Utilizando Redes Neurais Convolucionais para Automatizar a Detecção de Defeitos Físicos em PCBs na Indústria 4.0

  • Fábio S. D. Silva Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
  • Tiago R. D. Sá Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
  • Kaio A. S. Lima Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
  • Rodrigo C. D. Freitas Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
  • Karoline S. Pereira Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
  • Ramayana A. M. Júnior Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
  • Neide F. Alves Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
  • Mario G. Carvalho Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
  • Lucas G. Flores Universidade do Estado do Amazonas, Instituto Federal do Amazonas Manaus
Keywords: Convolutional Neural Networks, defect detection, memory modules, VGG19, MobileNet, InceptionV3, accuracy, Industry 4.0

Abstract

Printed circuit boards (PCBs) are becoming increasingly complex and miniaturized, making the detection of physical defects more challenging. Convolutional neural networks (CNNs) can be used to detect complex patterns in images, and this study proposes the use of CNNs for the detection of defects in PCBs. Three canonical CNN architectures were evaluated: VGG19, MobileNet, and InceptionV3. MobileNet showed the best performance, with an accuracy of approximately 98.12%. This study provides a solid foundation for the development of automated defect detection systems for the information technology industry.
Published
2023-10-18