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Abstract: Distribution networks are responsible for supplying electricity to most consumers,
and also are the power system part where the majority of electricity interruptions occurs. These
infrastructures are in urban and rural regions and are organized to meet different geographical
and operational restrictions and the energy demand. In this study, the use of metrics from
complex networks theory to describe the organization of such important systems in topological
and electrical perspectives was evaluated. A variety of metrics were extracted from different
distribution networks. They were calculated considering topological and active power flow
in nominal conditions information. The values obtained were investigated using exploratory
factor analysis approach. Results indicated that the metrics can be grouped into three distinct
factors, and there is a metric, unrelated to such factors, which describes how the power flow
is distributed over the network structure. Considering the importance of such systems and the
various possibilities of the operational and topological organization, the knowledge of metrics
capable of characterizing, in a systemic perspective, is significant for the analysis of current and
future challenges related to energy distribution. This topic and its applications will be further
explored in future research.
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1. INTRODUCTION

Power Distribution Systems (DS) operate, in general,
as a set of radial distribution networks (Ahmadi and
Mart́ı, 2015), because of different reasons (Kazmi et al.,
2017), as reduced implementation and protection costs,
and less complex control and automation requirements.
As each distribution network is radial, the power flows
from the distribution feeders to the loads, resulting on the
high contribution of such part of the power grid to the
electricity interruption experienced by consumers and its
consequences (Zidan et al., 2016).

Besides these operational aspects, the load spatial organi-
zation together with geographical characteristics (Zvoleff
et al., 2009) needs to be pondered in the planning, con-
struction and expansion of such systems. A distribution
network can be organized in different manners, because of
the various requirements and resources available. Such an
organization reflects both in the connectivity among the
network elements and in the electrical characteristics of
the elements composing such systems.

An approach capable of describing how systems are or-
ganized is the Complex Networks (CN) theory (Barabási
et al., 2016). Examples are the analyzes of muscle networks
organization at distinct conditions (Boonstra et al., 2015),
and the Linux Kernel structure (Gao et al., 2014). The
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studies of engineered systems topological organization date
back to the late 1990s, as Watts and Strogatz (1998) which
investigated the small-world property of the US power
grid.

CN applications on power systems studies investigated
systems dynamic behaviors, as cascade failures (Pahwa
et al., 2014), synchronization (Rohden et al., 2012), and
vulnerability (Bessani et al., 2017; Zang et al., 2019).
Others application can be seen in the modeling of such
systems to aid in different problems solution or investi-
gation, for example, the planning of power distribution
networks (Cuadra et al., 2017), and the study of differ-
ent distribution networks resilience loss during extreme
weather events (Bessani et al., 2018).

In this manuscript, we analyze metrics from CN theory to
describe the organization of power distribution networks.
The traditional CN metrics (Costa et al., 2007) character-
ize the connectivity among the elements, while extended
CN metrics, or hybrid metrics (Cuadra et al., 2015), can
describe how the electricity flows through such networks
structure in nominal operating conditions, named hybrid
characterization.

This study is an exploratory investigation of the metrics
used in (Bessani et al., 2018), where the resilience drop of
distribution networks during extreme weather was related
to topological and hybrid CN metrics for such networks.
This metrics will be investigated using Exploratory Fac-
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tor Analysis (Fabrigar and Wegener, 2011) allowing an
examination on how they are interrelated and a better
understanding of how they characterize the networks.

We organized the remainder of this manuscript as follows.
Section 2 presents the fundamental of the used metrics,
including the approach to embed the power flow quantities
in these. The distribution networks used, and the method-
ology applied to investigate the metrics are described in
Section 3. Section 4 presents and discusses the results
followed by Section 5 that concludes this manuscript.

2. BACKGROUND

Given a distribution network composed by N buses and
M branches, it can be represented as an undirected graph
G = (V, E), where V is a set of vertices, vi, describing the
N buses, and E is a set of edges, ej , that represents the M
branches connecting the network buses.

2.1 Topological Metrics

The topological metrics (Costa et al., 2007; Barabási et al.,
2016) used in this study represent, in distinct perspectives,
how the vertices are connected on a graph. They are briefly
described below.

• Order (N): the cardinality of V;

• Average degree (k): the average number of connec-
tions, or degree (k), the vertices have. It is a general
descriptor of the number of connections present in G;

• Density (d): the ratio between the size (M) of G, i.e.,
the cardinality of E , and the maximum number of
edges a graph with an order equal to N can have,
which is calculated as:

d =
2M

N(N − 1)
; (1)

• Diameter (D): The largest shortest path among all
the vertices in G. The diameter indicates the shortest
distance between the two vertices more separated in
G;

• Average shortest path (L): the average length of the
shortest paths for all the pairs of network vertices.
This metric shows how the vertices are separated in
average;

• Degree entropy (H): the uncertainty on the number
of connections the G vertices have and is calculated
as:

H = −
∑
k

p(k) log p(k), (2)

where p(k) is the probability of a vertex to have
k connections. Higher values of entropy indicate a
higher variability in the number of connections the
vertices have;

• Assortativity coefficient (r): quantifies how similar are
the degrees of connected vertices, and ranges from -
1 to 1; Values near to 1 indicates that vertices are
connected with other vertices with a similar degree,
and near to -1 indicates that high degree vertices are
connected to low degree ones and vice-versa.

• Degree probability distribution (α and xmin): know-
ing the network vertices k, we can describe the degree
probability distribution - p(k). One type of probabil-
ity distribution that can be used is the power-law,
which form is p(x) ∝ x−α. In general, the power-
law distribution describes only values greater than a
minimum (xmin), and in this case, we are modelling
the distribution tail (Clauset et al., 2009). Given the
k of the network vertices, we can adjust a power-law
distribution to model the degree probability distri-
bution as p(k) ∝ k−α for values of k ≥ xmin. The
higher the value of α, the lower is the probability of
finding a vertex with higher k and also the xmin value
describes where the distribution tail begins, being
directly related with the observed values of k.

2.2 Hybrid Metrics

A distribution network also has electrical characteristics
related to the power, current and voltage over its elements.
It is already known that the use of pure topological metrics
leads to an incomplete description of such systems (Bom-
pard et al., 2012), and there are an extensive amount of
proposals to incorporate the electrical features in the topo-
logical metrics (Cuadra et al., 2015), which were named as
extended or hybrid metrics.

The hybrid metrics evaluated here are based in the ones
used in the analysis presented in Bessani et al. (2018)
study, where the active power flowing through the distri-
bution networks branches in nominal operating conditions
were used as the weight of the graph edges. By knowing
these weights, it is possible to calculate the weighted
version of all the metrics previously presented in Subsec-
tion 2.1, except the Order and Density that will result in
the same value.

The use of the power flow as edges weights will result in
metrics describing how the power flow is arranged over the
network structure. As an illustration, the weighted vertices
degree kw will be the sum of the power flowing through the
edges connected to each vertex, and the average weighted
degree (k

w
) will describe the average amount of power that

flows through the branches connected to a network bus.
The weighted assortativity (rw) will reflect if buses with
large amounts of power flow are connected with similar
buses or to ones where a small amount of power flow is
demanded.

2.3 Exploratory Factor Analysis

Exploratory Factor Analysis (EFA) is a multivariate sta-
tistical approach to model the relationships between ob-
servable variables through a smaller set of latent variables,
or hidden variables, called factors (Salkind, 2010), which
describe the underlying relationship between measured
variables. This approach is similar to Principal Compo-
nents Analysis (PCA), the difference is that EFA assumes
that the total variance can be partitioned into common
and unique variance, while PCA does not consider unique
variance.

EFA results in a model that expresses each variable (xi)
as a linear combination of the factors (f1, . . . , fm), which



describe the common variance, plus an error term ei
related to the unique variance:

xi = µ+ λi1f1 + . . .+ λimfm + ei, (3)

where λij is the j-th factor loading of the i-th variable.

The factors loadings are obtained by solving the following
equation (Fabrigar and Wegener, 2011):

R−DΨ − ΛΛT = 0, (4)

where R is the correlation matrix calculated as the covari-
ance matrix of the standardized variables xi, DΨ is the
covariance matrix among the unique factors assumed that
all are uncorrelated with one other, and Λ is the factor
loading matrix, where each λij represents the loading of
xi to the j-th factor.

The matrix R − DΨ is also known as the reduced corre-
lation matrix and can be used to determine the number
of factors by the Kaiser criterion (Fabrigar and Wegener,
2011), where the number of factors is equal to the number
of eigenvalues of the reduced correlation matrix that are
greater than one. The errors are related to the unique
variance of the variables that cannot be described by the
linear combination of the factors.

After the first Λ estimate, we can rotate it to obtain a
better estimation, and the most used is the orthogonal
rotation by varimax (Fabrigar and Wegener, 2011), which
aim to remove the correlation among the factors (Salkind,
2010). Using the rotated Λ, we can calculate the com-
munality of each variable, which is the squared sum of
its factors loading and describes the proportion of the
variance of the variable expressed by the factors. The
communality can be used to evaluate how the observed
variables are represented by the latent ones. Moreover, the
observation of a variable with a low communality indicates
that it describes an aspect that is discrepant from the other
variables.

3. MATERIALS & METHODS

3.1 Distribution Networks Used

The distribution networks used in this study were ob-
tained from seven distinct distribution systems. They were
presented in the literature for diverse purposes and vary
in size, number of feeders, and electrical characteristics.
They all are available at the REDS: Repository of dis-
tribution systems (Kavasseri and Ababei, 2015). Since
each feeder is a radial distribution network, 34 distribu-
tion networks were obtained assuming nominal operation
conditions from this set of distribution systems. They are
listed in the Table below.

3.2 Metrics Extraction and EFA

For each system presented in Table 1, the following steps
were performed:

(1) Extract the radial distribution networks relative to
each system feeder;

(2) Calculate the nine topological metrics presented in
the Subsection 2.1 and store these values;

(3) Calculate the power flow for each distribution net-
work considering nominal operating conditions;

Table 1. Distribution systems used in this
study. Each feeder was modeled as an inde-
pendent network where the metrics were cal-

culated.

System Feeders Source

bus 13 3 3 (Civanlar et al., 1988)
bus 29 1 1 (Eminoglu and Hocaoglu, 2005)
bus 32 1 1 (Baran and Wu, 1989)
bus 83 11 11 (Su et al., 2005)
bus 135 8 8 (Guimaraes and Castro, 2005)
bus 201 3 3 (Guimaraes and Castro, 2005)
bus 873 7 7 Created by NSDU Power Group

(4) Calculate the seven hybrid metrics by using the power
flow over the branches of the network as edges weights
and store such values.

After calculating all the 16 metrics for the 34 distribu-
tion networks, EFA can be performed. First, the Kaiser-
Meyer-Olkin (KMO) test (Cerny and Kaiser, 1977) was
performed into the observed values to verify whether the
factor analysis should be performed on the generated data
set. Then, the factor loading matrix was estimated by
minimizing the residual of (4) and, after that, the loading
matrix was rotated using the varimax approach to obtain
the final loading matrix. With the loading matrix and the
residues related to that matrix, AFE can be performed to
explore how these variables are related to each other and
the underlying relationship between them highlighted on
the factors loading.

4. RESULTS & DISCUSSION

The first result presented is the correlation matrix for all
the metrics calculated for the 34 distribution networks,
this is shown in Figure 1. The correlation values pre-
sented are Spearman’s coefficient, which is a nonparamet-
ric (distribution-free) statistic to measure the relationship
strength between two variables. Most variables resulted in
positive or close to zero correlations. The only variable that
showed negative correlations between the others is d, which
is exactly the opposite of the k correlation with the other
variables. Another aspect is the small correlation values
observed between αw and the other variables, except xwmin,
which is the other metric related to the weighted degree
probability distribution.

The KMO test for the set of metrics resulted in a value of
0.73, indicating that the use of an EFA for the data set is
applicable. The Λ was estimated and its eigenvalues were
calculated to decide how many loading factors should be
adopted in the model. The eigenvalues were presented in
Figure 2, and we can see that only the first three factors
have their eigenvalues greater than one, resulting in a
model with three factors.

After defining the number of factors, the final matrix
Λ was obtained, composed of three orthogonal factors
that represent the latent, or hidden, variables describing
the relationship between the calculated variables. Table 2
shows the loading factor for each variable, and the values
in bold are the highest loading observed for each variable.
The first observation that should be highlighted is about
metrics k and d, which resulted in the same absolute values



Figure 1. Spearman correlation between all the metrics
calculated for the distribution networks.

Figure 2. Scree Plot representing the eigenvalue of each
factor. The doted line indicates the adopted Kaiser
criterion of eigenvalues greater than one to define the
number of factors to be used.

for the three factors, but with an inverted sign. This shows
that they share, in an inverse way, the same information
about the distribution networks, this relationship is similar
to the information on the correlation matrix of Figure 1.
In addition, the three factors loading have close values,
reflecting that these two metrics are similarly related to
the three factors.

Factor 1 loading is highest for the N , D, L, Dw, k
w

, Lw,
Hw, and xwmin variables, which describe topological and
hybrid characteristics. These variables have already been
shown to be highly correlated, as shown in Figure 1, and
all of them are related to the scale of the system. As a
distribution network increases in size and energy demand,
these variables are also expected to increase in value due to

Table 2. Factor loadings of each feature for
the three factors. The bold values indicate the

higher loading observed for each variable.

Features Factor 1 Factor 2 Factor 3

N 0.87 0.42 -0.01

k 0.45 0.63 0.62
d -0.45 -0.63 -0.62
D 0.90 0.26 0.22
L 0.91 0.24 0.24
H 0.16 0.75 -0.26
r 0.16 0.07 0.83
α 0.26 0.76 0.36

xmin 0.33 0.92 0.15
Dw 0.88 0.35 -0.09

k
w

0.86 0.25 0.17
Lw 0.96 0.26 -0.03
Hw 0.73 0.57 0.34
rw 0.27 0.24 0.81
αw -0.09 -0.10 0.19
xwmin 0.67 0.01 0.21

the greater number of necessary elements. This is reflected
in the topological metrics, and amount of energy that must
flow through the network affecting the weighted (hybrid)
metrics.

Factor 2 loading is highest for the metrics k, d, H, α and
xmin, and they are all related to the expected number of
connections that each vertex has in the network. This set
of variables can be seen as metrics that describe how the
buses in the networks are connected in a pure topological
manner. A network with more branches, i.e., higher k and
d, will tend to have greater variability in the expected
number of connections for each vertex, which is quantified
by H and by the degree distribution described by the α
and xmin variables.

Factor 3 loading is highest only for the r, rw and αw,
being the loading for this last variable only 0.19, showing
also a small relationship between the αw and this factor.
The r and rw are both related with the similarity between
connected vertices, the former to the similarity in the
number of connections, and the second to the similarity
between the amount of power flowing through the con-
nected vertices. An explanation is that a vertex with more
connections will be the one where more power is flowing
and vice versa.

The communalities of the variables were calculated using
the factors loading, these are presented in Figure 3. Most
of the variables resulted in high communalities, indicating
that they can be well represented by the three factors.
Two variables resulted in lower communalities, the xwmin
and the αw, which communalities are 0.49 and 0.05,
respectively. These values indicate that the xwmin is related
to the other variables but also cannot be fully explained
by the three factors, and the αw communality suggests
that this variable describes an aspect that differs from the
information measured by the others.

Observing the networks in this data set, a hypothesis
that can be defined is that these two variables, xwmin
and αw, are directly related to the organization of the
power flow through the structure of the network. This is
evidenced by the higher values of xwmin and αw observed for



Figure 3. Communalities observed for each variable after
obtaining the factors loading.

networks where the majority of power is flowing through
the main trunk, while networks, where the power is flowing
more homogeneously over their structure, resulted in lower
values of xwmin and αw.

This is illustrated by two distribution networks in Figure 4.
These networks resulted in xwmin = 16.63 and αw = 5.41,
and xwmin = 17.55 and αw = 15.36 respectively for Fig-
ure 4(a) and Figure 4(b). The other features calculated for
these networks are presented in Table 3. They share topo-
logical similarities as shown by the unweighted metrics,
but the hybrid metrics reflect the difference between them
when the power flow over their structure is considered. The
main difference among them is how the structure is used
to distribute the electricity to the buses, the network in
Figure 4(b) have the main trunk where most of the power
flow is concentrated, while the power flow in Figure 4(a)
is more distributed throughout the structure. The values
of xwmin and αw highlight this difference.

Table 3. Topological and hybrid features cal-
culated for the networks presented in Figure 4.

Figure 4(a) Figure 4(b)

N 109 71

k 1.98 1.97
d 0.02 0.03
D 56 40
L 23.96 15.54
H 0.93 1.55
r -0.19 -0.21
α 4.04 4.59

xmin 2 3

k
W

8.04 8.30
DW 388.02 288.21
LW 149.14 107.28
HW 6.77 6.15
rW 0.94 0.64
αW 5.41 15.36
xWmin 16.63 17.55

5. CONCLUSION

In this manuscript, different topological metrics describing
how the elements in a distribution network were con-

Figure 4. Illustration of networks with different power flow
over their structure. Network (a) is the feeder 1 of the
system bus 873 7, and network (b) is the feeder 2 of
the systems bus 201 3. In the graphs representation,
the edges’ width is proportional to the power flowing
through them, and the vertices size are proportional
to the real power demand at each one.

nected, and hybrid metrics describing how the power is
flowing through the network structure in nominal condi-
tions, were calculated. These metrics were analyzed, in an
exploratory manner, to assess how they are characterizing
these systems. The use of EFA allowed evaluating how
these metrics can be related between each one and also
to latent variables by knowing the number of factors and
their respective loading.

The results indicated that three latent variables are re-
lated to the calculated metrics. The first latent variable
is related to the scale of the distribution networks, the
second describes the variability in the number of connec-
tions between the vertices, and the third is related to
the similarity between the connected vertices. There are
two metrics, related to the weighted degree probability
distribution, that resulted in small communalities, and
seem to describe how the power flow is organized over the
network structure, as illustrated in Figure 4.

Considering the importance of such a system, together
with the various current and future possibilities of opera-



tional and topological organization, the knowledge of met-
rics capable of a system-level characterization is significant
to analyze the challenges related to power distribution.
The results presented here should be further explored in fu-
ture research. These metrics must be analyzed in a higher
number of distribution networks, and also to evaluate how
those metrics can be used to infer different behaviours of
such systems. Future research is the use of such metrics to
characterize resilience drop due to extreme weather events
and to describe the effects of distributed energy resources
in the loading of power distribution networks.
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