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Abstract: This paper proposes a new approach for power transformers dissolved gas analysis
(DGA) using Statistical Machine Learning Techniques and Neural Networks to compose a
stairway model which performs analysis in three levels in order to check the existence of faults
and which type it most probably is. The proposed approach shortcuts the problem of lacking
reliable data related to the type of fault creating a model with three levels of analysis. The first
one uses real data from an energy company and from IEC TC 10 data to classify the DGA
samples as faulty or normal. After that, a second one based just on IEC TC 10 takes place to
classify three possible types of the fault. The third level is used to classify 5 types of fault in a
more detailed analysis. The proposed levels of the model achieved an accuracy in the test set of
100 %, 94 % and 92 % respectively.
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1. INTRODUCTION

Power transformers are one of the most important and
expensive assets in energy power systems. As presented
by Carrijo (2009), Power transformers are responsible
for supplying energy for loads that goes from houses
to hospitals and big industries. Therefore, to ensure its
reliable and safe operation, besides avoiding incipient
faults, monitoring the condition of those assets plays a
major role.

Analysis of dissolved gas in oil is considered to provide a
reliable diagnostic tool for assessing the condition of power
transformers. DGA provides information about the gases
formed inside the asset and these can be related to the
occurrence of some faults.

Regarding the analysis and interpretation of these tests,
lots of methods have been developed, such as Doernenburg,
Rogers and Duval methods. The first two methods use gas
ratios to detect the existence and the type of faults, but
they have the disadvantage of not being closed methods,
i.e. they don’t provide diagnostic to any gas quantity (e.g.
low gas concentration faults). Doernenburg gas ratios can

? This work is supported by PD-5160-1804/2018 ANEEL, developed
by CEB and Radice with collaboration of Treetech and SEL-EESC-
USP.

be seen in Table 1. On the other hand, Duval’s method
presented in Duval (2008) and Duval and Lamarre (2014)
use gas percentage and is closed, hence always providing
diagnostics as can be seen in Figure 1. There are also some
methods that are a combination of the previous ones such

Figure 1. Duval Triangle 1 for DGA Analysis
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as the method presented in Kim et al. (2013) and methods
that are based in the thermodynamics of gas formation as
Cruz et al. (2015).

Table 1. Ratios for keys gases - Doernenburg,
Bakar et al. (2014)

The major drawbacks of these methods are the facts that
they need some specialist interpretation for the diagnostics
without supporting decision making, they just use some
gas ratios and they all have been constructed considering
only IEC TC 10 database, which is a database that
compiles a lot of power equipment post-mortem analysis,
relating the failures with DGA tests performed on those
assets. In order to overcome the problem of lack of expert
personnel, some solutions use fuzzy logic as Abu-Siada
et al. (2013), Khan et al. (2015) and Noori et al. (2017)
and combinations of Neural Networks and other standard
methods, like the method presented in Chatterjee et al.
(2019). However, these propositions do not contemplate
other points like data reliability and continuous training.

2. GASES GENERATION IN TRANSFORMERS DUE
TO FAULTS

During normal operating conditions, it is common for gases
to be generated inside the equipment. Under abnormal
conditions, such as electrical and thermal stresses, the
formation of these gases can vary depending on the type of
stress suffered. Typical gases that appear in insulating oil
are hydrogen and hydrocarbons such as methane, ethane,
ethylene and acetylene. Each of these gases has a specific
formation temperature, as can be seen in the Figure 2.

Hydrogen formation starts at around 150 oC and increases
as the temperature increases. Methane also starts to be
produced at around 150 oC, but after reaching a maximum
value it starts to decrease with increasing temperature.
The same happens with ethane, which starts to be pro-
duced at 250 oC, and ethylene which starts its production
at around 350 oC. After reaching their maximum, they
all start to decrease as the temperature increases. Finally,
acetylene production starts between 500 and 700 oC and
increases as the temperature increases.

Between 200 and 300 oC, the methane production rate
exceeds hydrogen production. At around 275 oC, ethane
production exceeds methane production. At 450 oC, the
production of hydrogen begins to be greater than the
production of all other gases until around 750 oC, when
the production of acetylene starts to increase. Usually, the
initial quantity of each gas and the rate of formation varies
with several factors such as equipment design, applied load
and type of material used for solid and liquid insulation.
Figure 3 shows examples of faults in power transformers.
The relative concentration of the gases can be seen in the
Figure 4.

In this scenario, this paper proposes a new approach based
on a three-level stairway analysis, using all gases available

Figure 2. Faults and generated gases, Rogers (1978)

in a DGA test, except for nitrogen and oxygen, aiming
to overcome the complexity and strong dependence of
experts that other methods present. In the first level of
the stairway, it only identifies the existence of a fault.
Since IEC TC 10 has few examples, this approach also
uses practical data collected from real cases analyzed by
transformers specialists. The reliability of this first analysis
is high because it is easier for specialists to analyze the
existence of a fault than to identify its type. The second
level of the stairway analysis performs an identification
among three main types of faults and is trained, validated
and tested using only IEC TC 10, because there is still a
lack of reliable data classifying the fault type. The third
level goes deeper, identifying one among 5 types of faults,
also based on IEC TC 10.

These serialized models provide a good support for
decision-making, allowing it to be performed in a three
level, requesting the specialist analysis only when really
necessary. Besides, it provides a straightforward way to
reinforce model training without losing reliability, since the
training process of one stairway level does not interfere on
the other.

3. THE STAIRWAY MODEL

When performed by a specialist, a dissolved gas analysis
usually follows a diagram like the one presented in Figure
5. First, the specialists classify the transformer as faulty
or normal. This part of the process has high reliability,
once it is easy to verify if there is a fault or not, e.g. if gas
concentrations or rate of gas increase are above typical
values for the equipment. After that, the specialist uses
some standard method, like Duval’s Triangle, to analyze



the type of the fault. Then, if the fault diagnostic encoun-
tered is dangerous and require immediate action, those will
be taken in order to preserve the asset, like shutting down
the transformer or scheduling some corrective inspection
or maintenance.

Figure 3. Fault examples (from the left to the bottom: D2,
D1, T3 and T1), Cigre - JWG D1/A2.47 (2019)

Figure 4. Faults and generated gases, Cigre - JWG
D1/A2.47 (2019)

Figure 5. Simple DGA analysis procedure

One way to address this issue is to create a serialized expert
analysis in the same way that a human expert would in
a real case. The serialized model consists of a three-step
analysis, in degrees of data reliability and decision-making
support. Figure 6 presents the serialized model.

Figure 6. A stairway model for DGA Analysis

In the first step, the model provides information regarding
the existence of a fault that can be identified with a
DGA test. This first step exists to reduce or eliminate the
necessity of an expert analysis to identify if the equipment
is faulty or not and can be trained with a lot of high
reliable data, once specialists already record such analysis
in a proper way. In the sense of decision making, this first
analysis give information to the responsible maintenance
personnel about which equipment need more attention. In
the second step, the model gives information about the
type of the fault in three classes: partial discharges (PD),
thermal fault (T) and energy discharges (D). In this step,
the specialist may be not so precise like in the first one.
Even considering that there are other types of tests that
can identify the types of faults, like the partial discharge
test, they are still expensive and performed only in cases of
high necessity. In this sense, it is harder to obtain reliable
data to test the models for the second step, but it is
still feasible. In the decision making point of view, the
second step gives a closer look in the state of the asset,
providing to the maintenance personnel information about
the severity of the fault. For example, partial discharges
damage the equipment, but are not so severe like energy
discharges. Hence, step two can provide a general, yet
precise classification of fault type, allowing further actions
to be planned. In the third level, the model classifies
the faults in five types, being: partial discharges (PD),
low energy discharges (D1), high energy discharges (D2),
thermal faults of low and medium temperature (T1 or T2)
and thermal faults of high temperature (T3). The Stairway
model decision-tree is shown in Figure 7.

The idea was not to create new classifications of faults, for
the existing classification is widely accepted and consoli-
dated. Even considering that the third level of the stairway
gives a much better information about the fault and conse-
quently about the state of the equipment, finding reliable
practical data to train this third step of the model is even
harder. That being said, the third particular level needs
more expert analysis, both to obtain relevant data to train
the model and to confirm further diagnostics provided on
this level. This step can be later improved by considering
the equipment’s behavior over the time on the training
process.

4. STAIRWAY MODEL IMPLEMENTATION

4.1 Dataset challenges

In this work was used the public available IEC TC 10
database. This database contains reliable data of DGA



Figure 7. Stairway model decision tree

analysis of faulty equipment inspected in service. The
faulty equipment presented by it were removed from ser-
vice, visually inspected by experts, and the faults were
clearly identified for each one. Relevant DGA results were
available in all of these cases for correlation purposes. The
faults identified by the specialists can be divided into 5
types as show in Duval and DePabla (2001):

(1) Partial discharges (PD) of the cold plasma (corona)
type with possible X-wax formation, and of the spark-
ing type inducing small carbonized punctures in pa-
per;

(2) Discharges of low energy (D1), evidenced by larger
punctures in paper, tracking, or carbon particles in
oil;

(3) Discharges of high energy (D2), with power follow
through, evidenced by extensive carbonization, metal
fusion;

(4) Thermal faults below 300 oC if paper has turned
brownish (T1), above 300 oC if paper has carbonized
(T2); and possible tripping of the equipment;

(5) Thermal faults above 700 oC (T3), evidenced by oil
carbonization, metal coloration, or fusion.

Some challenges can be pointed in IEC TC 10, the main
dataset used in this work, namely:

• Missing values for some gases;
• Unbalanced number of faults per classification:

· 34 normal
· 9 of type PD
· 26 of type D1
· 48 of type D2
· 16 of type (T1 + T2)
· 18 of type (T3)

• Small amount of data (only 151 analysis)

All missing values were filled up with the mean value of
the class for the missing gas. The unbalanced data problem
was solved by creating synthetic data using the probability
distribution of each class. The synthetic data was used only
for training the models, they were not used for testing.
Unfortunately, the small number of samples will always be
a drawback when the subject is neural network, causing

the resulting trained network to overfit in most cases. This
can only be solved by performing more tests and post-
mortem analysis in equipment.

4.2 Implementation

To implement the Stairway model, one specialized model
was trained and validated for each level as proposed. The
validation was performed using a k-fold cross-validation
approach with 5 folds. For the first level, a Random Forest
composed by 400 Trees was used in the way presented in
Figure 8. This Forest was trained, validated and tested
using IEC TC 10 database and real data (50 power trans-
formers) from a Brazilian energy company. The model
performance was quite remarkable, reaching an accuracy
of 100 % in the test data. The results are detailed and
discussed in the next section. For the second level, only

Figure 8. Stairway Random Forest (simplified)

IEC TC 10 was used for training, validating and testing,
because there were not enough practical data to do differ-
ently. The architecture of the specialized chosen to perform
this analysis was a simple Multi-layer Perceptron, with the
topology presented in Figure 9 and schema presented in
Figure 10. The model reached an accuracy of 94.5 %.

Figure 9. Multi-layer Perceptron Topology

For the third and final level, also IEC TC 10 was used for
training, validating and testing. The architecture chosen
for this case was a convolutional neural network because
a simple MLP did not perform well for this case. The
topology of the network can be seen in Figure 12 and the
schema in Figure 11. The model achieved an accuracy of
92 %, an expected result when considering the simplicity
of the used convolutional neural network.



Figure 10. Multi-layer Perceptron Schema

Figure 11. Convolutional Neural Network Schema

Figure 12. Convolutional Neural Network Topology

5. RESULTS AND DISCUSSIONS

The results for the first level of analysis is presented in
Table 2.

Table 2. Results for the first level of analysis

Train Validation (kfold) Test

Accuracy 100 % 96 +
−0.09% 100%

As it can be seen, the model performed quite well in identi-
fying the existence of a fault. Nevertheless, due to the small
amount of data, the model is a little over-fitted, which can
be seen in the validation analysis performed through a
cross-validation approach using 5 folds (four for training
and one for testing). In order to solve this problem, more
data is needed. Even so, the mean accuracy obtained was
96 %, which proves this fact, but, the standard deviation
of the cross-validation was small (around 0.09 %) which
means that the model is consistent.

An analysis of feature importance was performed based on
the average influence of each gas on the impurity decrease
of the random forest trees. This was done in order to
identify which gases are more relevant when classifying
the equipment as faulty. This method is in general biased
for continuous or high-cardinality categorical variables. In
our case we only have continuous variables, thus the use
of this method is quite effective, mainly considering that
it runs fast. The result is shown in Figure 13.

Figure 13. Relative Importance of Each Gas for Faulty or
Not

As can be seen, acetylene (C2H2), hydrogen (H2) ethylene
(C2H4) and methane (CH4) have together around 80% of
the importance, roughly indicating that these three gases
alone can be used to identify the existence of a fault in a
reliable way. This result is physically consistent with Cigre
- JWG D1/A2.47 (2019). Further studies will be conducted
on feature extraction and selection to confirm these facts.

For the second level of analysis, the results can be seen
in Table 3. The accuracy obtained in the training set was
greater than the obtained in both validation and test. This
shows that the model is over-fitted. To solve this problem,
more data is needed, once hyper-parameter tuning did
not solve this problem. Nevertheless, the model is also
consistent, as can be seen considering the small standard
deviation presented by the cross-validation.

Table 3. Results for the second level of analysis

Train Validation (kfold) Test

Accuracy 100 % 91 +
−0.15% 94 %

The third level of analysis performed almost like the second
one as can be seen in Table 4. It also suffered over-fitting,
as can be seen in the difference between train, validation



and test. It is a big challenge to solve the over-fitting
problem of this level, because it is hard to find reliable
data for training the model. More post-mortem equipment
analysis is needed.

Table 4. Results for the third level of analysis

Train Validation (kfold) Test

Accuracy 100 % 90 +
−0.15% 92 %

6. CONCLUSIONS

As technology develops, the existence of true specialists is
becoming more vital to the life of any asset in the power
system, but a lot of them are getting retired and stopping
to work. With this in mind, true specialists work hours
become scarce and more expensive.

The idea of this paper is not to replace specialist analysis,
but to help them to obtain more quickly and reliable
results. Data analysis and neural network can be powerful
tools in the hands of maintenance personnel and engineers
if its limitations are well known, considered throughout
the modeling and, when possible, dealt with.

A stairway model for DGA analysis was proposed on this
paper in order to help decision-making process, specially
reducing the need of equipment specialists for simple cases
of DGA tests. In the first level, it provides information
about the main state of the equipment, concerning its
condition (faulty or not). The second step provides in-
formation about the general type of the fault, dividing
it in three possible major types: partial discharges, energy
discharges and thermal fault. The third step provides a
more detailed analysis of the fault type, dividing it in
five types: partial discharges, low energy discharges, high
energy discharges, low and medium temperature thermal
fault and high temperature thermal fault. Moreover, it
provides a different way of gathering data, where data for
the first level are easier to obtain and more reliable than
for the next steps respectively. The models developed to
perform the analysis of each step reached a test accuracy
of 100 % (first step), 94 % (second step) and 92 % with a
very low standard deviation for the validation set, showing
that the analysis is consistent. Even so, the limitations of
the models were shown and explicitly considered as points
where a specialist analysis might still be necessary.

As known limitations, due to the small amount of data, the
methodology proposed by this paper serves as a starting
point for the development of a robust model where more
data will be used to train, test and validate the models.
The research next step will be getting more data for
training the first and the second step, considering it is
easier to find data for them when comparing with the third
step.
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