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Abstract: Brazilian hydroelectric power plants often use telemetry stations to extract in-
formation about the environment. These equipment are usually installed in several strategic
spots of rivers that “feed” the reservoir, and are capable of providing important information
such as precipitation, river level, and water flow. This paper presents an analysis of Machine
Learning applied to the forecasting of spillage occurrences over a set amount of time in a
Brazilian power plant. To achieve this goal, telemetry stations’ data were utilized together with
the plant’s operations historical, which provides information about previous spillages, turbines’
flows, among others. The Machine Learning approach has shown to be promising in this problem,
and the developed model presented the potential to effectively support decisions by helping the
operators prepare for significant incoming water flows.
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1. INTRODUCTION

In the Brazilian energy grid, 67.6% of the total generation
capacity is related to hydroelectric power, with 85.6%
being related to renewable energy sources in general (ONS,
2020b). However, when observing actual generation values,
around 80% of the energy is provided by hydroelectric
power plants (HPPs) (ONS, 2020a). Therefore, managing
water resources properly is advised so that water shortages
or excessive increase in the reservoir level are avoided as of-
ten as possible during dry or wet periods, respectively. An
effort to prevent the former scenario, i.e., low availability of
resources, is done by optimizing the operation of the HPP,
as in Arce et al. (2002), Bortoni et al. (2007), and Finardi
et al. (2016), which minimizes costs, maximize efficiency,
and minimizes resources usage, respectively. This paper,
however, focuses on preventing the latter scenario, i.e.,
avoiding that unexpected and expressive incoming water
flows reach the reservoir and increase its level up to unsafe
values.

Researching such a subject is very important since ex-
cessive reservoir level values may put life in danger and
cause massive damage in case of a dam rupture. For
instance, on the 14th of December, 2005, a break in
Missouri Power Plant’s dam destroyed homes and vehi-
cles, critically injured children, and severely damaged the
nearby area (CBSaNews, 2005). The property damage was
estimated at more than $1 billion, and the cause was
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connected to an excessively high reservoir level (Associ-
ationaofaStateaDamaSafetyaOfficials, 2005).

To achieve the proposed goal, a total of ten telemetry
stations (TSs) had their data extracted and treated. This
equipment, which register the river water flow, precipi-
tation, and level, among other information not relevant
to this work, are spread over the bay around the HPP
Lúıs Eduardo Magalhães, also known as HPP Lajeado,
which is the HPP studied in this paper. The historical
information was then subjected to an approach based
on Artificial Neural Networks (ANNs) so that a Spillage
Forecasting Model (SFM) could be implemented. Given
the presented problem, the model’s output was designed
as the spillage status over the following five hours, i.e.,
starting from the simulation moment, the model will “say”
if there should or there should not be spillage during the
five hours ahead, hence acting as a decision support tool.
The following paragraphs briefly describe the ANN-based
methods utilized in the development of the SFM.

As stated in Goodfellow et al. (2016), people, in general,
expect Artificial Intelligence (AI) “to automate routine
labor, understand speech or images, make diagnoses in
medicine, and support scientific research”. AI has proved
its effectiveness in solving problems that can be written by
straight-forward mathematical rules. However, situations
that are easy for humans to perform, although difficult to
formally describe, such as recognizing a specific person’s
voice, can be really challenging. The concept of Deep
Learning (DL) is based on the application of many layers,
which allow the network to gather knowledge and learn
complex notions from experience by extracting patterns
from data. Many domains of science had their state-of-
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the-art improved via the utilization of DL (LeCun et al.,
2015), in particular the time-series problems as in (Yao
et al., 2017), (Bao et al., 2017), and (Chen et al., 2018).
A rich summary of DL can be consulted in Schmidhuber
(2015), and, more specifically for time-series classification,
in (Fawaz et al., 2019).

The Multilayer Perceptron (MLP) is a feed-forward ANN
with one or more hidden layers. The Back-Propagation
algorithm is often used in these nets’ learning process
when applied to forecast problems (Dibike and Solomatine,
2001). According to Bastarache et al. (1997) and Wen and
Lee (1998), this architecture is powerful for solving prob-
lems involving water resources. In Dibike and Solomatine
(2001), the MLP methodology was applied to the forecast-
ing of the Apure River, Venezuela, downstream water flow.
In Shamseldin et al. (2002), it was combined with several
rain-forecasting models to provide general flow forecasts of
several rivers. In Phitakwinai et al. (2016), it was combined
with the Cuckoo Search Algorithm, proposed in Yang and
Deb (2009), to forecast the level of Ping river, Thailand,
with 7 hours in advance.

The contributions of this paper are:

• A report is given regarding the Spillage Forecast
Problem (SFP) based on TSs, which, to the best of
the authors’ knowledge, has no exploration in the
literature;

• A guide on how to treat TSs’ data together with the
HPP’s data is provided.

• The presented model, i.e., the SFM, may inspire
deeper researches on the subject, and contribute to
the safety of HPPs’ reservoirs.

2. PROBLEM DATA

This paper reports a study whose goal is to assist HPP La-
jeado operators regarding the decisions of when part of the
reservoir water should be spilled, i.e., to inform/forecast
about the necessity of spilling water hours ahead. To
achieve such goal, information from the HPP’s data set
(historicals of turbines’ water flows, spillages and reservoir
levels) and from its TSs (historicals of rivers’ levels and
precipitations) were utilized. Figure 1 shows the HPP’s
region and its TSs’ locations. Table 1 lists the names of
the TSs.

Table 1. TSs’ names.

Number TS

I Jacinto
II Jerônimo
III Ipueiras
IV Jurupary
V Areias
VI Mangues
VII Barramento
VIII Jusante
IX Lucena
X Tocant́ınia

The information obtained from the TSs were measured
during the period of 08/13/2018 to 11/10/2019 and are
presented with a discretization of 15 minutes. The ones ex-
tracted from the HPP’s operations historical are presented
with a discretization of 1 hour. Considering the difference

observed in the discretizations, part of the TSs’ data could
not be utilized since each data point must contain infor-
mation of the same moment in time. Furthermore, all data
from the operations historical that are related to dates
outside of the TSs’ data range could not be used either.

Since the TSs are installed in open environments, they are
vulnerable to weather changes, hence requiring corrective
maintenance from time to time, apart from predictive
maintenance routines. I.e., the equipment is occasionally
unavailable, and, therefore, there are gaps in the data
sets. Given the significant importance of data quality,
it is crucial that no incoherence, error, or inconsistency
is present in the data sets since these compromise the
performance of the network training process. Therefore,
a treatment consisted of linear interpolations was applied
to the TSs’ data via Equation 1 so that empty intervals
could be filled. It is important to emphasize that there were
no gaps in the data extracted from the HPP’s operations
historical.

y = y0 + (y1 − y0)
x− x0
x1 − x0

(1)

In which (x0, y0) and (x1, y1) are data points.

Figure 1. HPP Lajeado’s TSs (Source: http://www.
snirh.gov.br/hidrotelemetria/Mapa.aspx).



3. METHODOLOGY

The development of the SFM was divided in three main
steps: (1) the correlation analysis of the data set, (2)
adjusting the data imbalance, and (3) the training via
MLP.

3.1 Data Correlation

The first step to establish the SFM consists of verifying the
correlations of the TSs’ level measurements regarding the
reservoir’s historical of level, spillage, and turbines’ water
flow values registered in HPP Lajeado. By doing so, it is
possible to reduce the model’s number of inputs since part
of the TSs’ data may present negligible correlation with
the model’s output.

Following this line of thinking, the calculation of Pearson’s
correlation coefficient (ρ), which determines the corre-
lation between two scale variables via Equation 2, was
applied to the data.

ρ =

∑N
i=1 (xi − x̄) . (yi − ȳ)√∑N

i=1 (xi − x̄)
2
.
√∑N

i=1 (yi − ȳ)
2

(2)

In which xi and yi are the variables’ measured values, x̄
and ȳ are the variables’ mean values, and N is the dis-
cretization interval. Values between -1 and 1 are assigned
to the ρ coefficient, which represent:

• ρ = 1 - perfect positive correlation between two
variables;

• ρ= - 1 - perfect negative correlation between two vari-
ables, i.e., if one is increased, the other is decreased;

• ρ = 0 - variables do not linearly relate to each other.

3.2 Data Adjustment

As part of the training stage, sensitivity analysis were
carried out focusing on the possible treatments to the
available database. The first treatment is related to the
format of the values of future spillages, i.e., the target
spillage values for the network to learn, these either being
considered normalized values between 0 and 1, or binary,
i.e., an assignment of 1 if there is any spillage, or 0 if there
is none.

As observed in the HPP’s historical data, most of the
time the operation does not present spillage occurrences.
Therefore, considering the splitting of the data in vectors
to be used as inputs, the assembled spillage database
presents an imbalance among the amount of data in which
there is spillage, in which there is no spillage, or in cases
with at least one change in the spillage status. Thus, the
second treatment of this database refers to the adjustment
of the training data, seeking the balance of information.

The adjustment made to balance the database consists of
repeating the parts with fewer data until it is greater than
or equal to the part with the most massive volume of
information. Figure 2 illustrates the unbalance observed
in the original database, and the adjustment implemented
to improve the training of the proposed model. The
database originally contain 10905 data points, of which

86.7% present no spillage, 11.6% present it, and only 1.7%
correspond to moments with at least one change in the
spillage status.

Spillage conditions change

Spillage

No spillage

{{

Before
Adjustment

After
Adjustment

Figure 2. Adjustment performed on the training bench.

3.3 Multilayer Perceptron

There is a wide range of supervised or unsupervised
machine learning models. In this paper, the model is a
Multilayer Perceptron (MLP), which can be presented
with an input layer, an output layer, and one or more
inner layers, also known as hidden layers. Figure 3 shows
an MLP structure in which its layers are densely linked,
i.e., each neuron of an anterior layer is attached to all
neurons of the next layer.
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Figure 3. MLPs structure.

Regarding the forecasting approach chosen in this work, it
was decided to predict whether there will or there will not
be spillage over the next 5 hours instead of predicting if
such an event will occur or not at each of the next 5 hours,
which, at first, may seem to make more sense. However,
although the latter alternative was first implemented,
analysis led to the conclusion that some particular events
were causing errors to be very expressive, and the results
to be unreliable. Figures 4(a), 4(b), and 4(c) exemplify
situations where the spillage status change during the
observed 5 hours. Such occurrences represent 9% of the
training data, i.e., few samples are available for the SFM
to absorb these situations’ information, hence making
it very difficult for it to provide accurate predictions.
Furthermore, since the decisions of spilling depend on the



HPP operators, i.e., some subjectivity may be involved, it
is possible and likely that different employees take distinct
decisions in very similar scenarios.

When forecasting spillage status over the next 5 hours,
situations like the ones shown in Figures 4(a), 4(b), and
4(c) represent the same output for the network, which
is the occurrence of spillage. Thus, detecting such events
properly becomes a less difficult task, and, therefore, the
model’s accuracy is increased.
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Figure 4. Examples of behaviors in the spillage data set, in
which 1 indicates its occurrence, whereas 0 indicates
the opposite.

An interesting aspect of this approach is worth mentioning.
Assuming that the model is executed hourly at the HPP,
if in a particular simulation the model indicates spillage,
it is very unlikely that it is supposed to happen in the
first hours since, if this was the case, the model would
have indicated spillage at a prior simulation. At this point,
the operators should be attentive to possible significant
incoming flows. Then, if in the next simulation the model
indicates spillage again, it is more likely that it is a correct
prediction, and so on. However, if the next simulation
indicates no spillage, the previous indication is likely to
have been a mistake since, as any forecasting mechanism,
the proposed model is prone to errors.

4. RESULTS AND DISCUSSION

In order to evaluate the SFM, the TSs’ data set was
initially subjected to a correlation analysis regarding HPP
Lajeado reservoir level, turbines’ water flow, and spillage
data so that the model’s inputs could be determined.
Since the TSs Barramento and Jusante correspond to the
stations that measure information about the HPP itself,
and such information is the target to establish correlation,

calculating their correlation would be redundant. The TSs
Lucena and Tocant́ınia were completely excluded from the
study due to the fact that they are located at the HPP
downstream basin.

From Pearson’s correlation, it was observed that the TSs
Jurupary and Areias presented the strongest correlations
with the reservoir level and spillage. However, concern-
ing turbines’ water flows, the strongest correlations were
presented by the TSs Jacinto, Jerônimo, and Mangues,
although Jurupary and Areias also provided significant
correlation values. Since the TSs Jacinto, Jerônimo, and
Mangues presented weak correlations with the reservoir
level and spillage, Jurupary’s and Areias’ data were used
to train the SFM. Tables 2, 3, and 4 expose the TSs’ level
data’s correlations with the HPP’s reservoir level, spillage,
and turbines’ water flows data, respectively.

Table 2. Pearson’s correlations with reservoir
level.

Jacinto Jerônimo Ipueiras Jurupary

0,335764 0,35442 0,260321 0,879909

Areias Mangues Turbine’s Flow Spillage

0,79423 0,37688 0,211556 0,243282

Table 3. Pearson’s correlations with spillage.

Jacinto Jerônimo Ipueiras Jurupary
0,172506 0,195892 0,075992 0,346746

Areias Mangues Reservoir Level Turbine’s Flow

0,284422 0,198355 0,243282 0,033022

Table 4. Pearson’s correlations with turbines’
water flows.

Jacinto Jerônimo Ipueiras Jurupary
0,620352 0,590626 0,298244 0,458023

Areias Mangues Reservoir Level Spillage

0,461375 0,598686 0,211556 0,033022

Pearson’s correlation technique investigates the linear re-
lationship between the data. Therefore, for a better anal-
ysis of the data correlations, the polynomial regression
technique was applied to verify if there is any non-linear
correlation in the data. The regression was performed
for second-degree to twentieth-degree polynomials. The
best values of non-linear correlation coefficient (R2) are
presented in Tables 5, 6, and 7. Thus, analyzing Pearson’s
correlation values and R2 coefficients, it was defined that
only Jurupary’s and Areias’ data would remain as entries
for the SFM.

Table 5. Best R2 value with reservoir level.

Jacinto Jerônimo Ipueiras Jurupary

0,308803 0,163124 0,400753 0,807284

Areias Mangues Turbine’s Flow Spillage

0,772773 0,267777 0,055882 0,109415

Table 6. Best R2 value with spillage.

Jacinto Jerônimo Ipueiras Jurupary
0,260555 0,117192 0,297040 0,383564

Areias Mangues Reservoir Level Turbine’s Flow

0,125329 0,191937 0,187039 0,132359

With the correlation study executed and the model’s
inputs determined, the next step consists of the network



Table 7. Best R2 value with turbines’ water
flows.

Jacinto Jerônimo Ipueiras Jurupary
0,395672 0,422390 0,419171 0,240786

Areias Mangues Reservoir Level Spillage

0,268703 0,381825 0,185544 0,039001

training stage. The development was carried out in Python
since it is an open-source programming language with
great support for machine learning. Keras, an open-source
neural-network library written in Python, was used.

The SFM’s structure is exhibited in Figure 5. The inputs
are vectors composed of 10 samples, i.e., of information
concerning 10 previous time discretizations for each input
type, except for the turbine flow input vector, which not
only is composed of 10 samples about the past but also of
5 more samples containing information about the expected
turbines’ water flow during the next 5 hours starting
one hour ahead of the simulation time. These expected
values are provided by an optimization model that grants
the operation schedule for the next 24 hours based on
generation goals assigned to the HPP. The SFM’s output
is the spillage classification over the 5 hours ahead, i.e.,
the model predicts if there should or there should not be
spillage at any point during the next 5 hours.

Figure 5. SFM’s structure.

The MLP training was performed and the testing groups
A, B, C, and D were formed in order to carry out a sensi-
tivity analysis focusing on the treatments of the database.
Groups A and C present the values of future spillages in
binary format, whereas the other groups present normal-
ized values between 0 and 1. Groups A and B present the
treatment described in subsection 3.2 seeking a better data
balance, whereas groups C and D do not. Table 8 shows
the groups and their characteristics.

Table 8. Description of sensitivity groups.

Group Description

A
· Binary future spillage.
· Database compensation.

B
· Normalized future spillage.
· Database compensation.

C
· Binary future spillage.
· No database compensation.

D
· Normalized future spillage.
· No database compensation

Simulations led to the conclusion that the most challenging
situations for the SFM to properly predict are the ones
where there are changes in the spillage status within the
5 hours data vector, i.e., situations like the ones exposed

in Figure 4, as explained in subsection 3.3. Thus, not only
analysis of the accuracy during the test stage concerning
the entire database was performed, but also concerning
exclusively the data with at least one change in the spillage
status.

For each of the groups presented in Table 8, 20 different
training simulations of the SFM were carried out. Figure
6 (a) presents the accuracy concerning a scenario where
the whole test data was considered, whereas Figure 6
(b) shows the accuracy in a second scenario where only
specific moments where there are changes in the spillage
status were considered, both presented as boxplots. The
prediction model, based on an MLP, was configured with
2 hidden layers containing 64 neurons each, ReLU activa-
tion function, Adam optimizer, 20 training epochs, 20%
validation, and 10 batch size. The database is formed
of 10905 data points, from which 8760 were used in the
training processes, i.e., an amount equivalent to one year
of information. Such choice is based on the fact that a
training data set containing information about all seasons
is of great importance for the generalization capacity of
the SFM. Consequently, 2145 data points were used in the
test processes.
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Figure 6. Boxplots of the precisions obtained from the
20 trained models: (a) Accuracy concerning all test
samples. (b) Accuracy concerning samples that show
a change in the spillage status.

Analyzing Figure 6, it can be seen that Group C provided
high accuracy in general, granting values greater than
95%. However, it presented low accuracy in moments with
changes in the spillage status. It can also be observed in
the second scenario that the median is between 20% and
30%. Group D provided very poor predictions, often not
being able to predict any of the moments that presented
changes in the spillage status. Regarding groups A and



B, the former presented better results concerning general
accuracy, whereas the latter provided a lesser dispersion
of results when analyzing the accuracy in moments of
change in the spillage status. Table 9 shows the accuracy,
precision, recall, and F1 score values for the best-trained
models in groups A, B, C, and D. Accuracy values are
presented considering the 1st scenario (1st S) and the 2nd
scenario (2nd S), the other values refer only to the 1st
scenario. So, considering the importance of both scenarios
studied and the goal of obtaining good results in both, the
model trained with the configurations of Group A showed
the best overall performance, i.e., the SFM benefited
from the database compensation shown in Figure 2 and
performed better with binary values for future spillages.

Table 9. Accuracy, Precision, Recall, and F-
score of the best networks in each group.

Metrics A B C D

Accuracy 1st S 0.91 0.86 0.94 0.93
Accuracy 2nd S 0.60 0.48 0.35 0.27
Precision 0.95 0.89 0.92 0.92
Recall 0.80 0.72 0.90 0.87
F1 Score 0.87 0.80 0.91 0.90

Figure 7 shows the ROC curve (Receiver Operating Char-
acteristic Curve) and the AUC (Area Under Curve) value
for the best result in Group A. In this image, the broken
line (also called reference line) represents random choices.
Its AUC value is 0.5. The blue line, referring to the ROC
curve, is located above the reference curve, which states
better performance than random choices. The AUC value
for the ROC curve is 0.91, which is very close to 1, which
would represent perfection in the classifications.
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Figure 7. SFM’s structure.

As explained in subsection 3.3, the predictions provided by
the proposed SFM considers spillage occurrences during
the next 5 hours. To illustrate such approach, Figure 8
(a) shows a range of information extracted from the test
data, in which the black curve represents raw spillage
data plotted hourly, and the blue curve represents treated
spillage data, i.e., a particular data point has a value of
1 if there is spillage in any of the next 5 hours, and a

value of 0 if there is none. For instance, in the blue curve,
the value assigned to hour 5 is 0 since there is no spillage
from hours 6 to 10, whereas the value assigned to hour 6
is 1 since there is spillage between hours 7 and 11, more
specifically in hour 11. In Figure 8 (b), the prediction of
the spillage status associated with the best result of Group
A, shown in Table 9, is exhibited. In this short period, the
model managed to forecast the changes in spillage status
properly. However, a wrong prediction occurred at hour 29,
which would indicate to the HPP operator a possibility of
spillage at some point during the next 5 hours. However,
the next predictions correct the mistake since they do not
inform spillage occurrences, hence not causing the operator
to make an inadequate choice. It is worth emphasizing that
more than one forecast should be taken into account before
the decision making.
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Figure 8. Time sequence of part of the test bench: (a) Mod-
eling the forecast format. (b) Prediction of spillage
performed by the trained model.

5. CONCLUSION

This paper has presented a simple yet effective approach
to the forecasting of spillage occurrences in hydroelectric
power plants. The developed model granted very high
accuracy in a general context. Concerning the moments of
change in the spillage status, the model presented promis-
ing results considering the complexity of forecasting with
high accuracy at these scenarios. Though not explored
in the literature, such a tool may help operators decide
when to allow water spillage, and, therefore, secure safe
reservoir levels. A successful and vastly utilized network-
based technique was applied to the problem and analyzed.
The applying of MLP to the problem has shown to be
suitable.



As possible further works, it is intended to test different
well-known forecasting tools, such as ANFIS and Extreme
Learning Machine, in the spillage forecasting problem. It
is also intended to execute hybridizations of two or more of
the aforementioned methods, seek possible improvements
in the compensation of the database by applying synthetic
minority over-sampling technique (SMOT) and other tech-
niques, and develop a more complex model capable of
“saying” not only when, but how much water must be
spilled.
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