer Berlin Heidelberg,
Berlin, Heidelberg. doi:10.1007/978-3-642-19457-3 1.

Van den Berg, J., Ming Lin, and Manocha, D. (2008).
Reciprocal Velocity Obstacles for real-time multi-agent
navigation. In 2008 IEEE International Conference
on Robotics and Automation, volume 23, 1928–1935.
IEEE. doi:10.1109/ROBOT.2008.4543489. URL http:
//ieeexplore.ieee.org/document/4543489/.

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1562 DOI: 10.20906/sbai.v1i1.2774

https://linkinghub.elsevier.com/retrieve/pii/S0967066102001867
https://linkinghub.elsevier.com/retrieve/pii/S0967066102001867
http://doi.wiley.com/10.1002/rnc.1147
http://portal.acm.org/citation.cfm?id=1643031.1643113
http://portal.acm.org/citation.cfm?id=1643031.1643113
http://ieeexplore.ieee.org/document/4543489/
http://ieeexplore.ieee.org/document/4543489/

	Introduction
	Robot model
	Model Predictive Control
	Optimal Reciprocal Collision Avoidance
	MPC-ORCA
	Simulation scenarios
	Results
	Conclusion

