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Abstract: The sun is a plenty and popular source of renewable energy. To transform solar
energy into electricity it is necessary to use photovoltaic (PV) panels which in turn have
low efficiency and therefore do not provide maximum power. Maximum power depends on
temperature and solar radiation. Changes in these environmental factors require an algorithm to
find the Maximum Power Point (MPP) where maximum power can be extracted. The algorithm
is called the Maximum Power Point Tracking (MPPT). Through MatLab/Simulink the MPPT
algorithm based on the Kalman Filter was implemented. The MPPT algorithm is essential
for the maximum use of solar energy and therefore plays an important role for the feasibility
and competitiveness of PVs in renewable energy. This article proposes a MPPT based on the
kalman filter that has the advantage of efficiently estimating variables based on measurements
with statistical noise, in this case measurements of solar irradiation and temperature. The results
show efficiency because the relative errors are less than 1.13% compared to results obtained from
simulink.
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1. INTRODUCTION

Global warming and consequent climate change are requir-
ing the replacement of fossil fuels with renewable energy.
These energies are those related to natural sources and
which can be reused such as wind and solar energy (Pali
and Vadhera (2016)).

Due to the fact that the planet earth receives energy from
the sun, around 1.5 × 1018 kWh, which corresponds to
1000 times the amount of energy consumption in this
period of time, makes solar energy one of the most popular
among renewables. To convert the solar energy in the
form of electricity, a PV panel is required, that converts
light energy into electrical energy. However, a photovoltaic
panel itself has low efficiency, and as a consequence, it does
not provide maximum power (Wan et al. (2015)).

Maximum power depends on temperature and solar ra-
diation, as a consequence sudden changes in these envi-
ronmental factors imply the need to include a tracker to
find an operating point called MPP from which power
is maximized. Power maximization is performed by a
power tracker known as Maximum Power Point Tracking
(MPPT) that provides the voltage and current values that
determine the MPP point (Sen et al. (2017)).

Over time, many algorithms have been developed to find
the MPP being the most used: Incremental Conductance,
Disturb and Observes, Fuzzy Control and Neural Net-
works. Despite the good applicability of these algorithms,
researchers continue to study and design new algorithms in
order to lower costs and achieve satisfactory results in the
optimization of Maximum Power as pointed out in Verma
et al. (2016).

In the literature, a new trend for such kind of problems,
which has been giving good results is the Kalman filter,
which is a computational method based on the recursion
of least squares methods. The qualities of the filter are
associated with the possibility of predicting future states
through present and past estimates even in the absence of
the system model (Li et al. (2015)).

In this perspective, Ramchandani et al. (2012) designed
the Kalman filter to find the MPP, but did not contemplate
temperature variation and solar irradiation as well as not
measuring the efficiency of the MPPT algorithm.

Therefore, the objective of this paper is to implement the
Kalman filter-based MPPT through Matlab/Simulink in
the conditions of temperature changes and solar irradia-
tion and to verify the efficiency through the found results
.

2. THE PHOTOVOLTAIC PANEL

The union of photovoltaic cells in series and parallel
produce a photovoltaic panel. Because cells provide low
voltage and current, they are joined in series to increase
voltage while joining in parallel is to raise current (Tanemo
et al. (2018)).

Fig.2 shows an equivalent circuit of a photovoltaic panel
containing a parallel current source with a diode and two
resistors (one in series and one in parallel). According to
Bilhan et al. (2016), the mathematical representation of a
photovoltaic panel can be described by the equations 1, 2
and 3 .

I = Iph − Id[e
q(V +IRs)

nKT − 1] − (
V + IRs

Rp
) (1)
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Figure 1. Equivalent circuit of a traditional photovoltaic
cell
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Where: I is the output current of the photovoltaic panel;
Iph the photo current; Id the reverse saturation current of
the cell; n the join quality factor p-n; V a Cell output volt-
age; q the electron charge 1.6 × 10−19C; K the Boltzman
constant (1.38 × 10−23J/K); Rs the series resistance; Rp

the parallel resistance; Isc the short circuit current; α the
temperature coefficient of Isc; Tr the reference tempera-
ture of 298K (25 ◦C); λ the solar radiation intensity at
W/m2; Eg the energy of the forbidden band (Durgadevi
et al. (2011)).

Table 1 shows the characteristics of the photovoltaic panel
model (MX60 PV) extracted from Matlab/Simulink, for
a solar irradiation and temperature conditions of 1000
W/m2 and 25 ◦C respectively.

Table 1. Characteristics of the PV Panel Model
MX60

Features Value

Maximum Power (W) 60.53W

Open Circuit Voltage Voc 21.10 V

Voltage on the MPP Vmp 17.04 V

Temperature Coefficient of Voc -0.22 (%/ deg.C)

Short Circuit Current Isc 3.80 A

Current on the MPP Imp 3.55 A

Temperature Coefficient of Isc (%/ deg.C) 0.03 (%/ deg.C)

Two cases of PV panel were simulated by Matlab/Simulink.
In the first case, the PV panel was simulated with a con-
stant temperature of 25 ◦C and solar radiation variations
of 1000 W/m2, 800 W/m2, 600 W/m2 and 500 W/m2 as
seen by the curves I - V and P - V from Figures 2 and 3. In
the second case, the PV panel simulation took place with
constant solar irradiation of 1000 W/m2 and temperature
variations of 25 ◦C, 50 ◦C, 75 ◦C and 100 ◦C as noted by
the curves I - V and P - V from Figures 4 and 5

By the analysis of Figures 2 and 3 it is clear that the
increase of the output current and the power of the PV
panel depends on the increase of solar irradiation. While
an evaluation of Figures 4 and 5 show that the voltage
and output power of the photovoltaic panel decreases
as its temperature increases. The implications described
here, prevent MPP tracking, requiring therefore a MPPT
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Figure 2. PV I × V curve
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Figure 3. PV P × V curve
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Figure 4. PV I × V curve
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Figure 5. PV P × V curve

algorithm tracker for power maximization (Peng et al.
(2018)).

3. MPPT ALGORITHM

Since the curves of Fig. 2, 3, 4 and 5 are modified
with variation in temperature and solar irradiation, it
is necessary an algorithm to find the MPP when these
variations occur. A way to find the MPP in a PV panel is
using a MPPT algorithm as Fig. 6 (Han and Jia (2012)).
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Figure 6. PV system scheme

Fig. 6 shows the architecture of a PV system. As can
be seen, the Boost converter is controlled by the MPPT
algorithm and positioned between the PV panel and the
load (Ibrahim et al. (2015)).

3.1 Boost Converter

The Boost converter, when operating in continuous mode,
converts the DC voltage (V ) into another DC voltage (Vo).
This converter, as seen in Fig. 7 contains a MOSFET that
is controlled by a Pulse Width Modulation (PWM). The
other electrical components have a distinct function that
will depend on the state (on or off) of the switch. When
the switch is on, the inductor stores power from the PV
panel, while the diode turn off the PV output, and the
output capacitor provides current to the load. However,
in the situation where the switch is off, the inductor is
in discharge mode and the diode polarizes and connects
the output of the PV panel. As a consequence of the on
and off state of the switch, the output voltage (Vo) is

always greater than the input voltage (V ), since it is the
sum of the input and the inductor voltage (at discharge)
(Hasaneen and Mohammed (2008)).
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Figure 7. Boost Converter

The equations of the Boost Converter are:

Vo =
V

1 −D
(4)

Io = I(1 −D) (5)

Where: I is the PV panel current (input), Io is the system
output current and D is the duty cicle. Analysis of 4 allows
us to deduce that the value of D depends on the value of
V , this means that changes in the voltage value reach the
duty cicle value (Rakhmawati et al. (2017)).

3.2 The Kalman Filter

Formulated by Rudolph Kalman in 1960, the Kalman filter
consists on equations that recursively provide a solution
for the least squares method. The Kalman Filter is very
popular because of the good results presented in various
areas of knowledge. The use of the Kalman Filter is due
to the prediction of a future state, even in the absence
of a mathematical model, by means of present and past
estimates. Estimates in the Kalman Filter are performed
by combining two steps: prediction and correction. Each
step has its own sets of equations. The equation 6 is the
first equation of the prediction step and serves to project
the next state (Li et al. (2015), Costa et al. (2005), Kang
and Park (2011)).

x−k = Axk−1 +Buk−1 (6)

Where: x−k is the estimated state in the predicted iteration
k from the previous iteration. xk−1 the rectified state in
the iteration k−1 found by the output measure zk−1. uk−1

is the control process of the k−1 iteration process. A is the
transition state constant model used for the previous state.
B a constant that depends on the model that is used in the
control process (Costa et al. (2005)). The second equation
of the prediction step is used to project the next covariance
error.

H−
k = AHk−1A

T +Q (7)

Where: Q is the covariance process related to the noise
state matrix. H−

k the covariance a priori for the k itera-
tion. Hk−1 the covariance error a posteriori for iteration



k + 1 (Costa et al. (2005)). The second step (correction)
aims to correct the value predicted by the prediction step.
The first equation of this step calculates the K gain.

Kk = H−
k C

T (CH−
k C

T +R)−1 (8)

Next, the estimate xk is updated via output zk.

xk = x−k +Kk(zk − Cx−k ) (9)

And finally the last equation that updates the covariance
error.

Hk = (I −HkC)H−
k (10)

Where: xk is the corrected state at iteration k due to zk
output. Hk the covariance of the error a posteriori in the
iteration k. Kk the Kalman gain. R Covariance of noise.
zk the measurement. C a constant related to the Kalman
Filter system and the observed space (Costa et al. (2005)).

3.3 MPPT by Kalman Filter

To find the MPP operating point using the Kalman Filter
it is necessary to design the filter to find the maximum
power voltage. It can be seen from the curves P - V from
Fig. 3 and 5 that the power is increased with a positive
slope to the best point and decays with a negative slope.
Thus, through these analyzes, we can write equations
to predict the MPP stress. As Kang and Park (2011)
considers A = 1 and B = M , so the equations of the
prediction step are:

V −
k = Vk−1 +M

∆P

∆V
(11)

H−
k = Hk−1 +Q (12)

Where: V −
k is the estimated voltage value by the MPPT

using the Kalman filter in the k iteration and corresponds
to x−k .M equivalent toB and is considered a scaling factor.
∆Pk−1

∆V k−1 the slope of the curve P -V in the iteration k−1 and
equivalent to the control uk−1 (Kang and Park (2011)).

The correction step process is made it as follows.

According to Kang and Park (2011), the K gain can be
calculated adopting C = 1 and by the covariance error as
refq:09

Kk = H−
k (H−

k +R)−1 (13)

The equations refeq:10 and refeq:11 of the correction step
corrects the predicted covariance measurement with the
PV panel voltage measurement Vphotovoltaic,k as follows:

Vk = V −
k +Kk × (Vphotovoltaic,k − V −

k ) (14)

Hk = (1 −Kk) ×H−
k (15)

Where: Vk is the value of the corrected voltage using the
Kalman filter based MPPT in the k iteration provided
by the Vphotovoltaic,k PV voltage measurement (Kang and
Park (2011)).

In Fig. 8 we present the simulation performed by the
MatLab/Simulink software, this one presents a PV panel
connected with a Boost converter and the MPPT based
on the Kalman filter.

Figure 8. Implementação do MPPT baseado no filtro
Kalman usando o software MatLab/Simulink

4. RESULTS

To test the efficiency of MPPT using Kalman Filter,
it was simulated two scenarios. In the first scenario,
the temperature was maintained at 25 ◦C and the solar
irradiation was varied from 1000 W/m2, 800 W/m2, 600
W/m and 500 W/m2 for 2 seconds. The result of the
maximum power found on these implications is shown in
Fig. 9. In the second scenario, solar irradiation was kept

0 0.5 1 1.5 2
Time (s)

-10

0

10

20

30

40

50

60

70

Po
w

er
 (

W
)

500 W/m²

800 W/m²

600 W/m²

1000 W/m²

Figure 9. Potência de sáıda com o algoritmo MPPT
baseado no Filtro de Kalma a temperatura constante
de 25 ◦C

constant at 1000 W/m2 while the temperature is varied at
25 ◦C, 50 ◦ C, 75◦ C and 100 ◦C for 2 seconds. Figure 10
shows the consequent result.

To measure the effectiveness of MPPT, the values obtained
using the above mentioned kalman filter based MPPT were
compared with the values provided by Matlab/Simulink of
the PV panel. In Table 2 and 3.

According Farayola et al. (2017), among the MPPT algo-
rithms such as Incremental Conductance, Disturb and Ob-
serves, Fuzzy Control and Neural Networks, the first has
the best efficiency. Dolara et al. (2018) found that the effi-
ciency of Incremental Conductance was 97.4%. Thus, com-
paring the Incremental Conductance with MPPT Kalman
Filter based, the latter is more efficient when it comes to
delivering maximum power with a relative error less than
1.13%.
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Table 2. Comparison of the output power of the
PV panel and the values obtained by means of
the algorithm MPPT Kalman filter at constant

temperature of 25 ◦C.

Irradiation
W/m2

Maximum Output
Power (W )

Maximum Output
MPPT

Filter Kalman (W )

Relative
error %

1000 60.53 60.45 0.14

800 49.00 48.84 0.13

600 37.11 36.77 0.92

500 31.03 30.84 0.61

Table 3. Comparison of the output power of
the PV panel and the values obtained using
the algorithm MPPT Kalman filter with a

constant solar irradiation of 1000 W/m2.

Temperature
◦C

Maximum Output
Power (W )

Maximum Output
MPPT

Filter Kalman (W )

Relative
error %

25 60.53 60.45 0.14

50 56.74 56.1 1.12

75 51.64 51.62 0.03

100 47.12 46.92 0.42

5. CONCLUSION

By Matlab/Simulink the MPPT algorithm based on the
Kalman Filter was implemented in a PV panel with the
intention to find the MPP point and thus to extract the
maximum power. However, the I-V and P - V curves of
the PV panel change with varying temperature and solar
radiation and as a consequence modifies the MPP point,
thus the MPPT needs to be designed to find the maximum
condition. In this way this paper analyzed two scenarios
with changes on environmental factors mentioned here. In
the first scenario the temperature was set at 25 ◦C and
the solar radiation varied from 1000 W/m2, 800 W/m2,
600 W/m2 and 500 W/m2. In the second scenario, the
solar irradiation of 1000W/m2 was kept constant while the

temperature varied from 25 ◦C, 50 ◦C, 75◦c and 100 ◦C. In
both scenarios, the Kalman filter-based MPPT algorithm
showed efficiency, since the results compared with the Pv
panel output power values provided by MatLab/Simulink
showed relative errors less than 1.13 %.
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