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Abstract: The main aim of this paper is to propose a robust probabilistic optimal power flow model to 

determine the droop control parameters for the Distributed Generators (DG) of a islanded microgrid. The 

term robust is related to the droop control parameters being immune to uncertainties associated with: load 

forecast errors, DG outages and variability of power output in renewable DG. This optimization problem 

is solved by an improved gravitational search algorithm (GSA). The test results demonstrated that the 

proposed method can achieve significant reductions in the load curtailments due to frequency and voltage 

violations. In addition, a comparison between GSA and the Particle Swarm Optimization (PSO) 

demonstrated that GSA is more suitable for evaluating the droop control parameters than PSO in relation 

to the computational cost and the optimal quality of the solution. 

Resumo: O principal objetivo deste artigo é propor um modelo de fluxo de potência ótimo probabilístico 

robusto para determinar os parâmetros do controle droop para os Geradores Distribuídos (DG) de uma 

microrrede ilhada. O termo robusto está relacionado com os parâmetros do controle droop devido serem 

imunes as incertezas associadas com erros de previsão de carga, falhas de GD e variabilidade na potência 

de saída de GD renováveis. Este problema de otimização é resolvido por um Algoritmo de Busca 

Gravitacional (ABG) melhorado. Os resultados dos testes demonstraram que o método proposto pode obter 

reduções significantes nos cortes de carga nodais devido a violações de tensão e de frequência. Além disso, 

a comparação entre o ABG e a otimização via enxame de partículas demonstrou que o ABG é mais 

adequado para calcular os parâmetros do controle droop em relação ao custo computacional e a qualidade 

da solução ótima. 
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1. INTRODUCTION 

1.1  Islanded Operation of Microgrids 

This islanded operation of microgrids poses a technical 

challenge to engineers because customers in the microgrid 

must have their load supplied with reliable energy supply–just 

how they were connected to the utility grid. Some of the 

difficulties that must be overcome for a reliable microgrid 

operation are (Abdelaziz et al. 2013; Araújo et al. 2017): (a) 

bidirectional power flows, since the grid is no longer radial in 

the islanded  mode; (b) stability problems, since the interaction 

between different sources of energy can lead to oscillations in 

frequency and voltage; (c) grid modelling, because a 

distribution system with several energy sources is similar to a 

transmission system, but for the islanded microgrid it is not 

possible to take into account the existence of a slack bus; (d) 

uncertainties in energy sources, since each distributed 

generator has its own failure rate and the renewable also 

depend on the random nature of their primary sources (for 

example, wind speed for wind turbines and solar irradiation for 

photovoltaic modules - PV modules ). 

When a microgrid is operating in islanded mode, the main 

components responsible for ensuring the feasibility of this 

mode of operation are DG units connected to the microgrid. 

Generally, the DG units are operated according to the droop 

control strategy. In this control strategy, the active/reactive 

power sharing among DG is based on the frequency/voltage 

deviations and the set points for active/reactive power 

generation. Consequently, the adjustment of these parameters 

has a significant influence on the microgrid capability to avoid 

violations of the operating constraints in the islanded mode of 

operation. This fact motivated the development of several 

techniques to optimize the microgrid performance in the 

islanded operation by adjusting the following parameters: 

droop constants, topology, frequency/voltage reference values, 

set points for DG output power, etc. The next subsection 

presents a bibliographical review on microgrid optimization. 

1.2  Literature Review of Microgrid Optimization 

In general, papers that address the subject of microgrid 

optimization can be grouped according to the objective of 

optimization: reduce operational costs or improve operational 

quality. 
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1.2.1  Reduce Operating Costs 

Li et al. (2016) proposed a fuzzy multi-objective optimization 

model with constraints to minimize total economic cost and 

microgrid losses. Shadmand & Balog (2014) presented an 

optimization technique based on a multi-objective genetic 

algorithm that uses high resolution solar radiation data. This 

optimization model minimized the system cost required to 

meet the load demand in a DC microgrid. Wang et al. (2015) 

proposed a dynamic algorithm for the distributed management 

of the microgrid that optimized operational costs considering 

influences from external conditions (solar radiation, wind 

speed, load variation, etc.). Moradi et al. (2015) presented a 

method of energy management by optimizing the type and 

capacity of the distributed microgrid generators as well as the 

capacity of the energy storage devices in order to minimize 

costs. Maknouninejad & Qu (2014) have proposed cooperative 

distributed optimization for the optimal reactive power 

dispatch from distributed DG microgrid. The objective 

function of this paper was the minimization of a cost function 

composed of the sum of the quadratic voltage errors in the DG 

buses and other risky buses. 

1.2.2  Improving the Operational Power Quality 

Urias et al. (2015) presented an optimization model for 

microgrids with the objective of reducing the amount of energy 

acquired from utility and maximizing the energy supplied by 

the distributed generators. The optimization was based on a 

recurrent neural network. Nafisi et al (2016) presented a two 

stage optimization method to minimize losses in a microgrid 

with different levels of electric vehicle penetration. Abdelaziz 

et al. (2014) proposed a new formulation for the optimal 

reconfiguration of islanded microgrids. The problem was 

considered as multiobjective to: minimize fuel consumption of 

the microgrid, ensure that the microgrid is capable of meeting 

the maximum possible demand, improving its voltage stability 

and minimizing the switching operating costs. Abdelaziz et al. 

(2016) proposed a new probabilistic algorithm to determine 

the optimal choice of droop parameters for the individual 

distributed generators, in order to increase the demand margin 

of the microgrid. This algorithm takes into account variations 

in load and generation. It uses a state enumeration method to 

model uncertainties and applies a hierarchical constraint 

method to optimize droop values. Araújo et al. (2017) 

determined the set points for the output powers and voltage 

magnitudes of the DG used in the droop control by solving 

optimal power flow (OPF) problems for a set of specified 

operation conditions. The objective function of this OPF is to 

minimize generation costs subject to: power flow equality 

constraints, voltage limits and limits for the output power of 

the DG. A disadvantage of this OPF model is that the operation 

condition for which optimal reference values are determined is 

subject to uncertainties. Thus, the adequacy of the microgrid 

can be deteriorated in the islanded operation due to differences 

between observed and forecasted values of microgrid 

variables, such as: peak load, power output of the renewable 

DG (solar and wind) and availability of DG. 

 

 

1.2.3  Problem Characteristics 

From the above literature review it can be concluded that an 

algorithm to optimize performance indices of an islanded 

microgrid should have the following characteristics: 

i) Stochastic: consider uncertainties associated with: the load, 

the output power of the renewable DG and the components 

unavailability. 

ii) Robustness: the optimal solution generated by the algorithm 

must be immune to the uncertainties present in the model. 

iii) Multi-objective: the adequacy of the operation of the 

microgrid must meet multiple operational objectives, for 

example: the voltage profile and the frequency deviation. 

iv) Flexibility to model non-differentiable objective functions: 

the need for robust solutions requires the objective function of 

the microgrid optimization problem to be expressed through 

the risk of threshold violation for performance indices. 

Therefore, the objective function will not be differentiable. 

v) Quality and Efficiency: the solution algorithm must provide 

optimal solutions that establish an acceptable compromise 

among accuracy, quality, and computation cost. 

From the above mentioned characteristics, it can be concluded 

that the most suitable algorithms for the optimization of the 

microgrid performance in the island mode are the 

metaheuristic algorithms. On the other hand, the most 

appropriate techniques to model uncertainties are probabilistic 

methods. The choice of probabilistic methods is due to the 

availability of statistical data to characterize uncertainties 

through probability distributions, for example, meteorological 

data associated with wind speed and solar radiation. 

However, probabilistic techniques based on state selection, 

such as Monte Carlo Simulation (MCS) and State 

Enumeration, are not suitable for optimization problems 

because of its time-consuming feature. Instead, the use of 

analytical techniques such as discrete convolution, cumulants, 

and point estimation has lower computational costs and can 

make probabilistic methods more efficient. These techniques 

are called Probabilistic Power Flow (PPF) analytical methods. 

The next section will present the mathematical formulation of 

a methodology designed to address the microgrid optimization 

requirements in the island mode of operation. 

2. MICROGRID PRE-DISPATCH OPTIMIZATION 

The main aim of this paper is to provide an optimization 

methodology to minimize the risk of voltage and frequency 

violation of a microgrid in islanded mode of operation. These 

risks are minimized by a Robust Probabilistic OPF (RPOPF) 

that adjusts the droop control parameters (set points for voltage 

magnitude and active/reactive output powers) for the DG. The 

RPOPF is mathematically formulated as follows: 

Minimize 𝑃𝑟𝑖𝑠𝑘(𝑿) = 𝑃𝑇𝐿𝑂𝐶𝑓(𝑿) + ∑ 𝑃𝑃𝐿𝑂𝐶𝑖(𝑿)
𝑁𝑏
𝑖=1   (1) 

Subject to:  

𝑃𝑔𝑘 − 𝑃𝑑𝑘(𝑉𝑘 , 𝑓) − 𝑃𝑘(𝑉, 𝜃) = 0 𝑓𝑜𝑟 𝑘 = 1,… , 𝑁𝑏 (2) 



 

 

     

 

𝑄𝑔𝑘 − 𝑄𝑑𝑘(𝑉𝑘 , 𝑓) − 𝑄𝑘(𝑉, 𝜃) = 0  

𝑓𝑜𝑟 𝑘 = 1,… , 𝑁𝑏 
(3) 

(𝑃𝑔𝑖
𝑟𝑒𝑓

− 𝑃𝑔𝑖) +
1

𝐾𝑖
𝑃
(𝑓𝑟𝑒𝑓 − 𝑓) = 0 𝑓𝑜𝑟 𝑖 ∈ 𝒢 (4) 

(𝑄𝑔𝑖
𝑟𝑒𝑓

− 𝑄𝑔𝑖) +
1

𝐾𝑖
𝑄 (𝑉𝑖

𝑟𝑒𝑓
− 𝑉𝑖) = 0 𝑓𝑜𝑟 𝑖 ∈ 𝒢 (5) 

𝜃𝑠
𝑒𝑠𝑝

− 𝜃𝑠 = 0 (6) 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖
𝑟𝑒𝑓

≤ 𝑉𝑚𝑎𝑥  𝑓𝑜𝑟 𝑖 ∈ 𝒢 (7) 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑟𝑒𝑓
≤ 𝑃𝑔𝑖

𝑚𝑎𝑥  𝑓𝑜𝑟 𝑖 ∈ 𝒢 (8) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖

𝑟𝑒𝑓
≤ 𝑄𝑔𝑖

𝑚𝑎𝑥  𝑓𝑜𝑟 𝑖 ∈ 𝒢 (9) 

Where: 𝑿 is the vector of references obtained by the MPD; 𝑃𝑔𝑘  

(𝑄𝑔𝑘) is the generated active (reactive) power in bus 𝑘; 

𝑃𝑑𝑘(𝑉𝑘, 𝑓) (𝑄𝑑𝑘(𝑉𝑘 , 𝑓)) is the active (reactive) load demand 

in bus 𝑘 as a function of the voltage magnitude 𝑉𝑘 and the 

microgrid frequency 𝑓; 𝑃𝑘(𝑉, 𝜃) (𝑄𝑘(𝑉, 𝜃)) is the injected 

active (reactive) power in bus 𝑘 as a function of voltages 

magnitudes vector 𝑉 and voltages angles vector 𝜃; 𝑃𝑔𝑖
𝑟𝑒𝑓
(𝑄𝑔𝑖

𝑟𝑒𝑓
) 

is the reference value for the active (reactive) power generation 

associated with the generator 𝑖; 𝐾𝑖
𝑃 and 𝐾𝑖

𝑄
 are the droop 

coefficients for the generator 𝑖; 𝑃𝑔𝑖  (𝑄𝑔𝑖) is the active 

(reactive) power output for the generator 𝑖; 𝑓𝑟𝑒𝑓 is the 

reference value for the microgrid frequency; 𝑉𝑚𝑖𝑛,  𝑓𝑚𝑖𝑛 , 𝑃𝑔𝑖
𝑚𝑖𝑛  

and 𝑄𝑔𝑖
𝑚𝑖𝑛 (𝑉𝑚𝑎𝑥 , 𝑓𝑚𝑎𝑥 , 𝑃𝑔𝑖

𝑚𝑎𝑥 and 𝑄𝑔𝑖
𝑚𝑎𝑥) are the minimum 

(maximum) values for 𝑉𝑘, 𝑓, 𝑃𝑔𝑖  and 𝑄𝑔𝑖 , respectively; 𝜃𝑠
𝑒𝑠𝑝

 is 

the specified voltage phase for the bus 𝑠 that serves as the 

angular reference for the microgrid; 𝑁𝑏 is the number of buses; 

𝒢 is the set of generator buses; 𝑃𝑇𝐿𝑂𝐶𝑓(𝑿) is the probability of 

the total load curtailment (TLOC) due to frequency violation; 

𝑿 = {𝑽𝑟𝑒𝑓 , 𝑷𝑔
𝑟𝑒𝑓
, 𝑸𝑔

𝑟𝑒𝑓
}; 𝑽𝑟𝑒𝑓 = {𝑉1

𝑟𝑒𝑓
, … , 𝑉𝑁𝑔

𝑟𝑒𝑓
}; 𝑷𝑔

𝑟𝑒𝑓
=

{𝑃𝑔1
𝑟𝑒𝑓
, … , 𝑃𝑔𝑁𝑔

𝑟𝑒𝑓
}; 𝑸𝑔

𝑟𝑒𝑓
= {𝑄𝑔1

𝑟𝑒𝑓
, … , 𝑄𝑔𝑁𝑔

𝑟𝑒𝑓
}; 𝑃𝑃𝐿𝑂𝐶𝑖(𝑿) is the 

probability of partial load curtailment (PLOC) in bus 𝑖 due to 

voltage violation and 𝑃𝑟𝑖𝑠𝑘(𝑿) is the probability (risk) of 

frequency and voltage violations. 

The objective function (1) minimizes the risk of frequency and 

voltage violations simultaneously. That is, the original multi-

objective problem (to minimize voltage and frequency 

violations) is converted into a single objective problem due to 

the mapping of system state variables in the probability 

domain. In addition, the uncertainties of the microgrid are 

taken into account because the objective function (1) is risk 

based. Consequently, the RPOPF achieved through the 

solution of (1)-(9) is immune with respect to the uncertainties, 

since the objective function considers several microgrid 

scenarios resulting from uncertainties rather than only the base 

case. 

The 𝑃𝑇𝐿𝑂𝐶𝑓(𝑿) term in the objective function (1) represents the 

risk of frequency violation in the microgrid. This probability 

is obtained directly from the probability density function of the 

microgrid frequency and can be expressed as follows: 

𝑃𝑇𝐿𝑂𝐶𝑓(𝑿) = 1 − ∫ 𝑔𝑓(𝑓)𝑑𝑓
𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛

 (10) 

Where, 𝑔𝑓(𝑓) is the probability density function for the 

microgrid frequency. 

The values 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are defined based on the limits for 

the secure operation of the microgrid DG. For example, the 

blades of the turbines can be damaged due to mechanical 

resonance for high frequency deviations Reimert (2005). In 

this way, the IEEE Standard 1547 (IEEE 2009) establishes that 

the distributed generation resources must be disconnected 

from the grid if the system frequency is lower than 59.8 Hz or 

higher than 60.5 Hz. Therefore, in this paper the limits of the 

IEEE standard 1547 (IEEE 2009) for the microgrid frequency 

were adopted. If the microgrid frequency is outside this range, 

a TLOC event is considered to exist because all microgrid DG 

are tripped out by their frequency protections and the loads 

cannot be supplied. 

The 𝑃𝑃𝐿𝑂𝐶𝑖(𝑿) index in the objective function (1) represents 

the risk of voltage deviation for a specific bus 𝑖  of the 

microgrid. This probability is obtained directly of the 

probability density function of the microgrid bus voltages and  

can be expressed as follows: 

𝑃𝑃𝐿𝑂𝐶𝑖(𝑿) = 1 − ∫ 𝑔𝑉𝑖(𝑉𝑖)𝑑𝑉𝑖
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

 (11) 

Where, 𝑔𝑉𝑖(𝑉𝑖) is the probability density function associated 

with the voltage magnitude in the bus 𝑖. 

The values for 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 were established based on the 

sensitivity of customer equipment regarding to voltage 

violations and protection devices settings for voltage 

variations (Wan et al. 2000). In this way, it is considered that 

𝑉𝑚𝑖𝑛 = 0.95 and 𝑉𝑚𝑎𝑥 = 1.05 pu (Wan et al. 2000). 

Therefore, if  the nodal voltage 𝑉𝑖 is outside this range, there 

is a PLOC event in bus 𝑖 since a protection device has operated 

or the loads have been turned off by themselves. 

The constraints of equality (2)-(6) correspond to the system of 

nonlinear equation associated with the distributed slack bus 

power flow in the microgrid (Abdelaziz et al. 2013; Gatta 

2012). That is, these constraints establish the active/reactive 

power balance in each bus and determine the frequency 

deviation due to the unbalance between generation and load 

plus losses. 

The inequality constraints (7)-(9) guarantee the feasibility of 

the references obtained by the RPOPF in relation to: voltage 

magnitude and active/reactive output power of the DG. 

The optimization problem defined in (1)-(9) is stochastic due 

to uncertainties in: load, variability of the output power of 

renewable DG and equipment unavailability. The next section 

presents the probabilistic models used to represent these 

uncertainties in MPD. 

 



 

 

     

 

3. MICROGRID UNCERTAINTIES MODELLING 

3.1  Probabilistic Load Model 

The RPOPF is performed for a given hour in the study period, 

for example, daily, weekly or yearly. Consequently, the 

uncertainty related to the load that will be considered in this 

paper is the load forecasting error. This type of uncertainty can 

be modelled through a normal distribution as (Araújo et al. 

2017; Morales & Perez-Ruiz 2007): 

𝐿𝑝𝑒𝑎𝑘 = �̃�𝑝𝑒𝑎𝑘 + 𝑧�̃�𝑝𝑒𝑎𝑘 (
�̃�

100
) (12) 

Where: 𝐿𝑝𝑒𝑎𝑘  is the microgrid peak load, 𝑧 is a normally 

distributed random number, �̃�𝑝𝑒𝑎𝑘  is the forecast value for the 

microgrid peak load and e (�̃�) is the forecast error expressed 

as a percentage of �̃�𝑝𝑒𝑎𝑘 . 

3.2.  Gas Fueled Generators Probabilistic Models 

Gas fuelled generators can be modelled using a discrete 

Bernoulli distribution that considers only two possible states 

for a generator: operating, with probability 𝑝 and failed, with 

probability 𝑞. Thus, 𝑝 +  𝑞 =  1 (Araújo et al. 2017; Morales 

& Perez-Ruiz 2007). In this way, the outage probability for a 

set of 𝑁𝑔 generator units can be expressed through the 

Binomial distribution as follows: 

𝑃𝑟𝑜𝑏[𝑘] = 𝐶𝑘𝑁𝑔
 (1 − 𝐹𝑂𝑅)𝑘𝐹𝑂𝑅𝑁𝑔−𝑘 (13) 

Where: 𝑃𝑟𝑜𝑏[𝑘] is the probability of having 𝑘 generators in 

operation and 𝐶𝑘𝑁𝑔
  is the number of combinations with 𝑘 

generators selected from 𝑁𝑔 generators. 

3.3  Probabilistic Models of Wind Turbine and Wind Speed 

The variability in the output power of a wind turbine is due to 

the random behavior of wind speed. The data collected in 

anemometric measurement stations show that the probability 

distribution that better describes the wind speed is the bivariate 

or trivial Weibull distribution (Araújo et al. 2017). The 

Weibull probability density function for the trivariate case is 

given by: 

𝑓(𝜐) = (
𝛽

𝛼
) (
𝜐 − 𝜏

𝛼
) 𝑒−(

𝜐−𝜏
𝛼
)
𝛽

 (14) 

In which: 𝜐 is the wind speed, in which 𝛽 is called form 

parameter, 𝛼 is called scale parameter and 𝜏 is the localization 

parameter. 

3.4  Probabilistic Model of the PV  Module 

The production of energy in a PV module depends on several 

factors, among them: PV module area, irradiation of sunlight, 

air humidity, ambient temperature and PV module efficiency 

(Fan et al. 2012). A basic model to represent the active output 

power of a PV module can be expressed as (Fan et al. 2012): 

𝑃 = 𝑟𝐴𝜂(1 − 𝑘Δ𝑇) (15) 

where 𝑟 is the solar irradiance, 𝐴 is the total area of the PV 

module, 𝜂 is the efficiency of the PV module, 𝑘 is the 

temperature coefficient and Δ𝑇 is the forecast error of the PV 

module temperature and represents the difference between the 

temperature of the module and its standard test temperature, 

which is assumed to be 298K (or 25 ° C) (Fan et al. 2012). 

Solar irradiance can be probabilistically modelled by a beta 

distribution defined as: 

𝑓(𝑟) =
Γ(a + b)

Γ(a)Γ(b)
(
𝑟

𝑟𝑚𝑎𝑥
)
𝑎−1

(1 −
𝑟

𝑟𝑚𝑎𝑥
)
𝑏−1

 (16) 

where 𝑟 is the solar irradiance, 𝑟𝑚𝑎𝑥 is the maximum solar 

irradiance recorded in the measurement period and Γ is the 

gamma function. The parameters 𝑎 and 𝑏 can be defined 

according to (17). 

𝑎 = 𝜇 [
𝜇(1−𝜇)

𝜎2−1
]; 𝑏 = (1 − 𝜇) [

𝜇(1−𝜇)

𝜎2−1
] (17) 

where 𝜇 and 𝜎 represent the mean and standard deviation of 

the gamma distribution estimated for a sample of solar 

irradiance data. 

The next section presents the PPF technique used to include 

the microgrid uncertainties in the estimation of the frequency 

and voltage violation risks. 

4. PROBABILISTIC POWER FLOW (PPF) 

As mentioned earlier, the optimization problem (1)-(9) is 

stochastic and nonlinear. Consequently, the most appropriate 

approaches to solve this type of optimization problem are the 

meta-heuristic. When a meta-heuristic is applied to solve an 

optimal power flow problem under uncertainty, the tool used 

to evaluate the objective function and constraints is the PPF. 

Basically, the meta-heuristic selects reference values for the 

MPD (𝑋 vector) that are used as inputs for the PPF algorithm. 

In turn, the PPF generates probability distributions for system 

state variables. These distributions are used to evaluate the 

constraints and the objective function for each candidate 

solution produced by the meta-heuristic. However, there is no 

closed analytical form for the integrals defined in (10) and 

(11). An alternative to evaluate these integrals is to use the 

MCS. Nevertheless, the MCS has a high computational cost 

that restricts its application in meta-heuristic algorithms to 

evaluate the objective function.     

In this paper, the PPF associated with the probabilistic MPD is 

solved using the Point Estimate Method (PEM) (Morales & 

Pérez-Ruiz 2007; Hong 1998). The PEM is a technique that 

allows to find the moments of random variable output 𝑍 that 

relates to one or more random input variables through a 

function 𝐹. The function 𝐹 is evaluated in a total of 𝐾 times 

for each of the 𝑚 known input random variables, replacing one 

random variable by its concentrations and keeping the other 

𝑚 −  1 variables in their mean values. The concentrations are 

obtained through the moments of the random variables. The 

number of locations 𝐾 for each known input random variable 

depends on the scheme used. The 2𝑚 +  1 scheme, that uses 

3 points per location (one of these points being located in the 

mean value of the input random variables), will be used in this 

paper to estimate the statistics of the output random variables. 



 

 

     

 

Consequently, there will be 𝑚 × 𝐾 values of the output 

variable 𝑍 for the selected concentrations of the input 

variables. These values are used to estimate the moments of 

the output variable 𝑍 by a weighted sum. The relationship 

between PEM and PPF is described below: 

i) Input variables: power injections under uncertainty due to: 

load forecasting error defined in (12), variable output of 

renewable DG in accordance with (14)-(16) and unavailability 

of DG defined in (13).   

ii) Output variables: frequency and magnitude and angle of the 

nodal voltages. 

iii) Function 𝐹: nonlinear equation system associated with the 

distributed slack bus power flow in the microgrid. 

The moments of the output variable 𝑍 are used to achieve the 

probability distribution of the variable 𝑍. Generally, this 

distribution is obtained using series of orthogonal functions, 

such as Gram-Charlier, Edgeworth and Cornish-Fisher (Fan et 

al. 2012). However, these series only provide accurate 

approximations for a probability distribution when it is 

unimodal. This condition cannot be found in the microgrid 

PPF because the probability distributions of the state variables 

are multimodal due to the unavailability of the DG that is 

modelled using a discrete distribution (Binomial Distribution 

defined in the subsection III-B). This problem can be 

overcome using a Gaussian Mixture Method (Prusty & Gena 

2016). That is, a non-Gaussian probability distribution is 

approximated by a weighted sum of the Gaussian probability 

distributions. The weights in this sum are obtained from the 

moments of the non-Gaussian probability distribution. In the 

microgrid PPF, the non-Gaussian random variables are the 

frequency and magnitude and angle of the nodal voltages 

whose moments were obtained by PEM. 

The next section describes the basic principles of the algorithm 

used to solve the RPOPF: the GSA. Then, the application of 

the GSA to the RPOPF is presented.  

5.  SOLUTION OF THE PROBABILISTIC MPD 

This paper uses a meta-heuristic optimization algorithm called 

the Gravitational Search Algorithm (GSA) to solve the 

RPOPF. Due to its complexity, it is not recommended to use 

an analytical method to solve the RPOPF, as mentioned 

previously. The GSA was chosen because of its superior 

performance when compared to PSO and other optimization 

meta-heuristics, as described in Xing & Gao (2013). 

5.1  Gravitational Search Algorithm (GSA) 

Based on the laws of universal gravitation, Rashedi et al. 

(2009) developed an optimization algorithm called the 

gravitational search algorithm. In this algorithm, every 

individual of the population can be considered as a mass and, 

through Newton's law of universal gravitation, all masses 

attract each other mutually, this attraction being so much 

greater than the active gravitational masses of bodies. 

Each mass in the GSA has four characteristics: position, active 

gravitational mass, passive gravitational mass and inertial 

mass. The position of a mass corresponds to a solution of the 

optimization problem, while the other quantities refer to the 

value of the objective function (fitness). That is, if 𝑥𝑖 
represents the position, then 𝑓(𝑥𝑖) corresponds to the fitness 

value of 𝑥𝑖. The GSA can be resumed in the following steps: 

i) First, choose an 𝑁 number of masses in an m-dimensional 

problem and create a vector of positions 𝑋𝑖, where the i-th 

mass position is defined as: 

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑑 , … , 𝑥𝑖𝑛),         𝑖 = 1, 2, 3, … , 𝑁 (18) 

Where: 𝑥𝑖𝑑  is the position of the i-th mass in the d-th 

dimension, 𝑛 is the number of problem dimensions (number of 

variables) and 𝑁 is the number of masses (bodies). 

ii) Secondly, the gravitational force 𝐹𝑖𝑗𝑑(𝑡) acting on mass 𝑗 

due to mass 𝑖 in dimension 𝑑 at time 𝑡 can be defined as: 

𝐹𝑖𝑗𝑑
(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖(𝑡) ⋅ 𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡) + 𝜀
[𝑥𝑗𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)] (19) 

Where: 𝑀𝑝𝑖(𝑡) is the passive gravitational mass related to the 

body 𝑖; 𝑀𝑎𝑗(𝑡) is the active gravitational mass related to the 

body 𝑗, 𝐺(𝑡) is the value of the gravitational constant at time 

𝑡; 𝜀 is a small constant and 𝑅𝑖𝑗(𝑡) is the Euclidean distance 

between bodies 𝑖 and 𝑗, defined as: 

𝑅𝑖𝑗(𝑡) = ‖𝑋𝑖(𝑡), 𝑋𝑗(𝑡)‖
2
 (20) 

iii) Third, to evaluate the acceleration of a body 𝑖 in the intant 

𝑡 and dimension 𝑑, the total force exerted by the other bodies 

can be defined as: 

𝐹𝑖𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗𝑑
(𝑡)𝑁

𝑗=1,𝑗≠𝑖   (21) 

Where: 𝑟𝑎𝑛𝑑𝑗  is a random number uniformly distributed in the 

interval [0,1]. 

iv) Fourth, based on the total forces, the acceleration of mass 𝑖 
at time 𝑡 and dimension 𝑑 is given by: 

𝑎𝑖𝑑(𝑡) =
𝐹𝑖𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
 (22) 

Where 𝑀𝑖𝑖 is the inertial mass of the body 𝑖. 

v) Fifth, the new speed of a body can be evaluated as a function 

of its current speed plus its acceleration. The speed of the body 

and its position  are given, respectively, by: 

𝑣𝑖𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖𝑑(𝑡) + 𝑎𝑖𝑑(𝑡) (23) 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1) (24) 

where 𝑥𝑖𝑑(𝑡) and 𝑣𝑖𝑑(𝑡) are the position and speed of body 𝑖 

at time 𝑡 and dimension d, respectively, and 𝑟𝑎𝑛𝑑𝑖 is a random 

number uniformly distributed in the interval [0,1], which 

increases the randomness of the search. 

vi) Finally, after assessing the objective function for each body 

of the current population, the gravitational and inertial masses 

can be updated, respectively, using: 



 

 

     

 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (25) 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)
𝑁
𝑗=1

 (26) 

Where, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖(𝑡) represents the fitness value of body 𝑖 at 

time 𝑡, best and worst represent the 𝑏𝑒𝑠𝑡 and the 𝑤𝑜𝑟𝑠𝑡 fitness 

value of the objective function among all m masses. These 

values are defined based on the type of problem being solved: 

maximization or minimization problem. 

In addition, to enhance the exploration of the GSA, an agent 

called 𝑘𝑏𝑒𝑠𝑡 is employed. It is a function of time that has as 

initial value 𝑘0 = 𝑁 and its value decreases with time linearly. 

Thus, the equation of the total force can be rewritten as: 

𝐹𝑖𝑑(𝑡) =∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗𝑑
(𝑡)

𝑁

𝑗∈𝑘𝑏𝑒𝑠𝑡,𝑗≠𝑖
 (27) 

That is, fewer bodies will exert force on others with time, only 

those with the best value of the objective function and larger 

masses, until only one body exerts force on the others. The 

value of the constant 𝐺(𝑡) also varies with time according to 

(28). 

𝐺(𝑡) = 𝐺(𝑡0) × (
𝑡0
𝑡
)
𝛽

, 𝛽 < 1 (28) 

Where, 𝐺(𝑡0) is the value of the gravitational constant at the 

origin of the universe, 𝑡 is the age of the universe and 𝛽 is a 

constant that depends on the constitutional characteristics of 

the universe itself. 

5.2  Applying GSA to RPOPF 

The application of GSA to the pre-dispatch optimization 

problem is straightforward, since bodies can be defined as the 

vector of values of the RPOPF parameters. That is: 

𝑥𝑖𝑑 =

{
 
 
 

 
 
 𝑉𝑘

𝑟𝑒𝑓
𝑓𝑜𝑟 𝑗 = 1,… , |𝒢|; 𝑘 = 𝒢𝑗
𝑎𝑛𝑑 𝑑 = 𝑗

𝑃𝑔𝑘
𝑟𝑒𝑓

𝑓𝑜𝑟 𝑗 = 1,… , |𝒢|; 𝑘 = 𝒢𝑗  

 𝑎𝑛𝑑 𝑑 = |𝒢| + 𝑗

𝑄𝑔𝑘
𝑟𝑒𝑓

𝑓𝑜𝑟 𝑗 = 1,… , |𝒢|; 𝑘 = 𝒢𝑗   

 𝑎𝑛𝑑 𝑑 = 2|𝒢| + 𝑗

 (29) 

Where: |𝒢| is the dimension of the set 𝒢 and 𝒢𝑗 is the j-th 

element of the set 𝒢. Consequently, the number of dimensions 

𝑛 = 3|𝒢|.  

The fitness function is defined in (1) and is used to obtain the 

gravitational and inertial masses as: 

𝑚𝑖
(𝑡) =

𝑃𝑟𝑖𝑠𝑘(𝒙𝑖
(𝑡)) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (30) 

and, as the risk must be reduced, the optimization problem is a 

minimization problem. Therefore: 

{
𝑏𝑒𝑠𝑡(𝑡) = min

𝑖∈1,2,…,𝑁
𝑃𝑟𝑖𝑠𝑘(𝒙𝑖

(𝑡))

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑖∈1,2,…,𝑁

𝑃𝑟𝑖𝑠𝑘(𝒙𝑖
(𝑡))

 (31) 

The flowchart of the GSA algorithm used in the solution of 

the RPOPF for islanded microgrids is presented in Figure 1. 

 

Fig. 1 Flowchart of the GSA used to solve the RPOPF. 

6. TESTS AND RESULTS 

6.1  Simulation Data 

The methodology proposed in this paper was tested in a 

microgrid of 38 bus proposed in (Abdelaziz et al. 2013). The 

complete data for this test system are presented in (Abdelaziz 

et al. 2013; Araújo 2017). 

To perform the RPOPF via GSA, the following set of 

parameters was considered: 𝑎 = 0.01, 𝐺0 = 0.1, 𝑡𝑚𝑎𝑥 = 100, 

𝜀 = 0.002, 𝑁 = 5 and the maximum number of 

generations/iterations is 20 for PSO and GSA. This number 

was specified because no improvement in the objective 

function was achieved with additional generations/iterations.  

As a way of demonstrating the optimization benefits, the 

RPOPF was compared to deterministic OPF. In other words, it 

is assumed that there are no uncertainties in the microgrid 



 

 

     

 

parameters. The deterministic OPF is performed by 

minimizing the operating costs of the DG subject to power 

flow equations, voltage limits and bounds for output power 

DG. The deterministic OPF is considered the base case in this 

paper. To calculate the frequency and voltage violations 

indices, 𝑃𝑇𝐿𝑂𝐶𝑓(𝑿) and 𝑃𝑃𝐿𝑂𝐶𝑖(𝑿), respectively, it was 

considered that: 

i) Frequency violations occur whenever the deviation in the 

microgrid frequency is greater than 0.83% or less than 0.33% 

of the base value, 60 Hz. This means that whenever the 

microgrid frequency is greater than 60.5 Hz or less than 59.8 

Hz, all DGs will be turned off to protect them from damage 

resulting from under or over frequency condition. As a result, 

the microgrid undergoes a TLOC event. 

ii) Voltage violations on each bus occur whenever the 

deviation bus voltage is greater than ± 5% from the base value, 

1 p.u. That means that whenever the bus voltage is above 1.05 

p.u. or below 0.95 p.u., there will be loss of load in buses where 

the voltages are violated to avoid damage to the electric 

devices. Consequently, there is a PLOC event for the 

microgrid. 

The results obtained with the GSA were compared with those 

obtained by the PSO. Both algorithms were implemented 

using the MATLAB® programming language in a PC with: 

Windows® 7 OS of 64 bits, Intel® Core i5 processor of 3.20 

GHz and 4GB of RAM. The PSO was also tested with the same 

number of particles/bodies and generations of GSA in order to 

provide a fair comparison between them. Finally, to obtain a 

probability distribution of the risk index both PSO and GSA 

100 test were performed with individuals and masses 

randomly initialized, respectively. 

6.2  Results 

As mentioned above, both PSO and GSA were used in the 

RPOPF to obtain the statistics for the violation indices. Figure 

2 shows the mean values of voltage violation risk in each 

microgrid bus, obtained by GSA and PSO. 

 

Fig. 2 Mean Values of the Voltage Violation Risk and Load 

Loss per Bus. 

From the Figure 2, it can be observed that the risk of violation 

is smaller in buses 8, 12 and 25 than in other buses because 

there are DGs connected to them. This result is due to the 

var/volt support provided by the DGs which helps to maintain 

the voltage violation risk low in these buses. 

Figure 2 also shows the expected nodal load loss due to voltage 

violations. It is observed a behaviour similar to the risk of 

voltage violation, making it again clear that the presence of the 

DGs favours the reduction of the average loss of load due to 

voltage problems. In both graphs, it can be seen that the GSA 

found an MGP that provided the lowest risks. The PSO, 

although also showing a good result in relation to the base case 

(deterministic OPF), could not surpass the GSA, which 

presented better results in almost all buses. 

Regarding the base case, it can be seen in Figure 3 that the 

relative percentage reductions in the risk of voltage violation 

were lower in the solutions obtained by the PSO when 

compared to the results obtained by the GSA. 

 

Fig. 3 Reduction in the Voltage Violation Risk per Bus 

(regarding to the base case). 

Figure 4 shows the probability distribution of the 𝑃𝑇𝐿𝑂𝐶𝑓(𝑿) 

for a sample of 100 test runs for the PSO and GSA. This figure 

shows that the GSA also presented better results than the PSO 

in relation to the risk of frequency violation. In other words, 

the GSA is able to achieve reference values for MPD that 

provide smaller total load loss in the microgrid when compared 

to those achieved by the PSO. 

 

Fig. 4 Probability distribution of the frequency violation risk. 



 

 

     

 

Finally, the average CPU times required by the GSA and PSO 

for the 100 test runs are 325.85 and 775.91 seconds, 

respectively. That is, the GSA converges to an optimal solution 

about twice faster than the PSO. In this way, the GSA is also 

more suitable for RPOPF than the PSO in relation to the 

computational cost to achieve an optimal solution. 

7. CONCLUSIONS 

This paper presents a methodology for the Robust Probabilistic 

Optimal Power Flow (RPOPF) oriented to improve the 

reliability of islanded operation of microgrids. The proposed 

approach is based on the combination of Probabilistic Power 

Flow (PPF) and Gravitational Research Algorithm (GSA). The 

comparison between optimization methods used to solve 

RPOPF demonstrated that reference parameters of the 

distributed generators can be used as decision variables to 

obtain a more reliable operation of the microgrid in islanded 

mode. It was found that GSA achieved a better result in this 

regard than the Particle Swarm Optimization (PSO). The GSA 

optimal solutions achieved a reduction in the risks of 

frequency and voltage violation higher than those achieved 

with the PSO. 

The results presented in this paper motivate future research 

work associated with the following topics: 

i) Multiobjective formulation of RPOPF based on weights or 

Pareto’s Theory to model the objective function components 

associated with frequency and voltage violations. 

ii) The tests carried out in this paper considered the frequency 

limits presented in (IEEE 2009). However, there is new IEEE 

Standard for the interconnection of distributed resources 

published in 2018. In this way, the authors intend to carry out 

tests with the RPOPF with the frequency limits defined in the 

IEEE standard of 2018. 

iii) RPOPF based on phase coordinates to take into account the 

unbalanced nature of power distribution networks.   
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