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Abstract: In this paper, is performed the comparative analysis of performance between the direct
and indirect adaptive inverse control applied to a non-minimum phase Electro-Hydraulic (EHA)
system in the presence of a periodic disturbance signal. The performance of an adaptive inverse
controller is influenced by the trade-off between the convergence speed and the steady-state
Mean Square Error (MSE) during the update of the estimate of the weights vector. Aiming
to propose a new optimization algorithm based on stochastic gradient descent, in this paper,
a new version of Normalized Leat Mean Square (NLMS) algorithm with adaptive step size is
proposed, with the objective of obtaining a good trade-off between convergence speed and the
steady-state MSE. For this, the step size is adapted by a Mamdani Fuzzy Inference System
(MFIS) as a function of the squared error and of the normalized time instant by the Min-Max
method. Computational results illustrate the efficiency of the proposed optimization algorithm
in the design of these two approaches of adaptive inverse control.
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1. INTRODUCTION

At the First IFAC Workshop in Control and Signal Pro-
cessing in San Francisco, was proposed by Widrow and
Walach (1983) the Adaptive Inverse Control (AIC) tech-
nique. The AIC is a control technique that deals with solv-
ing adaptive control theory problems using the adaptive
filter theory. The objective of AIC is to obtain a controller
that is equal to the plant inverse model, such that it is pos-
sible to control, without feedback, the plant dynamic and
reject disturbances. The Direct Adaptive Inverse Control
(DAIC) (Shafiq et al., 2014) and the Indirect Adaptive
Inverse Control (IAIC) (Widrow and Walach, 2008) are
two techniques of AIC, that possess a disturbance rejection
ability due being implemented in a feedforward config-
uration (Shafiq et al., 2017). Some contributions to the
IAIC and DAIC published in the literature can be found
at Shafiq (2016); Kamanditya and Kusumoputro (2020);
Zhang et al. (2018).

Even in the face of this similar characteristic, due to
difference in the configuration for update the estimate
of the weights vector of the controller, the DAIC and
IAIC possess different performances in the tracking of the
plant inverse dynamic and, consequently, of the reference
signal. The weights vector of a DAIC and IAIC is updated
through the minimization of a given performance index
described as a function of the error used to update the
estimate of the weights vector. Due to this, in the literature
some proposals for the DAIC and IAIC design via opti-

mization algorithms based on stochastic gradient descent
can be found using the following algorithms: Least Mean
Square (LMS) (Wang et al., 2013) and Normalized Least
Mean Square (NLMS) (Shafiq et al., 2017; Ghazali et al.,
2015). In this paper, only the NLMS algorithm is discussed
for the DAIC and IAIC design, since this algorithm is
less sensitive to variations in the input signal power and
performs well on correlated signals (Benesty et al., 2006).

The choice of step size is important for a good performance
of NLMS algorithm (Farhang-Boroujeny, 2013), since if
the step size is large, the convergence speed of NLMS
algorithm will be fast, but the steady-state Mean Square
Error (MSE) will be large; if the step size is small, the
convergence speed of NLMS algorithm will be slow, but
the steady-state MSE will be small (Pauline et al., 2020).
These characteristics are independent of the problem na-
ture to be optimized (Bershad and Bermudez, 2020). Ac-
cording to Benesty et al. (2006), a good trade-off between
the convergence speed and steady-state MSE is obtained
through the adjust of the step size at each time instant.
Thus, the adjust of the step size is fundamental for a good
performance in the tracking of the plant inverse dynamic
and, consequently, of the reference signal by the DAIC and
IAIC.

In the literature, it is possible to find several methodologies
that propose strategies to make the variable step size in
order to obtain a good trade-off. Generally, these method-
ologies propose that during the first time instants the step
size is large, and with the end of the time instants, the step
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size is small (Pauline et al., 2020; Resende et al., 2018; Kim
et al., 2020). On the other hand, in order for the method-
ologies to adjust the step size, additional information are
required, such as damping factor, conditioning parameters,
and others. In some cases, these methodologies require
the use of high-order statistical measures, which are not
always available in the context of real-time operation.
Another problem, is to establish criteria so that the NLMS
algorithm does not become unstable.

Through an MFIS, problems of various nature and difficult
mathematical formulation can be solved (Li et al., 2019;
Dhimish et al., 2018). Using an MFIS, it is possible to
develop a fuzzy rule base based on the expert’s knowledge
to adapt the step size, independent, for example, of high-
order statistical measurements. However, in the literature,
to the present moment, there are few versions of NLMS
algorithm with the adaptation of the step size performed
by an MFIS. In Ng et al. (2009), for application in
communication channel equalization, it was proposed to
use an MFIS to adapt the step size as a function of the
squared error. Thus, aiming to propose a new version of
NLMS algorithm with the variable step size, in this paper
it is proposed the Fuzzy Adaptive Step Size - Normalized
Least Mean Square (FASS-NLMS) algorithm, in order to
obtain a good trade-off between the convergence speed and
the steady-state MSE. In the FASS-NLMS algorithm, the
step size is adjusted by an MFIS, such that the step size is
adapted, at each time instant, as a function of the squared
error and of the normalized time instant by the Min-Max
method.

The justification for using, in addition to the squared
error, the normalized time instant as another input of the
MFIS, is due to the instant be an important parameter
for the convergence of the weights vector, since it is
expected that at the end of the time instants occurs its
convergence. For validation of the proposed optimization
methodology, was performed the IAIC and DAIC design
applied to a non-minimum phase plant referring to an
Electro-Hydraulic Actuator system (EHA) in the presence
of a periodic disturbance signal added to the control signal.
The objective of performing the DAIC and IAIC design
in this paper, is to compare the performance of these
controllers, in the presence of a periodic disturbance signal,
when the step size of NLMS algorithm is adapted by
an MFIS. Until the present moment, according to the
bibliographic studies carried out by the author, no paper
has been published in the literature proposing the use
of an NLMS algorithm with the step size adapted by an
MFIS used for the IAIC and DAIC design and performed
the performance comparison in the presence of a periodic
disturbance signal. Thus, the contribution proposed in this
paper is clear and justified. This paper is organized as
follows: in Section 2, the mathematical formulations for
the IAIC are presented; in Section 3, the mathematical
formulations for the DAIC are presented; in Section 4,
the methodology for adaptation of the step size using a
MFIS is presented; in Section 5, the results obtained by
the applying DAIC to a non-minimum phase plant in the
presence of a periodic disturbance signal added to the
control signal are presented.

2. INDIRECT ADAPTIVE INVERSE CONTROL

Let the relationship between the control signal u(k) and
output signal y(k) of a discrete-time stable or stabilizable
plant be given by:

y(k) = q−d
B(q−1)

A(q−1)
u(k) = P (q−1)u(k), (1)

where P (q−1) is the plant model, A(q−1) = 1 + a1q
−1 +

a2q
−2 + . . .+ anq

−n, B(q−1) = 1 + b1q
−1 + b2q

−2 + . . .+
bmq

−m. The operator q−1 is a delay operator such that
q−1u(k) = u(k − 1), k ∈ N is the time instant, d ∈ N is
the delay between the control signal u(k) and the plant
output signal y(k). By definition of the problem, the plant
is considered causal and of non-minimum phase 1 . The
IAIC structure adopted in this paper for monovariable
plants was proposed by Widrow and Walach (2008) and
can be seen in Figure 1.
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Figure 1. Block diagram for the IAIC.

The plant inverse model, i.e., the controller, is represented
by C(q−1), as can be seen. It is important to note that
C(q−1) it is equal to Ccopy(q−1), such that this considera-
tion is performed in order to obtain a feedforward configu-
ration. Furthermore, assuming that C(q−1) is linear, then
Ccopy(q−1)P (q−1) ∼= P (q−1)C(q−1) (Shafiq et al., 2017).
According to Widrow and Walach (2008), ideally, C(q−1)
is considered to be equal to the plant inverse model. How-
ever, this consideration imposes limitations on the realiza-
tion of IAIC, since the system is subject to uncertainty.
Thus, to overcome these limitations, one alternative is to
use adaptive inverse identification techniques.

In order to obtain the plant inverse model in adaptive
manner, it is considered that Ĉ(q−1) is represented by an
M -order adaptive filter of the Finite Impulse Response
(FIR) type, in which Θ(k) = [θ0 θ1 . . . θM−1] ∈ RM×1

is the weights vector. Let yc(k) be the output signal of

Ĉ(q−1), given by:

yc(k) = Ĉ(q−1)y(k), (2)

since Ĉ(q−1) = θ0 + θ1q
−1 + θ2q

−2 + . . .+ θM−1q
−M , the

output signal of Ĉ(q−1) is rewritten as yc(k) = θ0y(k) +
θ1y(k − 1) + . . .+ θM−1y(k −M). In vectorial form (2) is
rewritten as: yc(k) = YT (k)Θ(k) = ΘT (k)Y(k), in which
Y(k) = [y(k) y(k− 1) . . . y(k−M)] ∈ RM×1 is the plant
output signal vector.

1 Since the plant is considered of non-minimum phase, therefore the
plant inverse model is unstable.
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To update the estimate of the weights vector Θ(k), it
is necessary to obtain the error e(k). However, before
obtaining e(k) it is necessary to obtain the control signal,
which is given by:

u(k) = Ĉcopy(q−1)r(k) (3)

since Ĉcopy(q−1) = θ0 + θ1q
−1 + θ2q

−2 + . . .+ θM−1q
−M ,

the control signal u(k) is rewritten as u(k) = θ0r(k) +
θ1r(k − 1) + . . .+ θM−1r(k −M). In vectorial form (3) is

rewritten as u(k) = RT (k)Θ(k) = ΘT (k)R(k), in which
R(k) = [r(k) r(k − 1) . . . r(k −M)] ∈ RM×1 is reference
signal vector. After obtaining the control signal u(k), the
error e(k) is given by:

e(k) = q−LĈcopy(q−1)r(k)− Ĉ(q−1)y(k)

= q−LĈcopy(q−1)r(k)− Ĉ(q−1)P (q−1)u(k)

= q−Lu(k)− Ĉ(q−1)P (q−1)u(k)

=
[
q−L − Ĉ(q−1)P (q−1)

]
u(k),

(4)

which can be rewritten as follows:

e(k) = u(k − L)− [θ0y(k) + . . .+ θM−1y(k −M)] (5)

For non-minimum phase plants, the delay block q−L is
important to obtain a small steady-state MSE. According
to Shafiq et al. (2017), the value of L can be defined as
L ∼= (M + d + m)/2, in which M is the generic order
of an adaptive FIR filter. According to Figure 1, it is
important to note that since the plant inverse dynamic
is tracked by the adaptive FIR filter, limk→∞(e(k))2 → 0
and, consequently, limk→∞(eref (k))2 → 0.

3. DIRECT ADAPTIVE INVERSE CONTROL

The DAIC structure used in this paper for monovariable
plants is shown in Figure 2 (Shafiq et al., 2017). In
Figure 2, the plant inverse model, i.e., the controller, is
represented by C(q−1). Since the weights vector C(q−1) is
directly estimated, it is not necessary that the controller
C(q−1) is also cascaded to right of P (q−1), as is used
for the IAIC. Furthermore, unlike the IAIC, a strictly
feedforward control configuration is not used, since the
weights vector of C(q−1) is obtained as a function of the
reference error eref (k).
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Figure 2. Block diagram for the DAIC.

Consider that the controller Ĉ(q−1) is represented by
an M -order adaptive FIR filter, in which Θ(k) =

[θ0, θ1, . . . , θM−1] ∈ RM×1 is the weights vector of Ĉ(q−1).
Let u(k) be the control signal given by:

u(k) = Ĉ(q−1)r(k) (6)

since Ĉ(q−1) = θ0 + θ1q
−1 + θ2q

−2 + . . . + θM−1q
−M ,

the control signal u(k) is rewritten as u(k) = θ0r(k) +
θ1r(k − 1) + . . .+ θM−1r(k −M). In vectorial form (6) is
rewritten as u(k) = RT (k)Θ(k) = ΘT (k)R(k), in which
R(k) = [r(k) r(k − 1) . . . r(k − M)] ∈ RM×1 is the
reference signal vector.

The error ec(k) is used to update the estimate of the

weights vector Θ(k) of Ĉ(q−1). However, before obtaining

ec(k) it is necessary to obtain the output signal of P̂ (q−1),

in which P̂ (q−1) is an estimate of the plant model. The

model P̂ (q−1) is represented by an N -order adaptive FIR
filter, in which Π(k) = [π0 π1 . . . πN−1] ∈ RN×1 is the

weights vector. Let ŷ(k) be the output signal of P̂ (q−1)
given by:

ŷ(k) = P̂ (q−1)u(k) (7)

since P̂ (q−1) = π0 + π1q
−1 + π2q

−2 + . . . + πN−1q
−N ,

the output signal ŷ(k) of P̂ (q−1) is rewritten as ŷ(k) =
π0u(k) + π1u(k − 1) + . . . + πN−1u(k − N). In vectorial

form (7) is rewritten as ŷ(k) = UT (k)Π(k) = ΠT (k)U(k),
in which U(k) = [u(k) u(k − 1) . . . u(k −N)] ∈ RN×1 is
the control signal vector.

To update the estimate of the weights vector Π(k), it is
necessary initially to obtain the estimation error emod(k).
Let the estimation error emod(k) be given by:

emod(k) = y(k)− ŷ(k)

= P (q−1)u(k)− P̂ (q−1)u(k)

=
[
P (q−1)− P̂ (q−1)

]
u(k),

(8)

in which it is can be noted that when P̂ (q−1) → P (q−1),
then emod(k) → 0. After updating the estimate of the
weights vector Π(k), it is obtained the error ec(k), given
by:

ec(k) = P̂ (q−1)eref (k), (9)

which can be rewritten as ec(k) = π0eref (k) + . . . +
πN−1eref (k − N), such that the reference error eref (k),
obtained between the reference signal r(k) and the plant
output signal y(k), is given by:

eref (k) = yd(k)− y(k)
= r(k − L)− y(k),

(10)

According to Figure 2, it is important to note that
since the plant inverse dynamic is tracked by the adap-
tive FIR, limk→∞(eref (k))2 → 0 and, consequently,
limk→∞(emod(k))2 → 0.

4. FASS-NLMS ALGORITHM

For that the plant inverse dynamic can be tracked by the
adaptive FIR filter Ĉ(q−1), it is necessary that the esti-
mates of the weights vectors Θ(k) and Π(k) are updated
at each instant. To update the estimates of the weights
vectors Θ(k) and Π(k), in this paper it is used the FASS-
NLMS algorithm, given below:
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µ(k) = MFIS(E2(k),K(k))

Γ(k + 1) =

Γ(k) + µ(k)
E(k)Ξ(k)

h(k)
, if h(k) 6= 0

Γ(k) if h(k) = 0,
k ∈ [1,K],

(11)
in which the input variables of the antecedent of MFIS are
the squared error E2(k) and the normalized time instant
K(k) by the Min-Max method. In (11), µ(k) is the adapted
step size by the MFIS, Γ(k) is a generic vector which
represents the weights vector Θ(k) or Π(k), E2(k) is a
generic squared error that represents the squared error
e2(k), e2c(k) or e2mod(k), Ξ(k) is a generic regressors vector
that represents the regressors vector Y(k), R(k) or U(k),
h(k) = ΞT (k)Ξ(k), K(k) is the normalized time instant by
the Min-Max method, and K is the total number of time
instants.

R1 : If K(k) is S and E2(k) is S then µ̄(k) is M
R2 : If K(k) is S and E2(k) is M then µ̄(k) is M
R3 : If K(k) is S and E2(k) is L then µ̄(k) is M
R4 : If K(k) is M and E2(k) is S then µ̄(k) is S
R5 : If K(k) is M and E2(k) is M then µ̄(k) is S
R6 : If K(k) is M and E2(k) is L then µ̄(k) is L
R7 : If K(k) is L and E2(k) is S then µ̄(k) is S
R8 : If K(k) is L and E2(k) is M then µ̄(k) is M
R9 : If K(k) is L and E2(k) is L then µ̄(k) is L

(12)

The input variables of MFIS are the linguistic variables of
the antecedent. Each linguistic variable of the antecedent,
through the fuzzification, receives each linguistic value of
the antecedent with a membership degree that belongs to
the interval [0, 1]. This operation is performed through the
following mappings mj(K(k)) : U → [0, 1] and mj(E2(k)) :
V → [0, 1], with the universes of discourse U = [0, 1]
and V = [0.1 × 10−5, 3 × 10−5]. It is important to note
that each linguistic value is defined by a Membership
Function (MBF) which characterizes a fuzzy set. The
mapping is performed through the j-th MBF mj(•) of
each linguistic variable of the antecedent. According to the
expert’s knowledge, three MBFs of triangular type were
defined for each linguistic variable of the antecedent, with
the linguistic values small (S) for j = 1, medium (M) for
j = 2 and large (L) for j = 3, as can be seen in Figures 3a
and 3b.

With respect to the consequent of MFIS, the linguistic
variable of the consequent µ̄(k) receives each linguistic
value of the consequent with a membership degree that
belongs to the interval [0, 1], through the following map-
ping mj(µ̄(k)) : Z → [0, 1], with the universe of discourse
Z = [0, 0.1]. According to the expert’s knowledge, three
MBFs of triangular type were defined for each linguistic
variable of the consequent, with the linguistic values small
(S) for j = 1, medium (M) for j = 2 and large (L) for
j = 3, as can be seen in Figure 3c.

In (12), the rule base developed for adaptation of the step
size µ(k) is presented. Due to the step size be adapted
by an MFIS, the parameters of MBFs and of the rule
base were defined according to the expert’s knowledge
about how the trade-off between the convergence speed
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Figure 3. MBFs, (a) Linguistic variable E(k), (b) Linguistic
variable K(k) and (c) Linguistic variable µ̄(k).

and the steady-state MSE should be realized. The expert’s
knowledge can be obtained,for example, through past ex-
periences of the analyzed problem. The fuzzy propositions
of the antecedent and consequent presented in the rule
base are related through a conditional fuzzy proposition.
The conditional fuzzy proposition is characterized by the
fuzzy implication of the universes of discourse of the an-
tecedent for the universe of discourse of the consequent,
such that the input of the fuzzy implication is the degree
of activation of each fuzzy rule characterized by the t-norm
of MBFs of the antecedent, given by:

αi = m(K(k), E2(k)) = min[mj(K(k)),mj(E2(k))] (13)

and the output of the fuzzy implication is an MBF given
by:

mRi = min[αi,mj(µ̄(k))] (14)

Since each fuzzy rule is activated with a certain degree
of activation, then the fuzzy implication is performed for
each fuzzy rule and, consequently, for each fuzzy rule is
obtained an MBF given in (14). In order to combine all
the MBFs mRi with i = 1, 2, . . . , 9, aiming to obtain a
single MBF that represents the total response of MFIS
due to performing of the fuzzy implication, it is performed
the fuzzy aggregation. Through the fuzzy aggregation, all
MBFs mRi are combined as follows:

mTotal = max[mR1 ,mR2 , . . . ,mR9 ] (15)

After performed the fuzzy aggregation , it is necessary that
mTotal be defuzzified so that the step size µ(k) received a
numerical value. In this work, the defuzzification method
used is of centroid type, given by:

µ(k) =

∑9
i=1 µ̄

i(k)mTotal(µ̄
i(k))∑9

i=1mTotal(µ̄i(k))
(16)

5. COMPUTATIONAL RESULTS

In this section are presented the results obtained by the ap-
plying of DAIC and IAIC to an Electro-Hydraulic (EHA)
system. EHA systems are widely used in engineering, due
to their high power-weight ratio, their ability to deliver
high force intensity and their compact size. The researchers
are increasingly interested in developing and applying
control methodologies for positioning in EHA systems.
Therefore, it becomes interesting to use a DAIC and IAIC
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for the control of an EHA system. The model of the EHA
system used in this section to represent the plant P (q−1)
was obtained experimentally in Ghazali et al. (2015), given
by:

y(k) =
−0.03093 + 0.3836q−1 − 0.2738q−2

1− 1.57q−1 + 1.056q−2 − 0.1695q−3
(u(k) + n(k)),

(17)
in which n(k) (V) is the periodic disturbance signal added
to the control signal u(k) (V) and y(k) (mm) is the piston
displacement of the EHA system or plant output signal.
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Figure 4. Plant output signal y(k) (a) and Reference error
eref (k) (b).

The plant P (q−1) is of non-minimum phase and stable,
with zeros located at 11.6418 and 0.7604, and with poles
located at 0.6725 ± 0.5488i and 0.2250. To explore the
tracking ability of the plant inverse dynamic and, conse-
quently, of the reference signal, a sinusoidal signal with
frequency f = 0.1Hz was defined as the reference signal
r(k), given by:

r(k) =


5sin(ωt), if 1 ≤ k ≤ 3000
1sin(ωt), if 3001 ≤ k ≤ 6000
2sin(ωt), if 6001 ≤ k ≤ 9000
4sin(ωt), if 9001 ≤ k ≤ 12000,

(18)

in which t = Tak and ω = 2πf . The total time of
simulation was set equal to 60 s, in which the sampling
period used was set equal to Ta = 5 ms and the total
number of time instants was set equal to K = 12000. The
objective of using a sinusoidal signal as the reference signal
for an EHA system, is that through it a velocity range is
generated from zero to the maximum attainable value in
each direction where the highest friction occurs during the
low speed condition and when reversing the actuator move
in the EHA system Ghazali et al. (2015). Thus, using a
sinusoidal signal as the reference signal is a challenge for
the control of EHA systems.

n(k) =



−2, if 1 ≤ k ≤ 2000
2, if 2001 ≤ k ≤ 3000
−2, if 3001 ≤ k ≤ 4000
2, if 4001 ≤ k ≤ 5000
−2, if 5001 ≤ k ≤ 6000
2, if 6001 ≤ k ≤ 7000
−2, if 7001 ≤ k ≤ 8000
2, if 8001 ≤ k ≤ 9000
−2, if 9001 ≤ k ≤ 10000
2, if 10001 ≤ k ≤ 11000
−2, if 11001 ≤ k ≤ 12000

(19)

The order of adaptive FIR filters Ĉ(q−1) and P̂copy(q−1) =

P̂ (q−1) for the DAIC and IAIC was set equal to M =

N = 10. The delay block q−L was set equal to L = 6.
The performance analysis of trade-off for the FASS-NLMS
algorithm was performed only with respect to Ĉ(q−1), in
which the convergence speed of the weights vector Θ(k)
can be verified, for example, through the convergence
speed of the plant output signal y(k) to the reference signal
r(k) and, the steady-state MSE can be verified through
MSE of ec(k) (used to update the estimate of the weights
vector Θ(k) for the DAIC) and through MSE of e(k) (used
to update the estimate of the weights vector Θ(k) for the
IAIC).

The periodic disturbance signal was set equal to (19).
The tracking of the reference signal r(k) developed by the
DAIC and IAIC designed by the FASS-NLMS algorithm
is shown in Figure 4 (a). For the DAIC, the satisfactory
tracking of the plant inverse dynamic and, consequently,
of the reference signal r(k), even in the presence of the
periodic disturbance signal n(k), was possible due to esti-

mate of the weights vector Θ(k) of Ĉ(q−1) be performed
as a function of the reference error eref (k) and of the

estimation error emod(k) of P̂ (q−1). For the IAIC, since
it is implemented in a strictly feedforward configuration,
the update of the estimate of the weights vector Θ(k) is
not performed as a function of the reference error eref (k);
thus, the tracking performance of the plant inverse dy-
namic and, consequently, of the reference signal r(k) was
unsatisfactory, as shown in Figure 4 (a). Furthermore, in
Figure 4 (a) it is observed that the plant output signal
y(k) for the DAIC, when compared to the IAIC, obtained
a higher convergence speed to the reference signal r(k).
These affirmations can also be verified through the ref-
erence error eref (k) shown in Figure 4 (b), where it is
observed that the plant output signal y(k) for the DAIC
obtained a satisfactory performance in the tracking of the
reference signal r(k), when compared to the IAIC.
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Figure 5. MSE of e(k) (black color) and MSE of ec(k) (blue
color) (a) and Control signal u(k) (b).
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Figure 6. Step Size for the DAIC (a) and Step Size for the
IAIC (b).
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Since the errors ec(k) and e(k) are used to update the
estimate of the weights vector Θ(k) for the DAIC and
IAIC, in Figure 5 (a) is shown the MSE of ec(k) and e(k).
For the DAIC, the MSE of ec(k) confirms the tracking
ability of the plant inverse dynamic and, consequently, of
the reference signal r(k), in which the steady-state MSE
quickly tend to zero and with a small amplitude at each
change of amplitude of the reference signal r(k). In Figure
5 (b) is shown the control signal u(k) developed by the
DAIC and IAIC. It is noted that the control signal u(k)
developed by the IAIC obtained higher amplitudes than
the control signal u(k) developed by the DAIC. Due to
the unsatisfactory performance of the IAIC, it is noted that
the parametric adaptation of the step size for update of the
estimate of the weights vector Θ(k) of Ĉ(q−1), obtained
intense variations during its time evolution, as shown in
Figure 6 (b).

In Figure 6 (a) is show the time evolution of the adaptation
of the step size for update of the estimate of the weights
vector Θ(k) of Ĉ(q−1) for the DAIC. During the paramet-
ric adaptation of the step size for the DAIC, even after the
amplitude change of the periodic disturbance signal n(k),
were obtained less intense variations when compared to
the IAIC, which is result of its higher disturbance rejection
ability.

6. CONCLUSION

In this paper, the step size of NLMS algorithm is adapted
by an MFIS, with the objective of obtain a good trade-
off between the convergence speed and the steady-state
MSE. The proposed optimization algorithm was applied
to DAIC and IAIC design for a non-minimum phase EHA
system in the presence of a periodic disturbance signal
added to the control signal. In the results obtained, it was
possible to observe the good performance of the proposed
optimization algorithm, with respect to the convergence
speed and to the steady-state MSE. It was observed that,
due to adaptation of the step size through MFIS, even after
the amplitude change of the periodic disturbance signal,
the plant output signal for the DAIC still continued to
converge to the reference signal, exhibiting a behavior of
disturbances rejecting. Also with regard to MFIS, it can be
seen that the step size is adapted independently of high-
order statistical measures.
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