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Abstract: This work proposes a static output feedback (SOF) image-based control design for
a 2 Degree-of-Freedom (2-DOF) camera rotation with the objective of positioning an external
feature at a desired projected display coordinate. Using a Differential-Algebraic Representation
(DAR) of the nonlinear system to model the rigid-body dynamic equations in terms of
quaternions, the Lyapunov stability analysis results in bilinear matrix inequalities (BMI) which
are turned into an optimization problem subject to constraints. An algorithm that searches
iteratively for the gain and the Lyapunov function coefficients by solving individual linear matrix
inequalities (LMI) is used. Numerical examples are provided to evaluate the stabilization and
performance results obtained with the proposed method.
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1. INTRODUCTION

Rotational dynamic systems have a wide scope of applica-
tions, ranging from the aerospace sector, concerning atti-
tude control for aircraft, quadrotors or spacecraft (Salton
et al., 2017), to robotic manipulators (Saraiva, 2019). A
variety of other applications is also possible, such as in
vision-based systems, relating to camera orientation con-
trol, as studied by Hu et al. (2009).

One way of representing such systems is through rigid-
body motion equations using, alternatively to regular
Euler angle representation, quaternions. Considering that,
this scheme was used to implement state feedback control
in Salton et al. (2017) and Saraiva (2019), which served
as a basis for the development of this work. Another
possible approach is using output feedback for the control
of rational nonlinear systems, such as in Castro (2019).

Having that in mind, the aim of this paper is to develop a
vision-based control method for the rotation of a camera,
with the objective of positioning the image projection
of light emitting points (called features) on a desired
coordinate of the display. The pinhole camera model is
used for image formation (Hu et al. (2009)) and the
control strategy is intended to find an optimal static
output feedback (SOF) gain for the closed-loop system
which stabilizes the system. In order to specify state-
space models for the control design, this work focuses
on a Differential-Algebraic Representation (DAR) of these
nonlinear equations, as presented in Trofino and Dezuo
(2014).

Using the image error as feedback, as well as the angular
velocity, eliminates the need for sensing the angular posi-
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tion directly, which could increase the complexity and cost
of the system. The controller to be designed, in addition to
guaranteeing closed-loop asymptotic stability, maximizes
the region of attraction of the system. The analysis and
design problem is turned into BMI constraints, which are
solved through an iterative optimization technique. Con-
cerns with performance were taken regarding decay rate
as well as oscillatory behavior of the closed-loop system.

2. PRELIMINARIES

In this work, the rigid-body rotation is expressed in terms
of quaternions, which are hypercomplex numbers forming
a four-dimensional real vector space H (Krishnaswami and
Sachdev (2016)). A unit quaternion can then be defined as

q =

 cos(
ψ

2
)

r sin(
ψ

2
)

 =

[
η
ε

]
(1)

where η ∈ R, ε ∈ R3, ψ ∈ R is the rotation angle [rad] and
r ∈ R3 describes the rotation axis and its direction (by
using the right-hand rule). From which it follows that,

η2 + εᵀε = 1 (2)

It is also necessary to define the following inertial frames:

Reference frame F̄ : desired orientation of the camera, with
Z̄ pointing to the desired direction (with the feature at the
desired position). Supposing one is “looking” towards Z̄, X̄
and Ȳ are orthogonal axes, pointing to the right and up.

Body frame F : camera frame, with the Z axis along a line
on the direction the camera is pointing to, X to the right
of the camera and Y pointing up.

A rotation matrix R(q) in terms of a quaternion is defined
as in Markley and Crassidis (2014):

R(q) = I − 2ηS(ε) + 2S(ε)2 (3)

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 287 DOI: 10.20906/sbai.v1i1.2839



where R(q) ∈ SO(3) and S(·) represents the cross-product
in matrix form 1 .

Given the above, the following result, Theorem 4.1 from
Khalil (2002), will be used:

Lemma 1. Let x = 0 be an equilibrium point for ẋ = f(x).
Given a domain of interest x ∈ X containing the origin,
if there is a Lyapunov candidate function V (x) = xᵀPx
such that

V (0) = 0, V (x) > 0 in X − {0} (5)

V̇ (x) = xᵀPẋ+ ẋᵀPx < 0 in X − {0} (6)

Then x = 0 is an asymptotically stable equilibrium point
and

R = {x : V (x) 6 1} ⊂ X (7)

is called a region of attraction, since every initial condition
inside R asymptotically approaches the origin.

3. IMAGE FORMATION

This work uses the pinhole camera model (Ma et al., 2004),
represented in Fig, 1, where both the feature µ and the
projection m are shown. The projected coordinates are
related to the external point as follows:

x = f
µx
µz

y = f
µy
µz

(8)

where, µ = [µx, µy, µz] are the coordinates of the feature,
[x, y] represent the position where the image plane is
intersected and f is the focal length.

Figure 1. “Frontal” pinhole imaging model, adapted from
Ma et al. (2004).

The resulting projection will be defined in terms of homo-
geneous coordinates, as defined in Graustein (1930):

Definition 3.1. Homogeneous Coordinates (x1, x2, x3) of
the finite point (x, y) are any three numbers x1, x2, x3 for
which

x1

x3
= x,

x2

x3
= y (9)

From Fig 1, by taking λ = x3, a 2D point can be seen
as the intersection of a line from the origin to the infinity
with a plane spaced λ from the origin. If this depth is set
to λ = 1, then x1 = x and x2 = y in (9). This system

1 In matrix form, the cross-product x× y can be expressed by:

S(x)y =

[
0 −x3 x2

x3 0 −x1

−x2 x1 0

][
y1
y2
y3

]
(4)

of coordinates facilitates transformations such as rotation
and scaling using matrix operations, as such, the feature
point is redefined as µ = [µx/µz µy/µz 1]

ᵀ
.

From (8), considering the pixel scaling and translation
to the display principal point, as well as the rotation to
modify the reference of µ from the body frame to the
reference frame, the image projection of a point can be
set as in (Ma et al., 2004):

λm =

[
fx fθ ox
0 fy oy
0 0 1

]
︸ ︷︷ ︸

Kc

R(q)µ̄ (10)

where m = [xim yim 1]ᵀ establishes the image projection
coordinates, λ ∈ R is the depth of the rotated point in
relation to the camera frame, µ̄ ∈ R3 is the desired point
in relation to the reference frame and Kc ∈ R3×3 is the
intrinsic parameters matrix.

The intrinsic parameters concatenated in matrix Kc are
dependent on the cameraparameters: ox, oy ∈ R - pixel
coordinates of the principal point (image center); fx ∈ R :
fx = ρx - where ρx is the size of unit length in horizontal
pixels; fy ∈ R : fy =

ρy
sin(θ) - where ρy is the size of unit

length in vertical pixels and θ is the skew angle between
camera axes; fθ ∈ R : fθ = −ρx cot(θ) - where ρx is the
size of unit length in horizontal pixels and θ is the skew
angle between camera axes.

4. MODEL AND REPRESENTATION

The rigid-body dynamic model in terms of quaternions can
be described by (Markley and Crassidis (2014)):

η̇ = −1

2
εᵀω

ε̇ =
1

2

(
ηI3 + S(ε)

)
ω

Jω̇ = −S(ω)Jω + τ

(11)

where ω ∈ R3 is the angular velocity [rad/s], J ∈ R3x3

is the body moment of inertia [kg · m2], τ ∈ R3 is the
input torque [N ·m] and S(·) represents the cross-product
in matrix form.

As described in Salton et al. (2017), since when imposing
ε to a certain value, η is consequently a result of equation
(2), then it is possible to eliminate η dynamic behavior
equation from the model, resulting in the following state-
space system: {

ε̇ =
1

2

(
ηI3 + S(ε)

)
ω

Jω̇ = −S(ω)Jω + τ
(12)

where the states are chosen as ε and ω. η, whose dynamic
equation was removed, still appears on the state-space ma-
trices and will be treated as an uncertainty with predefined
limits.

As an output of the system, and serving as feedback, the
image error is taken. It is defined as the difference between
the current image and the desired image, in terms of pixels
along each axis of the display, X̂im and Ŷim.

Based on the feature image projection process described
in Hu et al. (2009), let the vectors µ = [x/z y/z 1]

ᵀ
and

µ̄ = [x̄/z̄ x̄/z̄ 1]
ᵀ

, [a b 1]
ᵀ

represent the current and
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desired feature’s normalized coordinates in relation to the
body frame and reference frame, respectively, so that,

µ =
z̄

z
R(q)µ̄ = γR(q)µ̄ (13)

Note that when the body frame is aligned with the
reference frame, R(q) = I3.

Since the feedback control law applied in this work is
based on the image error, the scaling term γ in (13) is
intentionally set to γ = 1 without loss of generality (Ma
et al. (2004)). The image error, therefore, between the
current projection m (rotated) and the desired projection
m̄ is defined by:

e = m− m̄ = Kc(R(q)− I3)µ̄ = Kc(−2ηS(ε) + 2S(ε)2)µ̄
(14)

Since the other output of the system is the state ω (ro-
tation speed), acquired from an (inexpensive) gyroscopic
sensor, the output of the system can be defined as:

y =

[
e
ω

]
(15)

where y ∈ R5 is the output of the system, e ∈ R2 is the
image error and ω ∈ R3 is the rotation speed.

We will make use of the Differential Algebraic Representa-
tion (DAR), which consists in grouping the nonlinearities
of the system in an additional vector ξ(x) (or π(x), whose
terms are second or higher order groups of the states, as
explained in Trofino and Dezuo (2014); Coutinho et al.
(2004): 

ẋ = A1(η)x+A2ξ(x) +B1τ
0 = Ω1(x)x+ Ω2ξ(x)
y = C1(η)x+ C2π(x)
0 = Π1(x)x+ Π2π(x)

(16)

where x ∈ Rn is the system state vector, y ∈ Rp is the
output vector, ξ ∈ Rnξ is the nonlinear vector for the rigid-
body dynamics and π ∈ Rnπ is the nonlinear vector for the
output dynamics.

If Ω2 is invertible, the original dynamics in (12) can be
recovered by setting, as explained in Salton et al. (2017),

ẋ =
(
A1(η)−A2Ω−1

2 (x)
)
x+B1τ (17)

Letting, for the 2-dimensional model used,

x =

εxεyωx
ωy

 ξ =

[
εxωy
εyωx
ωxωy

]
π =

 ε2x
ε2y
εxεy

 τ =

[
τx
τy

]
,

(18)
the resulting matrices are expressed by:

A1 =

02x2

1

2
η 0

0
1

2
η

02x2 02x2

 A2 = 04x3 B1 =

 02x2

j−1
x 0
0 j−1

y



Ω1 =

[−ωy 0 0 0
0 −ωx 0 0
0 0 −ωy 0

]
Ω2 = I3×3

C1 =

2(fθη − oxbη) 2(oxaη − fxη) 0 0
2(fyη − oybη) 2oyaη 0 0

0 0 1 0
0 0 0 1



C2 =

−2(ox − fθb) −2(ox − fxa) 2(fθa+ fxb)
−2(oy − fyb) −2oy 2fya

0 0 0
0 0 0


Π1 =

[−εx 0 0 0
0 −εy 0 0
−εy 0 0 0

]
Π2 = I3×3 (19)

5. CONTROL DESIGN

We sill now determine a static output feedback gain that
maximizes the region of attraction such that every initial
state in inside this region approaches the origin at a decay
rate of at least σ.

Let xε := ε and xω := ω represent the state vectors for
the quaternion and the rotation speed, respectively. X can
then be defined as the domain of interest according to:

X =

{
xε ∈ R2, xω ∈ R2 :

∑
i

x2
εi

αi
+
∑
i

x2
ωi

βi
≤ 1

}
(20)

where i = 1, 2 and X forms a hyperellipsoid with αi being
the squared length limit for the ith dimension of ε and βi
the squared length limit for the ith dimension of ω.

The objective is to design a control law that maximizes
R ⊂ X in which the origin is asymptotically stable, which
is equivalent to:{

xᵀεM
−1xε + xᵀωN

−1xω ≤ 1
}
, ∀x : xᵀPx ≤ 1, (21)

where M = diag(αi) and N = diag(βi), for i = 1, 2.

Applying the S-procedure (Boyd and Vandenberghe (2004)):

∃κ ∈ R+ :

{
κP −

[
M−1 0

0 N−1

]
� 0

}
(22)

which defining κ = 1 and using the Schur complement
(Boyd and Vandenberghe (2004)) can be stated as the
inequality (restriction to the optimization problem)[

P In
In Υ

]
� 0, where Υ =

[
M 0
0 N

]
(23)

βi limits are calculated dividing a desired angular range
{±ψX̂ ,±ψŶ } on the image axes by an estimated settling
time ts. The criteria is relaxed with a low ts so it only re-
stricts the otherwise unbounded limits, although avoiding
a constraint on the actual speed rotation of the camera.

These angular axes limits are translated into independent
quaternions as

qψx =

[
cos(

ψx
2

) 0 sin(
ψx
2

) 0

]ᵀ
, qψy =

[
cos(

ψy
2

) sin(
ψy
2

) 0 0

]ᵀ
(24)

where (ψX̂) is associated with a rotation around the
camera Y axis and (ψŶ ) with a rotation around the camera
X axis. With these values, the range for η and ε can then
be set as

qlim =

min {ηψx , ηψy} 1
−εψy εψy
−εψx εψx

0 0

 (25)

In a polytopic approach to evaluate the stability of the do-
main of interest (DoI), a convex hull of vertices containing
the ellipsoid is defined so that X ⊂ X̄ ⊂ VX̄ . Considering
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the ellipsoid form of X , the domain X̄ contained by the
vertices VX̄ was defined as an octagon, as shown in figure
2, being less conservative on the region evaluated allowing
a larger region of attraction to be found.

Based on qlim:

X̄ =
{
x ∈ Rn : |x1| ≤ εψy cosφi, |x2| ≤ εψx sinφi

}
(26)

where i = 1, . . . , 8, εψx , εψy are obtained from (25),
φ1, . . . , φ8 are equally spaced angles from 0 to 2π rad and
X̄ ⊂ VX̄ .

Figure 2. Forming the domain of interest.

Then, to delimit the DoI X inside X̄ , a procedure adapted
from Polcz et al. (2015) is done: new vertices VZ are
defined as the average points of VX̄ , resulting in an inner
polytope Z ∈ VZ , shown in figure 2. Then, the domain of
interest X is maximized within vertices VZ by finding:

OP1:

max
M,υ

υ :


M � 0, υ ≥ 1[
z
1

]ᵀ [
M 0
0 −υ

] [
z
1

]
≥ 0,

[
z
1

]ᵀ [
M 0
0 −1

] [
z
1

]
≤ 0

(27)

where M =

[
α1 0
0 α2

]
is the matrix to be used in (23).

In addition to the parameters (x, η) which are inherently
variables of the functions, the desired position of the
feature in the image projection, represented by {a, b}, is
also assigned to a range given upper and lower bounds.
The following “uncertainties” ∆ ⊂ V∆ are defined:

∆ =


δ1 := η : min {ηψx , ηψy} ≤ δ1 ≤ 1

δ2 := a : |δ2| ≤ tanψŶ , δ3 := b : |δ3| ≤ tanψX̂
δ4 := aη :

¯
δ4 ≤ δ4 ≤ δ̄4, δ5 := bη :

¯
δ5 ≤ δ5 ≤ δ̄5


(28)

where δ = [δ1 δ2 δ3 δ4 δ5]
ᵀ
, {ηψx , ηψy} are defined in (25),

{ψX̂ , ψŶ } are the desired angular range, [
¯
δ4, δ̄4] are the

minimum and maximum values of all combinations of δ2δ1,
respectively, and [

¯
δ5, δ̄5] are the minimum and maximum

values of all combinations of δ3δ1, respectively. Finally, the
camera intrinsic parameters {ox, oy, fx, fy, fθ} and camera
inertia parameters {jx, jy, jz} are considered constants.

5.1 Main Result

Given the domain of interest X in (20) and polytopes X̄
in (26) and ∆ in (28), the following theorem, adapted
from Coutinho et al. (2004); Salton et al. (2017); Saraiva
(2019); Castro (2019), addresses the asymptotic stability
with exponential performance and constrained oscillatory

behavior of the closed-loop 2D DAR quaternion camera
system.

Theorem 1. Considering the DAR representation (16) of
system (12) and letting u = Ky be the static output
feedback control law for the closed-loop system: Suppose
there are matrices K ∈ Rm×p, Q = Qᵀ � 0 ∈ Rn×n,
W1 ∈ Rnξ×nξ and W2 ∈ Rnπ×nπ and positive scalars
σ ∈ R, ν ∈ R such that for all (x, δ) evaluated at the
convex set of vertices VX̄ × V∆:[

He{FQ+ σQ} A2(δ)W ᵀ
1 +QΩᵀ

1(x) GW ᵀ
2 +QΠᵀ

1(x)
He{Ω2W

ᵀ
1 } 0

? He{Π2W
ᵀ
2 }

]
≺ 0

(29)[
Q Q
Q Υ

]
� 0 (30)[

−2νQ FQ− (QF )ᵀ

−FQ+ (QF )ᵀ −2νQ

]
≺ 0 (31)

where F = A1(δ) +B1KC1(δ) and G = B1KC2(δ).

Then, all closed-loop trajectories starting in R asymptoti-
cally approach the origin at a decay rate of at least σ with
oscillation constrained by ν in the imaginary part of the
eigenvalues of F , being this region of attraction defined as:

R = {x ∈ Rn : xᵀPx ≤ 1} ⊂ X (32)

where P = Q−1.

Proof. Considering a Lyapunov candidate function V (x) =
xᵀPx, with P = Q−1, the assumption taken that Q is
a symmetric positive matrix leads to the conclusion that
the function is positive definite. Then, in order to verify
that (29) implies V̇ (x) < 0, first the dynamic of x is
recalled from the DAR model in (16) taking into account
the control law τ = Ky, so that (dependence on (x, δ) is
omitted from the proof):

ẋ = A1x+A2ξ +B1KC1x+B1KC2π (33)

The derivative of V (x) then becomes for the DAR:

V̇ (x) = He{xᵀPA1x+ xᵀPB1KC1x+ xᵀPA2ξ + xᵀPB1KC2π}
(34)

By defining a vector ζ = [xᵀ ξᵀ πᵀ]
ᵀ
, in a similar manner

as Salton et al. (2017), it is possible to convert (6) it into
the matrix inequality that follows:

ζᵀ

[
He{PA1 + PB1KC1} PA2 PB1KC2

Aᵀ
2P 0 0

Cᵀ
2K

ᵀBᵀ
1P 0 0

]
ζ < 0 (35)

After that, by adding the decay rate term σ to (6):

V̇ (x) + 2σV (x) < 0⇔ V̇ (x) < −2σV (x) (36)

being the result of this differential inequality, which guar-
antees the exponential decay rate:

V (x(t)) < V (x(0))e−2σt,∀x(0) ∈ R (37)

From (36), the algebraic equations of the DAR are intro-
duced in the stability problem, together with some scaling
variables aiming to reduce conservatism of the results, as
explained in Trofino and Dezuo (2014), and consequently
the region of attraction. To achieve this, Finsler’s Lemma
(Boyd et al. (1994)) is applied thus obtaining:

V̇ (x) + 2σV (x) + He
{
ξL1 [Ω1 Ω2 0] ζ

}
+ He

{
πL2 [Π1 0 Π2] ζ

}
< 0

(38)
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which is equivalent to (36) considering [Ω1 Ω2 0] ζ = 0
and [Π1 0 Π2] ζ = 0 according to the model representa-
tion defined in (16), and similarly to (35) turns into the
following matrix inequality:[

He{PA1 + PB1KC1 + σP} PA2 + Ωᵀ
1L

ᵀ
1 PB1KC2 + Πᵀ

1L
ᵀ
2

Aᵀ
2P + L1Ω1 He{L1Ω2} 0

Cᵀ
2K

ᵀBᵀ
1P + L2Π1 0 He{L2Π2}

]
< 0

(39)

By pre and post-multiplying (39) by diag(Q,W1,W2) and
its transpose, respectively, where W1 = L−1

1 and W2 =
L−1

2 , it finally results in (29).

The region of attraction of the system can be shown to be
constrained to the elliptic range defined by X , as stated
in (32), in case (30) implies (21). The process described
leading from the definition of the domain of interest in
(20) to the inequality (23) is used and therefore it suffices
to take the Schur complement (Boyd and Vandenberghe
(2004)) and show that (30) can be written as:

Q−QΥ−1Q � 0 (40)

which by pre and post-multiplying by P and applying
again the Schur complement is equivalent to (23).

The constrained oscillation of the dynamic behavior of the
system response is achieved by restricting the eigenvalues
of F = A1(δ)+B1KC1(δ) to a horizontal band with limits
on the imaginary part at [−ν, ν].

The additional restriction (31) is the LMI condition for
F to be D-stable, that is, it ensures the eigenvalues of
F = A1(δ) +B1KC1(δ) lie in a specified domain.

If (29)-(31) are satisfied for all vertices VX̄ × V∆, by
convexity it can be assumed that it is true ∀x ∈ X , ∀δ ∈ ∆
and consequently ∀x ∈ R.

5.2 Optimization

To solve the SOF asymptotic stability problem, the op-
timization objective function focuses on minimizing the
trace of P = Q−1 for a fixed K, then minimizing the
absolute value of the trace of the resulting matrix on the
left side of (29) for a fixed P = Q−1, with K as a variable.

This second step is intended to maximize V̇ (x) (negative)
such that the system is still asymptotically stable, further
enlarging the stability limits of the region of attraction.

An initial value for the gain K is obtained through a
linearized model on the form, similar to a Quasi-LPV
modeling (Huang and Jadbabaie (1999)),{

ẋ = A(x, η)x+Bτ
y = C(x, η)x

(41)

evaluated at the equilibrium point at the center of the
image, with the desired feature at the same position, i.e.,

qeq =

1
0
0
0

 ωeq =

[
0
0
0

]
µ̄eq =

[
0
0
1

]
(42)

Then, evaluating V̇ (x) = xP ẋ + ẋPx < 0 with linearized
ẋ = Ax + BKCx and substituting Z ∈ Rm×n : Z =
KCQ, with Q = P−1, the following optimization problem,
adapted from Salton et al. (2017), is solved:

min
Q, Z, N

trace(N) :


AQ+QAᵀ +BZ + ZᵀBᵀ ≺ 0[
Q I
I N

]
� 0

(43)

where N = Nᵀ ∈ Rn×n.

Using the Schur complement (Boyd and Vandenberghe
(2004)), the bottom line of (43) implies N � Q−1 = P ,
implicitly maximizing R since trace(N) > trace(P ). Then,
in case the linearized state matrix C is invertible:

Kinit = ZPC−1 (44)

With that, it is possible to initialize the P-K algorithm
with K = Kinit. As a resulting optimization problem,
with the objective of maximizing the region of attraction,
the auxiliary decision variable N = Nᵀ ∈ Rn×n is again
defined, considering trace(N) > trace(P ), to solve:

OP1 (fixed K):

min
Q,W1,W2,N

trace(N) :


(29), (30), (31),∀x ∈ VX̄ ,∀δ ∈ V∆[
Q I
I N

]
� 0

(45)

OP2 (fixed P ):

min
K,W1,N

|trace(Λ)| :


(29), (31), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I
I N

]
� 0

(46)

where Λ is the resulting matrix on the left side of (29).

6. NUMERICAL RESULTS

To verify the control design, numerical results are pre-
sented in this section, with simulations performed in Mat-
lab. Yalmip toolbox was used for the optimization prob-
lems (Lofberg (2004)), with solvers SDPT3 and SEDUMI.

The following constant parameters were set: camera intrin-
sic parameters and its moment of inertia as

Kc =

[
1244.4 0 640

0 1493.3 512
0 0 1

]
J =

[
1 0 0
0 1 0
0 0 1

]
(47)

focal distance f = 35mm, standard resolution of 1280 ×
1024px, Camera field of view (FOV) of 54.432◦ × 37.849◦.

The optimization input parameters were set as:
ψX̂im = 26◦, ψŶim = 18.5◦, σ = 0.25, ν = 2rad/s

Feature projection:
Initial:

Desired:
minit = 250× 800px

m̄ = 640× 512px

(48)

As shown in figure 3, the algorithm finds a feasible solution
in iteration 2, providing a valid trace of P. This trace is
minimized as expected along the 10 iterations performed
with trace(P )10 = 77.3, which, as presented in figure
4, results in a RoA (projected on the image in green,
according to (10)) close to the DoI defined (in solid blue).

Next figures show results for quaternion {εx, εy} and rota-
tion speed {ωx, ωy} along time in 8 seconds of simulation,
as well as the image error norm, which approaches zero.

The feature image projection path from the initial to the
desired position is shown in figure 8.
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Figure 3. Trace of P along algorithm iterations.

Figure 4. Region of attraction x Domain of interest.

Figure 5. Quaternion ε along time.

Figure 6. Rotation speed ω along time.

Figure 7. Image error norm along time.

7. CONCLUSION

Making use of a 2D DAR representation of a nonlinear
quaternion camera rotation model, the problem of posi-
tioning a feature projection at a desired display coordi-
nate, under constrained exponential decay and oscillation,
was solved by finding an SOF controller that guarantees
asymptotic stability by means of a P-K algorithm. The
authors are investigating extensions to the 3D model.

Figure 8. Image projection path.
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