
Development of a didactic plant and a
human-machine interface to compare

different digital controllers

Nelson N. N. Yamaguti ∗ Bruno G. Dutra ∗

Antonio S. Silveira ∗

∗ Institute of Technology, Federal University of Pará, Belém,
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Abstract: This article presents a comparison between the effectiveness of controllers strongly
consolidated in the classical and modern control theory, for this, several performance indices
were used. In order to carry out this research, it was proposed the development of a low cost
didactic plant with two inputs and one output, with dynamics similar to those of heavy cargo
transport aerial vehicles used in the military area. In addition to the elaboration of the didactic
process, this work includes the development of a human-machine interface to control the angular
position of the plant in real time. The results show that the construction of the didactic process
was performed successfully, because the plant worked as expected, in addition, the responses
obtained to the PID , LQR and LQG controllers corresponded satisfactorily.
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1. INTRODUCTION

The history of control systems can be divided into three
phases, the first phase corresponding to the first inten-
tional uses of the feedback mechanism during the be-
ginning of the industrial revolution (Friedland, 2012). In
World War II (1940), the second phase of control sys-
tems began, where several mathematicians, physicists and
engineers from that period began to research contents
which are now found in literature that address concepts
of classical control theory. From this stage of the evolu-
tion of control systems, it was possible to study several
dynamic behaviors in SISO systems (Single-Input Single-
Output). According to Stevens et al. (2016), these systems
are described in “black box” by transfer functions (mathe-
matical relationships that constitute an input and output
relationship of the process).

In the late 1950s, with the increase in the complexity of
systems, where processes started to have multiple inputs
and multiple outputs (Multiple-Input Multiple-Output -
MIMO), the third phase of control systems began, in this
period, studies of modern control theory begin, in which,
in this approach, processes are characterized by systems of
first-order differential equations coupled and represented
in the form of matrices (Friedland, 2012).

According to Misgeld et al. (2013), the interconnection of
current systems in industries has presented an increase
in complexity in relation to the theory of control and
automation, that way, companies such as National Instru-
ments©, WEG© and Quanser © show that there has been
an increase in demand in what it concerns the number
of companies that develop products in order to provide
didactic processes and services to academia and industry.

Thus, the purpose of this work consists in the production of
a MISO low cost didactic process (Multiple-Input Single-
Output) with two inputs and one output with the purpose
of making a comparison between different performance in-
dices between controllers strongly consolidated in classical
and modern control theory.

This didactic process has dynamics similar to heavy de-
livery vehicles in the military aerospace sector, such as
the Boeing CH-47 Chinook, where propulsion is carried
out by means of two propellers (Yip, 1984). In the tests
performed in this research, the variable to be controlled is
the angular position of the mobile part of the system, that
is, the control of this process is similar to the pitch control
of these aircraft.

2. PROTOTYPE CONSTRUCTION

2.1 Prototype assembly

To develop the design to make mass production feasible,
the prototype was built using professional 3D modeling
software for engineering; Among the software available
for the production of this project, was chose to use the
Computer Aided Design program (CAD) 3D Inventor®.
Figure 1 shows the design made using the Inventor®

software.

After the modeling presented in Figure 1, the project,
which was printed on a 3D printer, is present in Figure
2, in this same figure, it is possible to see other items
that were fundamental for the functioning of the didactic
process.
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Fig. 1. 3D model.

Fig. 2. Process developed for the research.

2.2 Motors drive circuit

The circuit design was produced using Proteus® software
and the Figure 3 shows the electrical circuit diagram
responsible for reading the signal from the MPU-6050
sensor, sending the signal from the control action (signal
generated by an arduino UNO output, which it’s an
open source electronic prototyping platform based on
the ATmega328P microcontroller) and power from the
external source.

Fig. 3. Motors drive circuit.

In Figure 3, it’s observed that the J5 and J6 posts were
used to connect the sensor to the aduino, while the
resistors R6 and R7 were used in the pull-up configuration
to ensure a good reading of the angular position of the
didactic process. On the other hand, the R4 and R5
resistors were used to protect the LED inside the optical
couplers U2 and U3, which they’re used to electrically
isolate the control circuit (connected to the aduino) from
the drive circuit (connected to the source and to the
motors). Subsequently, R1 and R2 resistors were connected
in the pull-down configuration and Q1 and Q2 transistors
were used as a switching system, followed by D1 and D2
diodes, used in the free-wheel diode configuration. Finally,
the R3 resistor was used to protect the D3 LED, which
indicates the connection between source and board. As the
motors need a supply voltage of 3.2 V and a maximum
current of 100 mA, a 12 V voltage source capable of
providing a current of 5 A was used.

2.3 Graphic interface

To plot the results, a Human Machine Interface (HMI)
was developed, through this HMI, the user enters the con-
troller tuning parameters and the desired angular position
(reference), which is selected in real-time through the Dial
feature (positioned in the center of the upper part of the
Figure 4.

Through these feature available in the HMI, it is possible
see in Figure 4 that the HMI plots the following curves in
real time: measured angle (blue in the upper graph), angle
with the desired reference (white in the upper graph),
voltage applied to motor 1 (blue in the lower graphic) and
motor 2 (red in the lower graphic).

This HMI was made using the software Qt Designer for
the development of the design and the software Spyder for
the programming of the design in Python language.

Fig. 4. Example showing the response to a PID controller.

In addition, as indicated in the upper left corner of Figure
4, the HMI has three additional features: one of these
features allows the designer to plot and save the curves
obtained, in order to analyze the graphics later; the second
feature allows the user to save the datalog containing the
output signal, inputs and the simulation time vector, to be
used or provided to other students, teachers or researchers;
and the third feature to show performance indices to
facilitate comparison between controllers.
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3. IDENTIFICATION VIA NON-RECURSIVE LEAST
SQUARES

For practical purposes, the system identification method
used, was the application of least squares, in addition, the
choice of the order of the system for the application of
the Non-Recursive Least Squares (NRLS) estimator was
made taking into account two factors: knowledge of the
dynamics of the process, and according to the value of the
multiple correlation coefficient (R2), thus, the system was
considered to be second order. The value of R2 is used
as a validation index of the estimated model, and can be
defined as

R2 = 1 −
∑N

k=1 [y(k) − ŷ(k)]
2∑N

k=1[y(k) − ȳ)]2
(1)

Where k, y(k), ŷ(k), ȳ and N correspond to discrete
time instant, real output value, estimated output, average
output and number of samples, respectively. According to
Coelho and dos Santos Coelho (2016), for many practical
applications, values of R2 between 0.8 and 1 can be
considered sufficient.

3.1 NRLS: A Polynomial Approach

To control the MISO process using classical control theory
techniques, the controllers were designed using a strategy
to act in a decentralized manner, therefore observing
Figure 5 and considering the Auto Regressive model with
inputs eXogenous (ARX), as the process has two inputs
(u1(k) and u2(k): two propulsion engines) and one output
(y(k): angular position of the didactic process), it is
possible to write the output signal as (2)

Fig. 5. MISO system block diagram.

y(k) =
B1(z)z−1

A(z)
u1(k) +

B2(z)z−1

A(z)
u2(k) (2)

Where B1(z) and B2(z) are the polynomials of the numer-
ators and A(z) represents the characteristic polynomial of
the open loop transfer function. Thus, taking into account
that the estimated discrete model is second order, (2) can
be represented as a difference equation, as in (3)

y(k) = a1y(k − 1) + a2y(k − 2)
+b10u1(k − 1) + b11u1(k − 2)
+b20u2(k − 1) + b21u2(k − 2)

(3)

Thus, by means of the (3), it is possible to establish the
vector that contains the read data (measures vector - y),

the matrix that encompasses the input and output data
of the system (matrix of regressors - Φ) and the vector of
estimated parameters (θ), where:

yT = [y(0) y(1) . . . y(N)] (4)

Φ =


−y(0) 0 u1(0)
−y(1) −y(0) u1(1)

...
...

...
−y(N − 1) −y(N − 2) u1(N − 1)

0 u2(0) 0
u1(0) u2(1) u2(0)

...
...

...
u1(N − 2) u2(N − 1) u2(N − 2)


(5)

θT = [a1 a2 b10 b11 b20 b21] (6)

After defining (4) and (5), the parameters of (6) can be
calculated using (7)

y = Φθ (7)

To calculate θ using (7), it will be necessary that Φ is
a square matrix, however Φ is a matrix of order ΦN,6.
Thus, according to Aguirre (2014), it is necessary to apply
the pseudo-inverse matrix. Therefore, the solution of the
non-recursive least squares estimator was performed by
calculating θ as follows

θ = [ΦT Φ]−1ΦTy (8)

The sequence of steps applied at the input of the system,
was chosen in such a way as to obtain the best multiple
correction coefficient defined in (1). Thus, using the input
and output data present in Figure 6, with the sampling
period Ts = 0.0135s and determining (8), the result was
obtained

Fig. 6. Datalog used for identification

As can be seen in Figure 6, this sequence of steps applied
at the input of the system, was chosen in such a way as
to obtain the best multiple correction coefficient defined
in (1)

θT = [−1.057 0.117 0.144 −1.057 0.332 0.190] (9)

Therefore, the system transfer function MISO G(z) has
been identified as

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 1992 DOI: 10.20906/sbai.v1i1.2844



G(z) =

[
G1(z)
G2(z)

]
=

 (0.144 − 1.057z−1)z−1

1 − 1.057z−1 + 0.117z−2
(0.332 + 0.190z−1)z−1

1 − 1.057z−1 + 0.117z−2

 (10)

In order to validate the estimated model, the same data set
used to find the model was used in the validation, that way,
the Figure 7 displays the measured signal (blue) and the
estimated signal (red). It is observed that it was possible to
make a good identification via NRLS, because for the same
input signals applied in the identified model, the estimated
signal responded very similarly to the read signal, in
addition the multiple correlation coefficient obtained was
R2 = 0.972.

Fig. 7. Validation of the model estimated via non-recursive
least squares in a polynomial approach.

3.2 NRLS: A state-space approach

In the previous subsection, the least squares estimator in
a polynomial approach was presented, with the purpose of
designing controllers that operate in a decentralized way.
In this subsection, the NRLS estimator will be presented
in a state space approach (SSLS) with the purpose of
providing a model where the controller acts directly on the
state variables in a centralized way. For this, we consider
the model (ARX ) represented in state space in Figure 8.

Fig. 8. Block diagram of system representation in state
space

Considering the process as a second-order MISO model,
the equation of states (11), and the output equation (12)
can be represented as follows:[

x1(k + 1)
x2(k + 1)

]
=

[
a11 a12
a21 a22

] [
x1(k)
x2(k)

]
+

[
b11 b12
b21 b22

] [
u1(k)
u2(k)

] (11)

y(k) = [1 0]

[
x1(k)
x2(k)

]
(12)

Where x1(K) and x2(K) correspond to the angular po-
sition and angular velocity estimated, respectively. Thus,
the SSLS solution lies in the determination of the esti-
mated parameter vectors which is defined as (13)

[
θT1
θT2

]
=

[
a11 a12 b11 b12
a21 a22 b21 b22

]
(13)

For this, according to Silveira et al. (2020), it is necessary
to use the calculation of future observations based on
the vector of regressors, where, according to Nogueira
et al. (2019), the estimation of the state x2 is performed
by means of an approximation of type backward of the
derivative of x1. Thus, the state x2 estimates the output
speed x1 as follows

x2(k) =
x1(k) − x1(k − 1)

Ts
(14)

Thus, the matrix of regressors, for the SSLS case, is
organized as in (15)

φ =


x1(0) x2(0) u1(0) u2(0)
x1(1) x2(1) u1(1) u2(1)

...
...

...
...

x1(N − 1) x2(N − 1) u1(N − 1) u2(N − 1)

 (15)

Thus, the calculation of the estimated parameters, for the
SSLS case, can be performed using (16)

θ = (φTφ)−1φTy (16)

Where y corresponds to the system output vector. From
the input and output datalog in Figure 6, calculating (16),
results in

θ =

 0.9452 −4.0535
0.0016 0.1237
−0.8370 −62.0041
0.4805 35.5954

 (17)

Therefore, the matrices A and B were calculated to be

A =

[
0.9452 0.0016
−4.0535 0.1237

]
(18)

B =

[
−0.8370 0.4805
−62.0041 35.5954

]
(19)

To validate the model identified in state space, Figure 9
shows the read signal (blue) and the estimated signal (red),
in this graph it is possible to verify that a good model was
obtained, since the curves are similar. The multiple corre-
lation coefficient obtained also indicates that the identified
model is sufficiently well for practical applications, as the
value obtained was R2 = 0.964.

4. CONTROLLERS

Next, three types of digital controllers will be presented,
of which the first controller, which is widely analyzed in

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 1993 DOI: 10.20906/sbai.v1i1.2844



Fig. 9. Validation of the model estimated via non-recursive
least squares in a state-space approach.

classical control theory, it’s PID (Proportional + Integral
+ Derivative) controller. The second and third controllers
analyzed in this article are optimal controllers, that is,
according to Hespanha (2018), these methods consist in
finding the control signal that minimizes a measure of
output energy and energy consumption. These optimal
controllers are strongly consolidated in modern control
theory, thus generating great relevance in the aeronautical
industry (Stevens et al., 2016).

In order to obtain a better visualization of the response
curves in this article, the graphs analyzed later were
plotted using the resource available on the HMI, which
allows the user to plot and save the obtained graphs.

4.1 Proportional, Integral and Derivative (PID):
Dynamic Cancellation

In summary, this tuning consists of canceling the plant’s
open-loop dynamics, imposing the desired first-order
closed-loop dynamics, through an allocation of poles. For
this, the controller tuning is done by choosing the closed-
loop time constant τcl.

The development of the project and the control law for this
controller is analogous to that described by Araujo et al.
(2017), however, the system investigated in this work has
two inputs (u1(k) and u2(k)), and one output (y(k)), so the
project applied to controller 1 is reproduced to controller
2 as shown in Figure 10.

Fig. 10. System block diagram with PID controller via
dynamic cancellation.

Thus, the control laws implemented were:

∆u1(k) = s10 + s11z
−1 + s12z

−2

∆u2(k) = s20 + s21z
−1 + s22z

−2 (20)

Where s10, s11, and s12 are tuning parameters of controller
1, and s20, s21, and s22 are the parameters related to
controller 2. These values can be calculated as follows:

zd1 = e
− Ts
τcl1

s10 =
1 − zd1
B1(1)

s11 = s10.a1 s12 = s10.a2

zd2 = e
− Ts
τcl2

s20 =
1 − zd2
B2(1)

s21 = s20.a1 s22 = s20.a2

(21)

4.2 Linear Quadratic Regulator (LQR)

The controllers described above acted in the system, using
descriptions by transfer functions, in a decentralized way.
In this section, where the classical control theory includes
the concepts of linear algebra, thus forming the modern
control theory, the application of the LQR controller will
be analyzed. In summary, this method is based on finding
the optimal gain (K) of the controller, whose control law
is given by:

u(k) = −Kx(k) (22)

Which minimizes the discrete quadratic cost function:

J =

∞∑
0

[
xT (k)Qx(k) + uT (k)Ru(k)

]
(23)

Where x(k) are the state variables, Q is a positive-definite
(or positive-semidefinite) Hermitian or real symmetric ma-
trix and R is a positive-definite Hermitian or real symmet-
ric matrix (Ogata, 2010). The solution of the optimization
problem involving the equations (22) and (23), is obtained
from the solution of the equation at differences of Riccati
(Recursive Riccati Difference Equation - RDE ) controller.

The plant used for this work is of type-0, so to be able to
carry out the servo control, it was necessary to carry out
an augmentation of states by adding an integrator Silveira
et al. (2020). Thus, the new representation of the system,
in state space, can be done as follows:

[
y(k)

∆x(k)

]
=

[
I CA
0 A

] [
y(k − 1)

∆x(k − 1)

]
+

[
CB
B

]
∆u(k−1) (24)

ya(k) = y(k) = [I 0]

[
y(k)

∆x(k)

]
(25)

After the augmentation of the model by the addition of an
integrator, the RDE can be described by:

P (k + 1) = AT
a P (k)Aa

−AT
a P (k)Ba

(
BT

a P (k)Ba +R
)−1

BT
a P (k)Aa +Q

(26)

The result of the controller Riccati difference equation is
then used to calculate the optimal gain as follows:

K =
[
AT

a PBa

(
BT

a PBa +R
)−1]T

(27)

Thus, the LQR control law for the augmented system is:

ua(k) = ∆u(k) = K [yr(k) − xa(k)]
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ua(k) = K

{[
yr(k)

0

]
−
[
y(k)

∆x(k)

]}
(28)

4.3 Linear Quadratic Gaussian (LQG)

By the separation principle the regulator and the observer
designs can be done separately, and then connect them
(Stevens et al., 2016). From that, in this work, the LQG
controller is implemented by joining the LQR project
described in the previous section with a Kalman Filter
(KF) (da Cruz, 1996), which will be described in this
section.

The KF, being an optimal observer, is able to provide
the controller with access to all state variables of the
augmented model. Thus, the states of the identified model
are optimally estimated by KF, which allows both mea-
surement errors and modeling errors to be disregarded
(Castro et al., 2020). For the implementation of KF with
LQR, the following system described by the state space
model is considered:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(29)

So, the KF problem can be summed up in obtaining the
optimal gain of Kalman, such that the estimator given by

x̂(k + 1) = Ax̂(k) +Bu(k) + L [y(k) − ŷ(k)]
ŷ(k) = Cx̂(k)

(30)

Be able to minimize the following estimation error

eest(k) = x(k) − x̂(k) (31)

The calculation of L is based on the minimization of the
quadratic functional

J = E
{

[x(k) − x̂(k)]
T

[x(k) − x̂(k)]
}

(32)

The calculation of the optimal gain of Kalman (L) can
be done analogously to the calculation of the optimal
controller gain (LQR), since both the regulation and ob-
servation problems they are dual. Thus, knowing that the
system was augmented by the inclusion of an integrator,
the covariance matrix, which is calculated from the Riccati
difference equation of the estimator, can be calculated as
in (33)

S(k + 1) = AaS(k)AT

−AaS(k)CT
(
CaS(k)CT

a +Rkf

)−1
CaS(k)AT

+Qkf

(33)

The result of (33), is then used to calculate the optimal
gain as follows

L = AaSC
T
a

(
CaSC

T
a +Rkf

)−1
(34)

5. RESULTS

All controllers below were tuned in such a way that the
closed-loop response resulted in a signal with a stabiliza-
tion period less than or equal to two seconds (ts ≤ 2s)
and a overshoot less than or equal to ten percent of the its
value in steady state (Mp ≤ 10%).

5.1 Proportional, Integral and Derivative (PID):
Dynamic Cancellation

This time, to achieve the performance specifications ts ≤
2s and Mp ≤ 10%, the value used to tune both controllers
was τcl1 = τcl2 = 1s, thus generating the control laws:

∆u1(k) = −0.0243 + 0.0257z−1 + −0.0028z−2

∆u2(k) = 0.0424 − 0.0449z−1 + 0.0050z−2

As can be seen in Figure 11, the dynamics obtained in
closed loop corresponded as expected using the tuning
τcl1 = τcl2 = 1s.

Fig. 11. System response to PID controller via dynamic
cancellation.

5.2 Linear Quadratic Regulator (LQR)

For the LQR tuning, the following covariance matrices
were used:

Qlqr =

[
1 0 0
0 10 0
0 0 1

]
e Rlqr =

[
20000 0

0 20000

]
(35)

What resulted in the covariance matrix (36) and the
optimal gains matrix (37):

P =

[
19.9144 136.5467 0.2095
136.5467 1643.5427 2.0485
0.2095 2.0485 1.0160

]
(36)

K =

[
−0.0052 −0.0513 −0.0004
0.0030 0.0294 0.0002

]
(37)

Therefore, the controller control law LQR for this MISO
system was as follows:

∆u(k) = −Kxa(k) +Kyyr(k)
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∆u(k) = −
[
−0.0052 −0.0513 −0.0004
0.0030 0.0294 0.0002

] [
y(k)

∆x(k)

]
+

[
−0.0052
0.0030

]
yr(k)

(38)

Where the first installment of the (38) corresponds to the
regulatory case, and the second to the servo case. Figure
12 shows the response of LQR to the tuning used in (35):

Fig. 12. System response to controller LQR

5.3 Linear Quadratic Gaussian (LQG)

For the LQR tuning, the following covariance matrices
were used:

Qlqr =

[
1 0 0
0 10 0
0 0 1

]
e Rlqr =

[
10 0
0 10

]
(39)

And for KF tuning, knowing that the smaller the value of a
given diagonal element of Qkf , the more its corresponding
state variable (Stevens et al., 2016) is filtered, and that
the matrix Rkf is responsible for shifting the magnitude-
to-frequency curve sideways. The tuning used to estimate
the states were

Qkf =

10−6 0 0
0 1 1
0 0 1

 Rkf = 10.103 (40)

What resulted in the covariance matrix (41) and the
optimal gains matrix (42)

S =

[
932.7802 42.8556 −212.8282
42.8556 7.1268 −29.8321

−212.8282 −29.8321 146.6314

]
(41)

L = [0.0889 0.0036 −0.0182] (42)

5.4 Performance indices

In order to compare the effectiveness of the controllers, the
following performance indices were used: integral square
error (ISE), integral squared control signal (ISU), ISE +
ISU , error variance σ2

e , and control signal variance σ2
u,

these metrics were calculated this way:

Fig. 13. System response to controller LQG.

ISE =
1

N

N∑
k=1

[yr(k) − y(k)]
2

ISU =
1

N

{
N∑

k=1

[u1(k)]
2

+
N∑

k=1

[u2(k)]
2

}
ISE + ISU

σ2
e =

1

N

N∑
k=1

[e(k) − µe]
2

σ2
u =

1

N

{
N∑

k=1

[u1(k) − µu1
]
2

+
N∑

k=1

[u2(k) − µu2
]
2

}
(43)

Where N , yr, y, u1, u2, µe, µu1
, µu2

correspond to the
number of samples, angle of reference, measured angle,
controller 1 signal, controller 2 signal, mean error value,
mean value of controller 1 signal, and mean value of con-
troller 2 signal, respectively. The tables 1 and 2 present
the comparisons between the indices related to the cost
function and the indices related to the variances, respec-
tively:

Table 1. Comparison among indices related to
the cost function

ISE ISU ISE+ISU

PID 76.615 4.563 81.178
LQR 59.993 7.828 67.820
LQG 57.186 8.421 65.607

Table 2. Comparison between indices related
to variance

σ2
e σ2

u

PID 76.335 0.838
LQR 59.771 1.082
LQG 56.373 0.789

6. CONCLUSIONS

Through the values presented in Table 1, it is possible
to see that the best controller, in terms of energy con-
sumption for this process, was the PID, as it was the
one that acted generating the lowest ISU. On the other
hand, the controller that acted with the smallest reference
tracking error (smallest ISE), and provided the best cost
of efficiency (ISE + ISU), was LQG. For situations where
high pitch variances are not desired, the Table 2 indicates
that the controller that performed better was the LQG,
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and for situations where they are not desired high vari-
ances of the signal injected into the motors, the controller
that performed best was the LQG, since the Kalman filter
reduces measurement noise.
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