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Abstract: This work presents the implementation and architecture of a predictive maintenance
system using unsupervised learning, aiming to provide an approach where its benefits are
returned to the users faster than traditional system found in the literature. Equipment faults
and maintenance affect directly efficiency of industrial plants. Maintenance management can
be optimized by modeling and predicting problems. The implementation of a system able
to model problems or anomalies and to inform operators and supervisors in case of alarms
or notifications is intrinsically connected with the fourth industrial revolution. Although the
architecture proposed here can be generalized to many different devices, a MPU6050 for
sensing and ESP32 as the middleware were used to implement the proposed concept. Three
different methods for anomaly detection were implemented and deployed to Google Cloud,
using Compute Engine service. The developed web-server that provides a dashboard to visualize
time-series of the sensed physical magnitudes and historical data about all anomalies detected
is presented. Therefore, resulting in a platform with intelligence to detect and report problems
and abnormalities to employees of industrial plants.
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1. INTRODUCTION

Ever since the beginning of industrialization, technological
leaps have led to paradigm shifts. Some of the biggest
paradigm shifts in humanity are named, today, as in-
dustrial revolutions. Historically, one can refer to three
industrial revolutions. Firstly in the field of mechanization
and introduction of steam machines, secondly in intensive
use of electrical energy and lastly the digitalization and
information era (Lasi et al., 2014). Today, a new paradigm
shift is happening, based on principles such as IoT (Inter-
net of Things), cloud computing, big data & analytics,
smart devices, among others. It has had an enormous
impact on our society, and has been entitled as the fourth
industrial revolution or Industry 4.0 (Schwab, 2017). To
reach a better understanding of the scale of these impact,
according to the Wall Street Journal artificial intelligence
has the potential to increase productivity near 1.2% be-
tween now and 2030. Such increase is bigger than the ones
caused by introduction of steam machines, robotics and
even the internet, which are equal to 0.3%, 0.4% and 0.6%,
respectively (WSJ, 2018).

Among others, some of the main characteristics of in-
dustry 4.0 are: flexibility, individualization on demand,
decentralization, resource efficiency and short development
periods (Lasi et al., 2014; Rüßmann et al., 2015). Efficiency
has an important role in this revolution and during an

industrial process may refer not only to material, but
also time and energy, which are relevant to production
costs. Therefore, the role of equipment maintenance in
quality control and cost reductions is more evident than
ever (Lee et al., 2006). Depending on the type of industry
the costs of maintenance can represent between 15% and
70% of production costs (Mobley, 2002), besides that, due
to uncertainties and management/planning inefficiencies
about 33% of this cost is wasted (Mobley, 2002). This
great economic impact makes maintenance an important
bottleneck in the optimization of an industrial process.

Maintenance management can be divided into three dif-
ferent groups: corrective, preventive and predictive (Mob-
ley, 2002). Corrective maintenance (also known as reac-
tive maintenance) or run-to-failure maintenance is a man-
agement approach which machines are fixed only after
problems occur. Preventive maintenance is a time-driven
management technique which focus on the machine mean-
time-to-failure statistics to execute certain routines so that
it will be able to run safely for a new period of time. Lastly,
predictive maintenance (PdM), the newest management
paradigm, is an approach that strives to model degrada-
tion and detect anomalies based on real-time measures,
not having pre-scheduled routines, allowing the equipment
to be explored to its maximum before it reaches failure
(Mobley, 2002; Velmurugan and Dhingra, 2015).

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 1617 DOI: 10.20906/sbai.v1i1.2783



Different architectures have been proposed in the literature
for PdM systems. In Cachada et al. (2018), a PdM system
is presented, using cloud data storage, expert systems for
anomaly detection and machine learning algorithms which
data inserted from HMI’s (Human Machine Interface) in-
stalled in the industrial plant are used as input. Other
architecture for PdM is proposed in Chiu et al. (2017),
using a cyber-physical agent and AMCoT (Advanced Man-
ufacturing Cloud of Things), a platform proposed in Cheng
et al. (2016) as way to supply the minimum maintenance
requisites for industry 4.0 . However, some difficulties
arises when implementing PdM, since it involves a change
in corporate attitude and culture, may have high instal-
lation cost and, depending on the system and algorithms
used, could take a long time to reach the full benefits of
its implementation.

In the present work an architecture for PdM is proposed,
using IoT, cloud computing, big data, smart sensors and
artificial intelligence. A proof of concept is used to show
its implementation. The work aims to implement an ar-
chitecture capable of overcoming some difficulties that
reduce PdM acceptance. Most architectures use supervised
machine learning (Cachada et al., 2018; Chiu et al., 2017;
Cheng et al., 2016), being limited to specific types of
equipment or the presence of datasets for classification.
The solution of this problem depends on the application
of unsupervised learning, removing the need for labeled
data and also increasing the speed for implementation and
installation. This article is organized as follows. Section
2 approaches a theoretical overview of PdM and some
technological pillars of the fourth industrial revolution. In
section 3, the proposed architecture is described. An illus-
trative example is implemented and presented in section 4,
including hardware specification, libraries and algorithms.
The results of the implemented concept are presented in
section 5. Final considerations are presented in section 6.

2. PREDICTIVE MAINTENANCE SYSTEMS

Among the categories of maintenance policies, the predic-
tive was the last to be proposed and has been accepted and
adopted in different areas, specially in dangerous scenarios,
e.g., transmissions lines, nuclear plants and transport sys-
tems. This policy involves the prediction of failures/faults
in the system or equipment based on the processing of cur-
rent and/or past values (Mobley, 2002). PdM can be used
for both diagnostic and prognostic, allowing a better inter-
pretation of problems and measures. In its older version,
already proposed in 1940, professionals would use their
senses to predict problems. The main change of paradigm
considering the modern PdM is that human senses have
been replaced by sensors and the evaluation that would
be done considering individual elements now can be done
considering the entire system (Selcuk, 2017).

To implement systems as the proposed in Cachada et al.
(2018); Chiu et al. (2017); Cheng et al. (2016) one needs
to know which variables are important and relevant for
the process. Measurements of parameters such as humid-
ity, temperature, vibration, electric current, voltage and
impedance allow analysis of a variety of applications,
as engines, turbines and hydraulic systems (Hashemian,
2010). The reliability of sensors used is of great impor-
tance. Advances in microelectronic resulted in electronic

devices capable of executing pre-processing techniques,
multi-sensing, self-calibration and communication. The
combination of a basic sensing element, embedded intel-
ligence and processing capabilities defines a smart sensor
(Giachino, 1986; Hunter et al., 2010).

In addition to smart sensors, communication is an im-
portant characteristic to fully implement a PdM archi-
tecture. IoT is a communication network for connecting
every physical object in the real world (Perera et al.,
2013), an essential element to cyber-physical systems and,
consequently, to industry 4.0 (Cheng et al., 2016). This
network has been considered the promising technology for
IT infrastructure, allowing the connection of analog and
digital hardware, middleware and advanced software. An-
other promising technology is cloud computing, an emerg-
ing trend well suitable for scenarios where computational
power, accessibility, agility and scalability are necessary.
The extension of cloud computing to industry results in
the concept of cloud-based manufacturing, a vital element
for IoT and cyber-physical systems (Huang et al., 2015).
According to Mell et al. (2011), cloud computing must
present the following key characteristics:

• On-demand self-service: A consumer can unilaterally
provision computing capabilities, such as server time
and network storage, as needed automatically with-
out requiring human interaction with each service
provider.

• Broad network access: Capabilities are available over
the network and accessed through standard mech-
anisms that promote use by heterogeneous thin or
thick client platforms (e.g., mobile phones, tablets,
laptops and workstations).

• Resource pooling: The provider computing resources
are pooled to serve multiple consumers by using
a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned
according to consumer demand. There is a sense of
location independence in that the customer generally
has no control or knowledge over the exact location
of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country,
state or data-center). Examples of resources include
storage, processing, memory and network bandwidth.

• Rapid elasticity: Capabilities can be elastically provi-
sioned and released, in some cases automatically, to
scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available
for provisioning often appear to be unlimited and can
be appropriated in any quantity at any time.

• Measured service: Cloud systems automatically con-
trol and optimize resource use by leveraging a meter-
ing capability at some level of abstraction appropri-
ate to the type of service (e.g., storage, processing,
bandwidth and active user accounts). Resource usage
can be monitored, controlled, and reported, providing
transparency for both the provider and consumer.

Lastly but extremely important, a PdM system must have
an internal mechanism capable of providing prognostics or
diagnostics to detect failures and abnormalities (Cachada
et al., 2018). Anomaly detection is an important task
and can be applied to different areas, being extremely
consonant with PdM purpose, since its goal is to detect
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Figure 1. Architecture diagram

patterns in data that does not obey a pre-determined
behavior (Chandola et al., 2009). A great challenge when
applying anomaly detection is how to define patterns for
non-anomaly behavior without removing or camouflaging
anomalies created by suspicious agents, knowing that the
concept of anomaly can change according to application or
context. Another problem is related with obtaining labeled
datasets in case one uses supervised algorithms (Chandola
et al., 2009), and since sensors measure variables as func-
tions of time, it is important to use algorithms suitable
for sequential data (Teng, 2010). Models for anomaly de-
tection in time series include supervised approaches such
as neural networks, support vector machines, ensemble
learning and unsupervised as statistical models, clusteriza-
tion and deep-learning models (Ahmad et al., 2017; Munir
et al., 2018; Amruthnath and Gupta, 2018).

3. PROPOSED ARCHITECTURE

Technologies such as IoT, cloud computing, smart sensors,
big data & analytics are essentials for PdM. Even thought
the benefits of using a predictive policy are vast, the
high cost and time it takes to fully reach its results
collaborate for some industries to choose preventive or
even corrective methods. The architecture presented in
this work focus on using only unsupervised algorithms for
analyzing collected information from installed sensors. A
diagram of the system is shown in Figure 1.

The architecture considers an arbitrary set of sensors con-
nected to an arbitrary set of middlewares. The sensors can
be both traditional analog systems or more sophisticated
smart sensors. The presence of middleware is essential
for connection, since in this scenario the middleware act
as a centralizer and as bridge to allow communication
between sensors and a cloud server. The communication
between server and middleware can be done using different
approaches, including HTTP, MQQT or even JSON-RPC
if communication is made via web-socket.

The cloud server is the main element of the system and it
consists of seven sub-elements:

• Database: Responsible for storing data from different
entities and for creating relations between elements
of different tables.

• Back-End: Bridge responsible for connecting the in-
terface with the data collected from the sensors and
stored in the database. In this architecture the back-
end is also responsible for sending new measures to
algorithms for classification.

• Front-End: Responsible for the visualization of the
information. It is of great importance to build inter-
faces that are responsive and reactive, guaranteeing a
better user experience.

• SSL certificate: Certification to allow the server to
run with HTTPS protocol instead of HTTP. Such
certificate protect users and the server from malicious
agents.

• Cron: Daemon that executes scheduled commands,
this commands include messages through email, SMS
or via external API’s for notification and report.

• Machine Learning: Robust and complex algorithms
used to detect patterns in data that could be classified
as anomalies.

• Statistical Methods: Classical approaches with lower
computational cost, to provide information about the
behavior of measured values through time.

The back-end, front-end and algorithms must run con-
tinuously, needing to be constantly active. A task con-
trol system must be installed to control theses process.
Even thought algorithms run independent from the web
application, a communication between them must exist. To
detect if an anomaly has happened, the measures received
in the back-end must be sent to algorithms for processing.
An asynchronous service is used to avoid bottlenecks in
the computational power of the server, allowing control of
available processing resources for algorithms, preventing
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the interface from being compromised. The page and in-
formation can be accessed from the static IP of the server.

4. ILLUSTRATIVE EXAMPLE

An example server was developed to demonstrate the
proposed system structure. As presented by Hashemian
(2010), vibration and temperature are some of the most
important variables to be measured for fault detec-
tion in an industrial environment. In this work, the
sensor MPU6050 was chosen. MPU6050 is a micro-
electromechanical system used as accelerometer and gy-
roscope with 6 degree of freedom. The sensor also includes
temperature measurement, I2C and SPI interface for com-
munication and embedded pre-processing techniques for
signal conditioning (INVENSENSE, 2013), such character-
istics define MPU6050 as a smart sensor. To guarantee con-
nection to the internet an ESP32 Dev Toolkit (Espressif,
2020) was used as middleware and connected to MPU6050
via I2C.

ESP32 is a SoC (System on Chip) widely used in IoT
applications (Maier et al., 2017), mainly because of its
integrated antenna and oscillators, combined with low cost
and power consumption. More complex devices as Rasp-
berry Pi have a bigger computational power and can also
be used for IoT, but since this devices contain embedded
operational systems, real-time requisites are normally not
attended. In Fig. 2a and 2b ESP32 and MPU650 are
shown, respectively. The middleware send HTTP request
containing the information captured from MPU6050 en-
capsulated in a JSON, the requests frequency was set to
0.1 Hz, providing enough time for the algorithms in the
server to classify each reading. To compensate for the low
sampling frequency rate used, internally the middleware
executes 100 readings before sending the information to
server, including in each request the median value and also
the first and ninth decile of each magnitude, creating an
error band analogous to the one proposed in Taylor and
Letham (2018).

(a) ESP32 Dev-Toolkit

(b) MPU 6050

Figure 2. Electronic devices used as sensor and middleware

To deploy such application an IaaS (Infrastructure as a
Service) is necessary, since other cloud services rarely allow
the level of customization needed. In the present work
Compute Engine, an IaaS in Google Cloud platform, was
used. A machine was instantiated and accessed via SSH for
initial configuration. In the server the following software
were installed: supervisorctl 4.2.2, nginx 1.21.0 and celery
5.10.0. Supervisorctl is a client/server system that allows
its users to monitor and control a number of processes on

UNIX-like operating systems. Nginx is a HTTP and re-
verse proxy server, known for high performance, stability,
simple configuration and low resource consumption. Celery
is a simple, flexible and reliable distributed system to
process vast amounts of messages, being a task queue with
focus on real-time processing, while also supporting task
scheduling. Celery is specially important due to the high
computational cost of some algorithms used for anomaly
detection.

Two classic and one deep learning based approach were
chosen as unsupervised anomaly detection algorithms. The
classic methods include outlier detection and frequency
domain analysis. Outlier detection is a well-known statistic
method to detect measures that do not follow the normal
distribution in the dataset, classifying as anomalies those
points which magnitude is greater than the third quar-
tile plus inter-quartile distance or smaller than the first
quartile minus the inter-quartile distance (Ahmad et al.,
2017). Frequency analysis on other hand aims to detect
signal patterns that not necessarily causes outliers but are
related to non desired frequencies, as it occurs for high
frequency noise. To implement frequency analysis FFT
algorithm was used.

The deep learning based method implemented was Deep-
AnT (Munir et al., 2018). DeepAnT consists of a CNN
(convolutional neural network) used to predict time-series.
The CNN creates predictions for each point of the signal
considering the past-values. The real values are compared
with the estimations, and since the CNN creates a pre-
diction based on the training with past measures, it is as-
sumable DeepAnT output will follow the correct pattern.
The distance between each prediction and real measure is
computed to create a score. A pre-defined threshold defines
which predictions are or are not considered anomalies.
Others algorithms can be used in the place of CNN, for
example, LSTM, SARIMA and others traditional forecast-
ing methods. CNN was chosen because it is a topology of
neural network model extremely popular in the literature.

Different from the classic approaches DeepAnT is not
applied to only one measure, its input is a matrix NXM ,
where N is the number of samples stored and M is the
number of variables, so that the prediction output would
be aM sized array. This work used 21 different variables as
input for DeepAnT, representing acceleration in three axis,
rotation also in three axis, temperature and uncertainty
bands of each one of this measures. In the end, DeepAnT
is capable of detecting anomalies present in each variable
and also patterns that when examined individually do
not appear to be anomaly, however, combined can be
undesired, consonant with the intentions of modern PdM
(Selcuk, 2017).

The web-server was developed using the programming
language python 3.7 and libraries: dash 1.9.0, plotly 4.5.1,
flask 1.1.2 and sqlalchemy 1.3.22. Dash is a python library
which allows the development of reactive applications and
Flask is a more traditional framework, that can be used to
create user authentication, pages for login, registration and
user settings update. Sqlalchemy is an object-relational
mapper (ORM) used to implement database tables. The
users registered in the system can receive notifications
of anomalies via WhatsApp in case of any problems,
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for such feature Twilio (2021) API was used to create
a maintenance assistant. Others libraries were also used
as torch 1.7.1, scikit-learning 0.20.1, scipy 1.5.4, numpy
1.15.4 and pandas 0.24.0. The project code is open-source
and is available on https://github.com/oscarkremer/
predictive-maintenance-web.

5. RESULTS

The developed interface is shown in Fig. 3 for mobile and
desktop platform. In the interface it is possible to visualize
a real-time graphic containing the acceleration, rotation
and temperature in the last 30 minutes. Error band can be
deactivated and time interval of the chart can be changed.
Another chart is added for historical data, if one wants
to analyze all the stored information. The dashboard also
shows information about the anomalies that have occurred
and on which physical magnitude has happened. In the
case of DeepAnT, the anomaly is not related to only one
variable, and for its implementation some constraints were
considered.

Figure 3. User interface for mobile and desktop

Firstly, to avoid a bad performance due to the lack of
data, which could cause the algorithm to return too many
false positive anomalies, a minimum number of 500 points
was defined. An example output of DeepAnT trained with
200 epochs and the minimum amount of samples for 40
minutes of reading can be seen in Fig. 4. The threshold
defined to classify each point as anomaly or not was 3σ,
where σ is the standard deviation of stored information.

Figure 4. Example of anomaly score through time

Even though there are peaks in Fig. 4, its possible to
see that the last measure contain a reduced score, conse-
quently not being classified as an anomaly. The statistical
distribution of the anomaly score can be seen in Fig. 5,

where one can verify that the scores naturally follow a
normal distribution, and as expected the chosen threshold
would classify only a minority of measures as anomalies.
Even though the high computational cost of DeepAnT,
the queue structure programmed with celery provided the
correct control for the system, not compromising visual-
ization and allowing further addition of others algorithms
due to great scalability.

Figure 5. Distribution of anomaly score

The integration with Twilio API showed positive results
for notification of anomalies and daily reports. The mes-
sages were programmed to include tips that could be used
to avoid the problems that are happening, depending on
the method and variable related to it. In Fig. 6 an example
of a message can be seen.

Figure 6. Example of a message sent by maintenance
assistant
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6. CONCLUSION

The popularization of PdM in industrial plants is of great
importance, even though it faces its own challenges. This
work presented an architecture for a PdM system using
only unsupervised learning algorithms, so detection and
analysis of sensed information do not need labeled data
or be limited to specific types of machines present in
training dataset. An illustrative example of the proposed
architecture was implemented and validated. During the
implementation the system used a smart sensor capable
of multi-sensing, providing information about temperature
and acceleration and angular speed in three-axis. Many
technologies from the fourth industrial revolution were
used, including IoT, cloud computing, artificial intelligence
and smart devices. A deep learning method was applied
together with two classical approaches for anomaly detec-
tion, and yet the proposed architecture provided scala-
bility and flexibility for addition of new algorithms. The
article showed the possibility of developing a PdM plat-
form without supervised learning, however this class of
algorithm has its own advantage. Performance evaluation
is not presented in this work, since there are not bench-
mark dataset for the used sensor, therefore the application
of a simulated system or a prototype for benchmark with
anomalies created synthetically would be of great addition.
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