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Álvaro A. Volpato ∗ Lúıs F. C. Alberto ∗∗

∗Department of Electrical and Computer Engineering, São Carlos
School of Engineering, University of São Paulo

(alvaro.volpato@usp.br)
∗∗Department of Electrical and Computer Engineering, São Carlos
School of Engineering, University of São Paulo (lfcalberto@usp.br)

Abstract: Given the increasing penetration of photovoltaic and battery-powered systems in
macro and microgrids, efficient and reliable modelling of the inverters for studying the stability
of such systems is paramount. In the current academia standard, generic inverter models, which
do not coherently represent inverter behavior nor consider inverter topology and filter, are used –
undermining the presented results. This paper presents a thorough and comprehensive per-unit
modelling of inverter systems based on a strong mathematical foundation. This modelling is
compatible with Equivalent Phasor techniques, generally used for synchronous machines, which
allow simulation and study of stability of mixed systems where both technologies are present.
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1. INTRODUCTION

Due to the high penetration of wind and photovoltaic-
powered systems into electric grids, renewable power has
become a major industry and academic field in the current
setting, making imperative the development of precise
and reliable models of the components of such systems.
For instance, a photovoltaic system is generally comprised
of three main parts, each of which with very particular
dynamics and characteristics: the PV panels, configured
in an array, which provide electrical power; a DC-DC
converter regulated by a Maximum Power Point Tracking
logic which ensures the array works at a maximum power
condition; and an inverter, or DC-AC converter, which
transforms the DC power fed from the DC-DC converter
to an AC power which is then passed on to the grid. This
scheme is represented in figure 1.

Inverter topologies are common to wind, battery and
photovoltaic-powered systems, the only differentiation be-
ing control strategies and objectives. The commonplace
inverter control is aimed at regulating its output power
angle to a setpoint, most commonly to unitary power
factor – that is, the inverter outputs active power only –
by adjusting the trigger angle of the electronic switches
(most commonly IGBTs) in the switching bridge, that
modulates the DC power creating an alternating wave.
Thence a filter (most commonly LCL or LC) is used to
adjust the alternating wave from the switching bridge,
ideally removing high-order harmonics and outputting a
pure-sine wave (Kulasza (2014)).
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Not unbeknownst to engineers and academics, both bridge
and filter topologies affect inverter performance and dy-
namics; however, in most stability or power researches,
authors use standard models (Wu et al. (2016)) which do
not translate those dynamics nor comprehensively model
filter or switching effects (Kotian and Shubhanga (2016)).
These models are known to sufficiently resemble real-world
behavior in a very strict set of conditions — specially
static behavior; however, as the stability studies get more
sophisticated, inverter dynamics play a big role in the end
result and conclusion.

Also, the used models generally do not conform to
the modelling standards of Electric Power Systems. Re-
searchers have, for over 50 years, used very known and
understood models for Synchronous Machines which are
applied in very particular ways so as to make simulation
numerically faster, more stable, and its results easier to
interpret and analyse. The Equivalent Phasor Modelling
of such machines, generally obtained by means of Park
Transformation, which supposes the grid in a static sinu-
soidal state, yields currents and voltages in their equivalent
phasorial forms and is dominant over Electromechanical
Transient models, specially in stability researches. Another
academic standard is the per-unit modelling, which allows
engineers to analyse systems based on normalized quanti-
ties, giving fast insights, for instance, at what percentage
of rated values the system operates at or if any operation
limit condition was violated. In this regard, models for
converter-based systems must be compatible with those
already in use for Synchronous Machines to make possi-
ble their integration in the same framework, allowing the
study of mixed grids where both technologies — converter-
based generators and machine-based generators — are
present.
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Figure 1. Generic block diagram representation of a pvo-
tovoltaic generator.

Currently, however, there is no widespred inverter model
that has both phasorial and per-unit characteristics. Hence
it is paramount to not only have deep knowledge and
complete understanding of the inverter models but also to
have inverter models that are compatible with the already
standardized machine models – phasorial and per-unit
being their main characteristics. This paper then aims
at presenting a modelling technique known as Dynamic
Phasor Modelling, which is based on the Fourier Transform
for Differential Equations, that can be used with any con-
verter topology to yield per-unit and phasorial modelling
of that particular topology. Thence, particular topologies
of inverting bridge and filter are adopted to make a case
study and simulations are presented.

2. DYNAMIC PHASORS

2.1 Fundamentals

The premise of Dynamic Phasor Modelling (DPM) is that
any signal x(t) can be approximated to arbritrary precision
by a Fourier Series, like in (1), such that the Fourier
Coefficients are time-variant (Sanders et al. (1991)). This
approach consists of, at every time t, executing the Fourier
Analysis of x in a window (t− T, t]; this window “slides”
over time such that each time instant yields different
coefficients.

Theorem 1. (Dynamic Phasor Analysis). Consider a sig-
nal x(t) : R→ R, T a window period and ω = 2πT−1 the
window angular frequency. Then, for every τ in (t− T, t],

x (τ) =
∑
k∈Z
〈x〉k(t) e

jkωτ (1)

where 〈x〉k(t) : R → C is a time-dependant coefficient
known as k-th harmonic; the first harmonic is also known
as fundamental. Harmonics are calculated as

〈x〉k(t) =
1

T

t∫
t−T

x (λ) e−jkωλdλ (2)

Proof. For every instant t, define the periodic expansion
yt (τ) of x(t), such that

yt (τ) = x (t− T + τ)∀τ ∈ (0, T ] (3)

Thence the Fourier Series of yt yields

yt (τ) =
∑
k∈Z
〈yt〉k e

jkωτ (4)

where

〈yt〉k =
1

T

T∫
0

yt (λ) e−jkωλdλ (5)

Making a little agebraic manipulation,

yt (τ) =
∑
k∈Z

[
〈yt〉k e

−jkω(t−T )
]
ejkω(t−T+τ) (6)

〈yt〉k e
−jkω(t−T ) =

1

T

T∫
0

yt (λ) e−jkω(t−T+λ)dλ (7)

Results are immediate once substitution (3) is made and
〈x〉k(t) = 〈yt〉k e−jkω(t−T ) is adopted. 2

This approach is known as Dynamic Phasor Modelling
because the harmonics, being complex values, represent
a piece of the spectrum of x in a given instant, and hence
are time-variant, that is, dynamic.

2.2 Dynamic phasors in Electric Power Systems

Most stability studies will admit that the grid is at its
stationary sinusoidal behavior; this assumption allows the
complexification of any sinusoid s(t) = Λ0 cos (ωt+ θ0)
into a phasor S(t) = Λ0e

jθ0 . This is justified because s(t)
is a stable solution to any ordinary differential equation
with sinusoidal forcing – which is the reason why signal
s(t) has a frequency spectrum of a single harmonic on
frequency ω, with amplitude Λ0 and phase θ0. However,
in Electrical Power System studies, the main concern are
signals of the sinusoidal form which magnitude and phase
are time-variant.

x(t) = Λ(t) cos [ωt+ θ(t)] (8)

Contrary to s(t), signal (8) does not admit a phasorial
representation in priciple: of course, when Λ and θ are con-
stant, the result is immediate but, when these quantities
are time-variant, x(t) will not present a single harmonic
and hence does not admit phasorial representation. In this
context, a natural question would be if signal (8) can be
represented by an extended idea of phasor, phasor variant
in time; the intuitive candidate would be

X(t) = Λ(t)ejθ(t) (9)

Under some circumstances, however, x(t) can be approx-
imated by a sinusoid and admit an approximate phaso-
rial representation. For instance, if we admit that the
absolute value Λ(t) and phase θ(t) of x(t) are arbitrarily
“slow” compared to x itself, that is, they have a frequency



spectrum arbitrarily below ω, then x(t) can be arbitrarily
approximated by a sinusoid and the fundamental harmonic
will be dominant over its higher-order counterparts; this
proves the sought approximation.

Definition 2. (Bernstein’s equality). (Zayed (2008)) The
bandwidth of a signal z(t) : R → R in interval I ⊂ R
is defined as

ωz =
1

sup
t∈I
|z(t)|

sup
t∈I

∣∣∣∣dz(t)dt

∣∣∣∣ (10)

Lemma 3. With Λ and θ as in equation (8), define

εΛ(t) = Λ(t)− Λ0(t) (11)

εθ(t) = θ(t)− θ0(t) (12)

Where Λ0(t) and θ0(t) are the mean values of those signals
in the window (t− T, t]. Define ωΛ(t) and ωθ(t) as the
bandwidth of signals Λ and θ in (t− T, T ]. Then functions
εΛ and εθ converge uniformly to the null function as ωΛ

and ωθ tend to zero.

Theorem 4. (Sinusoidal approximation). The Fourier Co-
efficients of x(t) as defined in (8) get arbitrarily close to
those of the sinusoidal signal s(t) = Λ0 cos (ωt+ θ0) as ωΛ

and ωθ tend to zero.

Proof. Adopt x(t) as in (8) and εΛ and εθ as defined in
the lemma. By the results of Theorem 1, x(t) coefficients
can be written as

〈x〉n(t) =
1

T

t∫
t−T

(Λ0 + εΛ) cos (ωλ+ θ0 + εθ) e
−jkωλdλ

(13)

By developing this equation one obtains

〈x〉n− 〈s〉n=

1

T

T∫
t−T

{εΛ cos (ωλ + θ0) cos (εθ) + Λ0 cos (ωλ + θ0) [cos (εθ)− 1] +

−Λ0 sin (ωλ + θ0) sin (εθ)− εΛ sin (ωλ + θ0) sin (εθ)} e−jkωλdλ (14)

Adopting the Triangular Modular Inequality for complex
integrals,

|〈x〉k − 〈s〉k| ≤

|εΛ|+ 2 sin2 (εθ) |Λ0|+ |Λ0 sin (εθ)|+ |εΛ sin (εθ)|

(15)

Let ωm = max (ωα, ωβ). Applying lemma 3 then yields

lim
ωm→0

〈x〉k = 〈s〉k (16)

Since Lemma 3 proves εΛ and εθ converge uniformly, so
does 〈x〉k converge uniformly. 2

Ultimately, this means that the signal x(t) can be repre-
sented by an equivalent phasor X(t) = α(t)ejβ(t) : R→ C,
where α(t) and β(t) have “slow” dynamics and can be ap-
proximated by their mean values at the window (t− T, t].
Some interesting properties of the Dynamic Phasor Anal-
ysis are directly inherited from Fourier Analysis, such as:

Linearity : 〈x+ y〉k(t) = 〈x〉k(t) + 〈y〉k(t) (17)

Convolution : 〈xy〉k(t) =
∑
n∈Z
〈x〉k(t) 〈y〉n−k(t) (18)

Uniqueness : (∀k ∈ Z) (〈x〉k(t) = 〈y〉k(t))⇔
⇔ (∀t ∈ R) (x(t) = y(t)) (19)

The most important of them, however, is the ability to
convert time-defined differential equations into phasor-
defined equations:

〈
dx

dt

〉
k

=
d 〈x〉k
dt

+ jkω 〈x〉k (20)

3. INVERTER DPM MODELLING AND CONTROL

As stated in the introduction, the commonplace inverter
topologies are comprised of two subsystems: a switching
bridge that modulates the DC input voltage into an
alternating waveform, and a current filter that purifies the
wave to near-pure sinusoidal current, removing high-order
harmonics.

As a case study, the inverter in figure 2 is used. It is
comprised of a single-stage, full-switching bridge (which
outputs an alternating voltage v1(t)) with LCL filter which
outputs a sine wave v2(t); the DC power is fed from a
constant voltage source VS with equivalent series resistance
RS . The system is attached to an Infinite Bus, representing
the macrogrid, through a line of impedance ZL.

The system is equipped with a PI controller that measures
output power angle ∆φ and adjusts it to a setpoint ∆φR,
generally zero – aiming at unitary power factor. This
control is done by adjusting the electronics switch trigger
time, modulating the phase of voltage v1(t). Also, suppose
base voltage, power and frequency values Vb, ωb and Sb are
already adopted.

Both subsystems are modelled independently and make
use of the Dynamic Phasor technique presented last sec-
tion. All components are supposed ideal – no losses or par-
asitic effects are considered. Aditionally, high-order har-
monics are purposefully neglected and only fundamental
harmonics are considered under the assumption that the
current filter deployed reduces harmonics substantially.

3.1 Current filter modelling

The current filters generally used in inverters are composed
of a specific combination of inductances and capacitances;
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Figure 2. Inverter topology used in DPM case study.

each topology has advantages and disadvantages – which
in general fall into a tradeoff between performance and
losses (Kahlane et al. (2014)). The capacitor and inductor
time equations can easily be translated into phasorial
differential equations through (20); for instance, take the
capacitor current-voltage equation

i = C
dv

dt
(21)

Considering a voltage signal like (8) is applied, then
Dynamic Phasor analysis to both sides of equation (21)
yields

〈i〉k = C

[
d 〈v〉k
dt

+ jkω 〈v〉k

]
(22)

Interestingly, when the applied voltage does not vary in
phase nor modulus, then this equation becomes 〈i〉k =
jCkω 〈v〉k, which is the common capacitive impedance
equation; in this regard, Dynamic Phasor Modelling can be
seen as a natural expansion of impedance equations when
the considered phasors have changing characteristics.

Under the supposition that high-order harmonics are neg-
ligible compared to fundamental harmonics, variables in
lowercase represent their time signals and uppercase their
first-order phasorial equivalents. Writing the time equa-
tions of the filter in figure 2,


v1 − vC −RF (i1 − i2) = L1i̇1

vC +RF (i1 − i2)− v2 = L2i̇2

i1 − i2 = Cv̇C

(23)

Applying (8) for the fundamental harmonic,

Full bridge

DC stage AC stage

Figure 3. Inverter switching bridge simplified modelling.

V1 − VC −RF (I1 − I2) = L1

(
dI1
dt

+ jωI1

)
VC +RF (I1 − I2)− V2 = L2

(
dI2
dt

+ jωI2

)
I1 − I2 = C

(
dVC
dt

+ jωVC

) (24)

It must be noted that the values in this system are
complex-valued – since they are the harmonics of the
time signals – and as such this system yields six real
differential equations. It is also noteworthy that if the
complex axis is congruent to the d-q axis, then the real
and imaginary parts of each phasor coincide with their
direct and quadrature components. In other words, when
system (24) is separated into imaginary and real parts,
it yields a sixth-order differential system on variables
V d1 , V

q
1 , V

d
2 , V

q
2 , I

d
1 , I

q
1 , V

d
C , V

q
C .

Having the base voltage, current and impedance values Vb,
Ib and Zb in hand, divide the first and second equations of
(24) by Vb and the third by Ib. Adopt ωL1 = x1, ωL2 = x2,
ωC = yC , all measured in per-unit values. Also adopt
L1Z

−1
b = τ1, L2Z

−1
b = τ2 and CZb = κ as time constants

related to the filter dynamics. Using these equalities, then
(24) can be re-written in a more familiar manner, where
all variables are now designated in their per-unit values:



dI1
dt

=
V1 − VC −RF (I1 − I2)− jx1I1

τ1

dI2
dt

=
VC +RF (I1 − I2)− V2 − jx2I2

τ2

dVC
dt

=
I1 − I2 − jyCVC

κ

(25)

3.2 Switching bridge modelling

The inverter switching bridge is modelled as a two-part
system with a DC and an AC stage, as in figure 3.

The two stages are related by a power flow equation: in the
average of a cycle, the mean DC input power and RMS AC
output power of the bridge must be the same:

Re (V1I
∗
1 ) = V d1 I

d
1 + V q1 I

q
1 = IDCVDC (26)

Dividing equation (26) by the base power value Sb will
transform the variables in their per-unit values. Further-
more, the bridge topology dictates how the input DC
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Figure 4. Time diagram showing the relation between
phasor V1, time signal v1 and DC voltage vDC.

voltage is modulated; particularly for the system in figure
2, the output wave v1(t) is a square wave which amplitude
is vDC and phase β is fed from the controller, as depicted
in figure 4.

Since v1 is a square wave, by applying Dynamic Phasor
modelling one obtains

v1(t) =
4vDC

π

∑
n∈2N+1

1

n
ej(nωt+nβ) ⇒

⇒ 〈v1〉n(t) =
4vDC

nπ
ejnβ(t) (27)

Then again, disconsidering higher-order harmonics due to
filter action, one can write

V1(t) =
4VDC

π
ejβ(t) ⇒


V d1 =

4VDC

π
cos (β)

V q1 =
4VDC

π
sin (β)

(28)

3.3 Power factor control

As aforementioned, the system of figure 2 has a PI con-
troller that modulates the switch trigger angle β, which
translates into the phase of bridge output voltage V1, to
adjust the output power angle to a setpoint. The phase
comparator block – built with fast PLLs which operate in
the MHz range – is considered fast such that its dynamics
are negligible. Hence, the control equations resulting from
the PI controller are


∆φ = arcsin

(
V q2 I

d
2 − V d2 I

q
2

|V2||I2|

)
γ̇ = ∆φ−∆φR

β = kP (∆φ−∆φR) + kIγ

(29)

It is important to note that the power factor control can
use only measurements local to the inverter; it follows that
β is the angle of V1 measured when V2, the inverter output
voltage, is the phase reference. If no frequency control is
used, as is the case in this example, system (29) sufficiently
describe the angle control needed. However, if some form
of frequency control is deployed, then the angle of V2 is not
stationary and an additional term for an angle deviation
caused by frequency control must be considered.

4. RESULTS

Equations (25),(26), (28) and (29) then form an agebraic-
differential system that is used to simulate it dynamically.
The model parameters used in the simulation are described
in table 2, and the initial conditions in table 1.

Simulation was conducted with a disturbance in the power
angle reference, which starts at ∆φR = 0 in t = 0 and steps
to 0.1 radians at t = 5 ms. Simulation results are shown
in figure 5.

Table 1. Initial conditions for the simulation of
the standalone inverter.

Param. Description Value (p.u.)

S2 Output complex power 1ej0

V∞ Infinite bus voltage 0.9950e−j0.1007

V2 Output voltage 1ej0

I2 Output current 1ej0

V1 Bridge output voltage 1.023ej0.2201

I1 Bridge output current 1.004ej0.01851

IC Filter capacitor current 0.01907ej1.347

VDC Inverter DC input voltage 0.8031

IDC Inverter DC input current 1.253

Table 2. Table of parameters used for inverter
model simulation.

Base values

Vb 110
√

2 V

Sb 10kVA

Zb 2.420Ω

Ib 64.2824A

Inverter parameters

L1 0.11138 p.u.

L2 0.11138 p.u.

C 0.02007 p.u.

RF 17.355 p.u.

V∞ 0.9950ej−0.10067 p.u.

ZL (0.01 + j0.1) p.u.

τ1 295.445 µs

x1 0.11138 p.u.

τ2 295.445 µs

x2 0.11138 p.u.

κC 48.4ms

y0
c -0.02007 p.u.

VS 0.928439 p.u.

RS 0.1 p.u.
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Figure 5. Inverter model response to a 0.10 step distur-
bance in power angle reference.

Initially, the system is at a unitary power factor state;
when the step to power angle reference takes plate at
5ms, this new setpoint forces the inverter to supply some
reactive power to the infinite bus. Figure 5.(e) shows the
complex power variations involved. In order to supply some
reactive power, the system needs to ramp output voltage
V2 to comply. Since the bridge output voltage is directly
related to VDC, this means current IDC must be reduced
because of the equivalent series resistance RS of the input
power source VS . Indeed, 5.(f) shows this mechanism at
work: DC current reduces, voltage rises, allowing for V1

and V2 to rise. This however means that the input DC
current must fall, since the input voltage is higher the
lower this current is due to the series resistance of the
input source. However, this causes output active power to
dwindle because the output current is also reduced.

Also predictably, the system reaches a new equilibrium in
approximately 25 miliseconds, which is an expected result
for a system comprised of fast electronic converters with
low inductances. It is interesting to note that this behavior
is expressed in the very low time constants involved —
τ1, τ2 and κ.

Finally, 5.(c) and 5.(d) show the PI controller in action,
adjusting the control variables to achieve the desired power
angle. This control effect is also seen in 5.(e) and 5.(e),
by observing that, at initial time, θI2 and θV2

are both
zero and, once diturbance is applied and the PI control

takes action, the current begins lagging with respect to
the voltage

The model, then, accomplishes its intended purpose: a per-
unit modelling of a grid-connected inverter which yields
state variables in the direct-quadrature axis.

This allows implementation of this model in mixed grids
where such inverter systems coexist with classical syn-
chronous machine models.

5. CONCLUSION AND FURTHER ADVANCEMENTS

This paper presented the Dynamic Phasor modelling ap-
plied to an inverter topology. Such technique is thoroughly
explained and developed, showing mathematical results
that this technique is valid for Electric Power System stud-
ies. The modelling hypotheses are explained and listed,
so as to make the model comprehensive and completely
understood. In this regard, the technique allows for ex-
pansion of the modelling, including lossy components like
inductances winding resistances and capacitances parasitic
inductances and resistances. Also, the switching losses in
the electronic switches can be included to make the model
more comprehensive.

Also, since a particular topology was adopted to make a
case study, natural next steps are to adopt other topologies
of switching bridges and filters so as to compare perfor-
mance of the many topologies and how they interact with
the grid.

Ultimately, the developed model is compatible with the
standard modelling for Electric Power System stability
studies: it presents a phasorial equivalent nature while
modelling quantities in a per-unit base, enabling it to be
integrated with clasically simulation programs and algo-
rithms that use Synchronous Machine phasorial equivalent
models for stability analyses.
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