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Abstract: In this work, we propose an aero-pendulum control system design method. We have
proposed the aero-pendulum dynamic model employing Newton‘s second law of motion, the
dynamic model of the DC motor, and the thrust model. We have estimated the model parameters
by designing the experiments, acquiring the data, applying a nonlinear optimization algorithm
for the parameter estimation, and performing the model validation. We have designed the aero-
pendulum control system by first linearizing the nonlinear aero-pendulum model by small-signal
analysis and designing a linear controller. We have verified the designed aero-pendulum control
system by both simulations and experiments. We have concluded that the control system of a
didactic aero-pendulum can be developed by means of our proposed design method.
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1. INTRODUCTION

Engineering students must develop technical skills such
as designing and conducting experiments, identifying, for-
mulating and solving engineering problems while seeking
permanent learning. Specifically, undergraduate students
of introductory control systems courses need experimental
platforms to understand dynamic systems, apply system
identification techniques, and design controllers. For ex-
ample, some concepts in this area can only be completely
understood when used in practice, like the relationship
between the dynamics of the controlled process and the
closed-loop dynamics.

In 2012, at the University of Arizona, Enikov (2012) devel-
oped and commercialized a portable structure of an aero-
pendulum to facilitate the teaching of automatic control
methods for students outside of electrical engineering and
mechatronics courses. In this structure, the aero-pendulum
position is measured by a potentiometer and is controlled
by the association of a controller and a compensator. Other
authors have also studied the aero-pendulum position con-
trol problem. Kizmaz et al. (2010) applied the technique
of sliding mode control to the case of the aero-pendulum,
approximating the nonlinear system by a linear system for
angles in [0◦, 60◦] range. Mohammadbagheri and Yaghoobi
(2011) designed a PID controller employing the Ziegler-
Nichols method, linearizing the nonlinear model using the
sin θ ≈ θ approximation, which is limited to a small range
of values of θ and cannot contemplate the range of angles
that will be applied to the aero-pendulum in our work.

The main contribution in our work is the aero-pendulum
control system design method. We investigate deeply how a
standard control system design process may be applied to a
didactic aero-pendulum platform. This investigation gave
? The authors are grateful for the financial support provided by
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rise to a specific model, parameter estimation method,
specification definition, and controller design for the aero-
pendulum.

This paper is organized as follows: in Section 2, the aero-
pendulum nonlinear dynamic model and the experimental
platform are presented; the model parameter estimation
by means of the experiment design, data acquisition,
a nonlinear optimization algorithm for the parameter
estimation, and the model validation were described in
Section 4; the control system specifications, and the aero-
pendulum control system design are presented in Section 5;
finally, the simulation and experimental results of the
proposed control system were evaluated in Section 6.

2. THE DYNAMIC MODEL OF THE
AERO-PENDULUM

In this section, the aero-pendulum nonlinear dynamic
model is first presented and then such model is analyzed
in steady-state. An aero-pendulum is depicted in Figure 1.
It is composed of a rotating rod of length L, connected to
a bearing at one end, and a DC motor at the other end;
the rotor of the DC motor is attached to a gearbox: the
driver gear is connected to the rotor and the driven gear
is connected to a propeller. The angular displacement of
the aero-pendulum is due to the thrust T to which the
propellers are subjected. The thrust causes a torque TL
in the pendulum, causing a change in its angular position,
represented as the angle y between the rod and the vertical
axis. This displacement causes the force weight mg to
have a component mg sin(y) perpendicular to the rod. The
component mg sin(y) of the weight force is considered to
be applied to the center of mass of the set {rod, motor,
gears, propeller}, whose distance to the bearing is d.

The thrust, on the other hand, is provided by the angular
speed of the driven gear, coupled to the propeller axis.
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Figure 1. Illustration of the aero-pendulum platform and
its basic set of components: {bearing, rod, motor,
gears, propeller}.

Such an angular speed depends directly on the rotor speed.
The motor is powered by a voltage source controlled by a
PWM signal with duty cycle u.

The motor armature equivalent circuit is represented by
a series association of the voltage source va, the armature
resistance Ra, the armature inductance La, and the back
electromotive force Kωω1, where Kω is the electromotive
constant, and ω1 is the rotor angular speed. The voltage
source is va = Kfu, where u is the PWM duty cycle,
and Kf is constant. The differential equation for the
armature current ia is presented in (1), according to
Franklin et al. (2001). The differential equation for the
rotor speed is shown in (2), Franklin et al. (2001), where
the electromagnetic torque is given by Kiia, the torque due
to the viscous friction by Fω1, and the mechanical torque
imposed by the gears and the propeller by T1.

dia
dt

=−Ra
La

ia −
Kw

La
ω1 +

1

La
va (1)

dω1

dt
=
Ki

Jm
ia −

F

Jm
ω1 −

1

Jm
T1 (2)

The rotor applies a torque T1 to the driver gear, which
produces the torque T2 to the propeller. Considering the
number of teeth N1 and N2 respectively of the driver
and the driven gears, the angular speed of the propeller
ω2 = (N1/N2)ω1 and the torque applied to the propeller
is T2 = (N2/N1)T1.

Employing Newton‘s second law of motion, the differential
equation for the pendulum rotational motion is presented
in (3), Franklin et al. (2001), where J is the moment of
inertia of the set {rod, motor, gears, propeller}, y is the
angular position of the rod in relation to the vertical axis,
C is the viscous friction coefficient, m is the mass of the
set {rod, motor, gears, propeller}, d is the distance from
the bearing to the center of mass of the set, L the distance
between the bearing and the propeller axis, illustrated in
Figure 1, and T = KTw

2
2 is the thrust.

Jÿ + Cẏ +mgd sin(y) =LT (3)

The state-space representation of the aero-pendulum
model is presented in (4) and (5), where Ω is the aero-
pendulum angular speed.

dy

dt
= Ω (4)

dΩ

dt
=−mgd

J
sin(y)− C

J
Ω +

L

J
T (5)

In this work, the following assumptions are considered:

(1) the motor dynamics represented by (1) and (2) is fast
enough to be neglected with regard to the pendulum
dynamics represented by (3);

(2) the moment of inertia of the propellers Jh is neglected
and the transient response of the propellers is consid-
ered to be much faster than that of the pendulum
rod. The propellers are then considered to be in equi-
librium, with constant speed ω2 = ω2ss

;
(3) the motor shaft angular velocity assumes only non-

negative values ω1 ≥ 0.

By considering these assumptions, the dynamics between
the duty cycle u and the thrust T may be neglected. In
the next section, we present how the constant thrust Tss
is related to a constant duty cycle uss. Then we show
that, in steady-state, a constant thrust Tss may be directly
evaluated from the constant angular position yss.

2.1 The steady-state

When a PWM signal with constant duty cycle u = uss
is applied, the motor axis rotates with constant angular
speed ω1ss , and therefore the propeller axis also rotates
with constant angular speed ω2ss , producing constant
thrust T = Tss. By considering that (1) and (2) are in
steady-state, the thrust Tss as a function fT of the PWM
duty cycle uss is given by:

Tss = fT (uss) = K0

(
−K1 +

√
K2

1 +K2uss

)2

. (6)

where, K0 = KT

4K2
Q

(
N1

N2

)−4

, K1 =
(
KiKw

Ra
+ F

)
, and

K2 =
4KQKiKf

Ra

(
N1

N2

)3

, where KQ is the aerodynamic

drag constant and KT is the lift constant (Corke, 2017,
p. 115). The function fT : [0, 100] → R+, Tss = fT (uss),
in (6) is in this work denoted as thrust function. Its inverse
f−1
T : R+ → [0, 100], uss = f−1

T (Tss), is presented in (7)
and will be applied for control allocation.

uss = f−1
T (Tss) =

(√
Tss

K0
+K1

)2

−K2
1

K2
(7)

Considering the pendulum in steady state for a constant
thrust T = Tss, and replacing Ω = 0, dΩ

dt = 0, and y = yss
in (5), we have:

mgd sin(yss) = LTss ⇒ Tss =
mgd sin(yss)

L
. (8)

From (8), is shown that a constant thrust Tss can be
estimated from a constant angular position yss, which can
be measured by a sensor of angular position.
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3. EXPERIMENTAL PLATFORM

Photographs of the experimental platform are shown in
Figure 2. The mechanical parts are a mast, a support and
a base made of polystyrene, a bearing, a solid cylinder,
and a metal rod. We have used a rigid rod, made of
iron coated with ceramic material, to avoid vibration.
The propulsion system is composed of a power source, a
motor Shield (a dual full-bridge driver), a DC motor, a
gearbox, and a propeller. The pendulum angular position
is measured by means of a magnetic position sensor,
the AS5040. The target platform is an Arduino Mega.
During operation, a development computer (not presented
in Figure 2) commands input signals the Arduino acquires
the angular position by a USB cable.

(a) Photograph of the aero-
pendulum front.

(b) Photograph of the aero-
pendulum rear.

Figure 2. Photographs of the experimental platform.

The experimental platform software was developed in
Simulink as the block diagram shown in Figure 3, where
the duty cycle u is the input of a block that commands a
PWM port in the Arduino board. A digital output is set to
1 for selecting the anticlockwise direction for the propeller.
The angular position y is acquired by means of the
block sfun_as5040_aeropendulo developed by de Araújo
(2021). The target code can be automatically generated
from the Simulink model, cross-compiled, and downloaded
into the Arduino Mega by means of a USB cable.

Figure 3. Simulink model of the process.

4. PARAMETER ESTIMATION

To analyze the open-loop dynamics of a process and design
a closed-loop control system, it is required to identify the
model of the process and estimate the model parameters.
For the case of the aero-pendulum, the parameters of the
differential equation in (3) and the function in (6) were
estimated.

4.1 Thrust function estimation

To estimate the thrust function fT parameters in (6), 15
experiments were carried out. In each experiment, a PWM
duty cycle u was applied to the aero-pendulum for 50
seconds, so that the steady-state could be achieved. We
have used the following duty cycle values {0%, 4%, 8%,
12%, . . . , 60%}. The angular position values at steady-
state were measured and saved. The steady state angular
position yss was evaluated as the average of the acquired
angular position values is steady-state. The estimated
parameters were K0 = 0.0072653, K1 = 0.5798, K2 =
0.3745.

Figure 4. The thrust Tss as a function of the PWM duty
cycle uss: experimental data, and data estimated by
means of (6).

The estimated and experimental values of the thrust are
shown in Figure 4. For this estimate, a mean squared error
of MSE = 8.1630 · 10−5N2 was obtained. The estimated
model was then considered satisfactory.

4.2 Parameter estimation of the pendulum model

To estimate the parameters of the differential equation
presented in (3), experiments were performed by applying
the input represented in (9), where N corresponds to the
number of frequency components of the input spectrum,
which was chosen as 64. In each experiment, the input was
applied for 120 seconds. A gain of 5 and an offset of 55
were chosen.

u(t) =
100

255

55 + 5
N−1∑
j=0

c

[(
ωm + j

∆ω

N

)
t− j(j + 1)

π

N

]
where, c is cosine, and ∆ω = ωM − ωm, with ωM = 50Hz
e ωm = 0.5Hz.

Before estimating the parameters, the model was first
represented in discrete time. We used the finite difference
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forward Euler method, for approximating the first and
second order derivatives of the pendulum angular position:

ẏ(t) ≈ y(t+ h)− y(t)

h
, (9)

ÿ(t) ≈ y(t+ 2h)− 2y(t+ h) + y(t)

h2
, (10)

where h is the sampling interval. Replacing ẏ and ÿ
respectively by the expressions (9) and (10) in (3), we have:

y(t) =
C

J
[−hy(t− h) + hy(t− 2h)] +

+2y(t− h)− y(t− 2h) +

+
1

J

[
−h2mgd sin(t− 2h) +

h2L

J
T (t− 2h)

]
(11)

Some of the parameters in (11) were measured, such as m,
d and L. The sampling period h = 0.05s, due to the in-
terrupt service routine in the Arduino board for acquiring
the angular position from the AS5040 magnetic position
sensor, and the communication between the Arduino and
the development computer. Thus, we have estimated the
missing parameters, namely C and J . The parameter vec-

tor to be estimated is θ = [C/J 1/J ]
T

. By writing the
model output in (11) as ŷ(t|θ), we emphasize that it is
estimated from experimental data and it depends on the
parameters.

The estimation problem was defined in (12), where one
seeks to find the set of parameters θ that minimizes the
quadratic estimation error between the experimental data
y(tk) and the model output ŷ(tk|θ), where the sampling
instants are tk = kh, k = 1, 2, . . . ,K, θlb and θub are
respectively lower and upper bounds for θ, and [ θlb θub ]
is a 2-dimensional interval.

θ̂ = argmin
θ∈D

1

2

K∑
k=1

[y(tk)− ŷ(tk|θ)]2 , (12)

D ⊆ R2
>0 ∩ [ θlb θub ]

To solve this estimation problem, a non-linear convex
optimization method was used because (11) is not written
as the product of a regression vector and a parameter
vector; C and J are positive; and the initial value J0 of the
moment of inertia may be calculated before the estimation
process. The moments of inertia of the solid cylinder, the
rod, and the set {motor, gears, propeller} are respectively
mcr

2
c

2 , mrL
2

3 , and mpL
2, where the solid cylinder mass

mc = 0.030kg, its radius is rc = 0.01m, the rod mass
mr = 0.016kg, the rod length L = 0.23m, the {motor,
gears, propeller} total mass mp = 0.005kg. Thus the initial

value of the moment of inertia is J0 =
mcr

2
c

2 +mrL
2

3 +mpL
2.

The vector of initial values is θ0 = [ 0 1/J0 ].

We have also defined upper and lower bound values for
J , respectively as 90% and 110% of the initial value.
The vectors of lower and upper bounds are respectively
θlb = [ 0 0.9/J0 ] and θub = [∞ 1.1/J0 ].

The weight of the solid cylinder is balanced by a normal
force from the bearing. Thus the solid cylinder does not
contribute to m, which is m = mr + mp = 0.021kg. The
local gravitational acceleration is g = 9.806m/s2, and d =

0.160m. The solution of the proposed estimation problem
was the parameter vector θ = [ 0.689 1824.372 ]. Thus,
C = 3.719 · 10−4N ·m · s/rad, and J = 5.481 · 10−4kg ·m2.
The estimation data and the validation data are shown in
Figure 5. The mean squared error between the validation

output and the estimated output is approximately 4.678◦
2

.

Figure 5. Result of the estimation problem: (a) the esti-
mated output and the validation output signal; (b)
validation input signal.

After estimating the aero-pendulum model parameters and
validating the model, we have designed a control system
for evaluating the closed-loop performance of the aero-
pendulum. The control system design process is presented
in the next section.

5. CONTROL SYSTEM DESIGN

The aero-pendulum control system shown in Figure 6 is
composed of a linear controller and the control allocation.
The inputs of the linear controller are the reference angular
position r and the measured angular position yS . The
output of the linear controller is the commanded thrust
Tc. The duty cycle u to be applied to the propulsion
system is evaluated by means of the inverse function
in (7), implemented in the control allocation. We have
designed the control system by: first, defining the closed-
loop specification; second, linearizing the model in (4) and
(5); and then designing a linear controller.

Figure 6. Control system block diagram.
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5.1 Specifications

To define the closed-loop specifications, we have initially
investigated the physical limits and constraints of the aero-
pendulum.

From experimental data, the fastest open-loop response
was achieved to a 58.8% step input at the duty cycle,
shown in Figure 7. We have used this transient response
to determine the fastest rise, accommodation, and peak
times that the aero-pendulum is able to achieve.

Figure 7. Open-loop transient response to a 58.8% step
input at the duty cycle u.

In Figure 7, the rise, peak and settling 1 times are respec-
tively tr ≈ 0.3s, tp ≈ 0.5s and ts ≈ 1.6s. The maximum
angular position achieved is 90◦, which is considered a safe
maximum angle for avoiding a 360◦ turn. The steady-state
angular position is approximately 65◦. Thus, the overshoot
M = 38.46%. Therefore, the closed-loop specifications
presented in Table 1 must satisfy those aero-pendulum
physical limits and constraints.

Table 1.

ID Description

P1.1 When the reference is a step, the percent
overshoot shall be less than or equal to 38.46%.

P1.2 When the reference is a step, the rise
time shall be greater than or equal to 0.3s.

P2.1 When the reference is a step, the peak
time shall be greater than or equal to 0.5s.

P2.2 When the reference is a step, the settling
time shall be greater than or equal to 1.6s.
and less than or equal to 10s.

5.2 Controller Design

Linearizing the model presented in (4) and (5) for a given
angular position y0 by small-signal analysis, as presented
by Franklin et al. (2001), the linearized model in space
state is

d∆y

dt
= ∆Ω (13)

d∆Ω

dt
=−mgd

J
cos(y0)∆y − C

J
∆Ω +

L

J
∆T, (14)

whose equivalent transfer function is

H(s) =
∆Y (s)

∆T (s)
=

L
J

s2 + C
J s+ mgd

J cos y0

, (15)

1 The time, in seconds, taken for the output to be greater than or
equal to 99% of the final value and less than or equal to 101% of the
final value.

and the equivalent differential equation is

∆ÿ +
C

J
∆ẏ +

mgd

J
cos y0 ·∆y =

L

J
∆T. (16)

Considering the linearized model in (15), a PID controller
was designed by means of the pole-zero cancellation tech-
nique. The PID transfer function is:

G(s) = kp +
ki
s

+ kds =
kd

(
s2 +

kp
kd
s+ ki

kd

)
s

. (17)

Comparing (17) and (15), the process poles may be can-
celed by the controller zeros by setting

kp
kd

=
C

J
(18)

ki
kd

=
mgd

J
cos y0 (19)

After the pole-zero cancellation, the resulting closed-loop
transfer function is

∆Y (s)

∆R(s)
=

kdL/J

s+ kdL/J
(20)

The resulting closed-loop system is a first-order system.
Then the specifications P1.1, P1.2, and P1.3 in Table 1
should be satisfied. The derivative gain kd may be used to
allocate the closed-loop pole. By choosing the closed-loop
settling time as 5.5s, the specification P2.2 should also be
satisfied. The derivative gain must satisfy

1− e
kdL

J 5.5 = 0.99. (21)

Thus kd = 0.002, ki = 0.1202 and kp = 0.0014. The PID
was implemented with the filtered derivative action in (22).
The continuous-time transfer function was discretizedG(s)
by means of the Zero-order hold method. The discrete time
controller transfer function G(z) is shown in (23).

G(s) = 0.0014 +
0.1202

s
+

0.2s

s+ 100
(22)

G(z) =
0.20138z2 − 0.39538z + 0.19997

z2 − 1.0067z + 0.0067379
(23)

The designed control system was verified by both simu-
lations and experiments. The verification results are pre-
sented in the next section.

6. VERIFICATION

First, we have verified the designed control system by
means of simulations. We have implemented the block
diagram shown in Figure 8 as the Simulink model shown
in Figure 9. Considering the simulation results presented
in Figure 11, the closed-loop specifications presented in
Table 1 were satisfied.

Figure 8. Block diagram representing the aero-pendulum
control system.

Secondly, we have verified the designed control system
experimentally by means of the aero-pendulum platform.
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Figure 9. Simulink model for simulating the aero-
pendulum control system.

We have implemented the block diagram shown in Figure 6
as the Simulink model shown in Figure 10. Both simulation
and experimental results are presented in Figure 11. The
transient response and the steady-state in simulation and
experimental results are similar for the error e(t) and
the angle y(t). But the steady-state in simulation and
experimental results are different for the thrust T (t) and
the duty cycle u(t), possibly because of prediction errors of
the thrust Tss as a function fT of the PWM duty cycle uss
in (6). However, the closed-loop specifications presented in
Table 1 were satisfied.

Figure 10. Simulink model of the aero-pendulum control
system for experimental verification.

Figure 11. Simulation and experimental results of the
verification process.

7. CONCLUSION

In this work, we have concluded that the control system
of a didactic aero-pendulum can be developed by means
of our proposed design method. The process model may
be represented as a series composition of a thrust function
representing the propulsion system and a nonlinear model
representing the pendulum. The process model parameters
can be estimated by a non-linear convex optimization
method with constraints on the parameters. The control

system can be composed of a linear controller and con-
trol allocation. The controller can be designed by: (i)
linearizing the non-linear pendulum model; (ii) applying
the pole-zero cancellation technique; and (iii) discretizing
the controller transfer function by means of the zero-order
hold method. The controller software may be developed
and verified by means of Simulink models: (i) a Simulink
model of the controller may be developed and then verified
by simulations; (ii) from the controller Simulink model,
code can be automatically generated, cross-compiled and
downloaded into the target platform; (iii) the controller
software running in the target platform can be verified by
experiments. We expect to use the didactic aero-pendulum
as an experimental platform in Control System courses
both at undergraduate and graduate levels. We have al-
ready successfully used this didactic aero-pendulum in
a graduate course of the PPgEE/UFCG. Several top-
ics may be studied by means of the proposed platform,
such as Modeling, System identification, Controller De-
sign, Model-based design, automatic code generation, the
V-model, and Verification&Validation. For future works,
we plan to improve the estimation of the thrust function
to attenuate the errors between the simulation and experi-
mental results in steady-state; and to linearize the process
model by means of the Feedback Linearization.
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de náilon retorcido. Master’s thesis, UFCG, Campina
Grande, Brasil.

Enikov, E.T. (2012). Mechatronic aeropendulum: Demon-
stration of linear and nonlinear feedback control prin-
ciples with matlab/simulink real-time windows target.
IEEE Transactions on Education, 55(4).

Franklin, G.F., Powell, D.J., and Emami-Naeini, A. (2001).
Feedback Control of Dynamic Systems. Prentice Hall
PTR, USA, 4th edition.

Kizmaz, H., Aksoy, S., and Muhurcu, A. (2010). Sliding
mode control of suspended pendulum. 1 – 6.

Mohammadbagheri, A. and Yaghoobi, M. (2011). A new
approach to control a driven pendulum with pid method.
207–211.

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 1989 DOI: 10.20906/sbai.v1i1.2837




