Detecção de Falhas Iminentes em Buchas Capacitivas de Alta Tensão: Uma Abordagem Baseada em Machine Learning

  • Daniel Carrijo Polonio Araujo Esc. Eng. de S. Carlos - EESC, Univ. de S. Paulo - USP
  • Gabriel de Souza Pereira Gomes Esc. Eng. de S. Carlos - EESC, Univ. de S. Paulo - USP
  • Rafael Prux Fehlberg Esc. Eng. de S. Carlos - EESC, Univ. de S. Paulo - USP
  • Sofia Moreira de Andrade Lopes Esc. Eng. de S. Carlos - EESC, Univ. de S. Paulo - USP
  • Rogério Andrade Flauzino Esc. Eng. de S. Carlos - EESC, Univ. de S. Paulo - USP
  • Marcos Eduardo Guerra Alves Radice Technology, Atibaia, SP
  • Mário Luiz Pereira Alves Furnas, Rio de Janeiro, RJ
  • Renan Ferreira Santa Rosa Treetech Tecnologia, Atibaia, SP
  • Iony Patriota de Siqueira Tecnix Engenharia e Arquitetura Ltda. Recife, PE
Keywords: bushings, transformers, machine learning, fault detection

Abstract

Bushings are one of the primary causes of failures in power transformers, and that’s why several offline and online predictive maintenance techniques have been developed to evaluate the state and condition of bushings. This paper will demonstrate the capability of an Autoencoder network to act as an anomaly detector, indicating in real time failures in high voltage capacitive bushings, using statistical parameters of the leakage current vectors as input for the model. The results obtained by this study show that anomaly detection techniques are promising for the online diagnosis of condensing bushings.
Published
2023-10-18