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Abstract: Distributed renewable generations such as photovoltaic units are electricity generators for 

installing close to the loads on the distribution system. In this paper, the dispatch function of a non-

centralized Virtual Power Plant (VPP) with having a photovoltaic unit in each bus is considered to optimize. 

This dispatch function is assigned based on the predicted load shape of the next day. A new day-ahead 

hybrid optimization algorithm is presented to optimize the dispatch function. The proposed algorithm 

implements a new hybrid combination of Particle Swarm Optimization (PSO) and Genetic Optimization 

(GA) algorithms simultaneously to benefit both algorithms’ advantages. The objective function is the 

optimization of the voltage deviation of the VPP. The suggested algorithm is executed on a 13-bus-radial 

IEEE standard VPP system using MATLAB software coupled with open-source software called Open-

DSS. The results show the importance of the proposed algorithm to optimize the voltage deviation of the 

VPP. The superiority of the proposed algorithm is related to the accuracy and calculation velocity in 

comparison with the other tested evolutionary algorithms. The Distribution System Operator could map 

and move towards its full benefits of the increasing integration of DGs with a strategic placement that could 

keen prosumers on integrating these actions. 
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1. INTRODUCTION 

 Virtual power plant (VPP) is a technical, economic and 

practical structure that interconnects distributed generations 

(DGs) and energy storage systems (ESSs) within microgrids 

for the operator of the system to handle the integration of DGs 

(Yu et al. 2019). The common intelligent control center of 

VPP needs a linear programming cost minimization model of 

DGs and storage within microgrids (Yu et al. 2019; Kong et 

al. 2019). 

Recently, the optimal dispatch of loads and DGs has 
classified as an advanced issue of the energy management 
system (EMS). The other important issues for EMS such as 
distribution power flow, integrated voltage control, and 
contingency analysis must be adapted to the characteristics of 
the distribution system (Kaur, Kumbhar, and Sharma 2014; 
Hosseinpour, Niknam, and Taheri 2011; Niknam, Azizipanah-
Abarghooee, and Rasoul Narimani 2012). Increasing the DGs 
contribution percentage on the distribution system leads to 
benefits such as reducing power losses, harmonic distortion, 
and the cost of generating electricity. On the other hand, the 
non-optimal dispatch of DGs may increase the voltage 
deviation and losses of the distribution system. Hence, 
Optimal dispatch is essential to improve the power quality 
performance of the distribution system (Niknam et al. 2011; 
Zhang, Wang, and Ji 2015). 

The computational time for simulation and accuracy to 
achieve the optimal point are the main differences of most 
optimization algorithms that have been used to solve the DGs 
dispatch problem (Zhang, Wang, and Ji 2015). Among 
optimization algorithms GA algorithm is accurate but the 
convergence is slow and the PSO algorithm has some 

advantages and disadvantages. On one hand, the PSO 
algorithm has simpler implementation and the parameters do 
not require tuning. On the other hand, the main disadvantage 
of the PSO algorithm is the convergence to a locally optimal 
solution (Bukar, Tan, and Lau 2019). 

In this paper, a single-objective day–ahead hybrid 
optimization algorithm is presented to optimize the voltage 
deviation of a non-centralized VPP in a power distribution 
system. In the proposed algorithm, PSO and GA algorithm 
optimization solutions saved in a repository and non-
dominated solutions of the repository are selected as 
optimization solutions. The suggested algorithm is worked 
based on the next day loads curve forecast but the time can be 
decreased to the next hour or the next minute if the prediction 
curves are available. The suggested algorithm has been 
applied in Matlab software that in a co-simulation 
environment with OpenDSS software can prepare the needed 
power flow data for finding optimal dispatch schedule on an 
IEEE (Institute of Electrical and Electronics Engineers) 
standard 13-bus test system. Additionally, the results of other 
evolutionary methods such as GA and  PSO are compared 
with the results of the proposed algorithm. 

The main contributions of the paper can be summarized as 
follows: 

• A new single-objective algorithm is presented for finding 
optimal dispatch function in a VPP. 

• Presenting a new optimization algorithm with combining 

PSO and GA to improve the robustness, accuracy and 

calculation speed of both algorithms. 
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• A tool and algorithm are presented for load flow and 
dispatch analysis of a VPP. 

ACRONYMS 
DG Distributed Generation 

EMS Energy Management System 
ESS Energy Storage Systems 
GA Genetic Optimization Algorithm 

IEEE Institute of Electrical and Electronics Engineers 
HBMO Honey Bee Matting Optimization 

PSO Particle Swarm Optimization 

NOTATIONS 

𝑓1(𝑋̅) Bus voltage deviation function  

𝑓(𝛼) Normal distribution for achieved scores 

𝑓𝐾(𝑋) The Kth objective function 

𝐹 Matrix of all objective functions together 

𝐼 Actual current 

𝐼𝑛𝑏
 Actual current 𝑛𝑏

th branch of the distribution system 

K Number of objective functions 

𝐿 
Number of objective functions in multi-objective 
Problems 

𝑀𝑘 Average knowledge of Kth learner 

n 
Summation of the total number of DGs and two times 

The total number of DGs (length of  𝑋̅ ) 

𝑁𝑏𝑢𝑠 Total number of bus 

𝑁𝐷𝐺  Maximum number of DGs 

𝑁𝑏 Number of the distribution system branches 

𝑃 Active power [kW] 

𝑃𝐷𝐺𝑖 The power generated by ith DG 

𝑃̅𝐷𝐺 Active power vector of all DGs 

𝑃𝐷𝐺𝑖
𝑚𝑎𝑥 Maximum active power of the ith DG 

𝑃𝐷𝐺𝑖
𝑚𝑖𝑛 Minimum active power of the ith DG 

Psub Value of injected active power to the distribution system 

𝑃𝑟𝑖𝑐𝑒𝑠𝑢𝑏 Cost of substation 

𝑃𝑟𝑖𝑐𝑒𝐷𝐺𝑖 The total cost of ith DG  

Q Reactive power 

𝑅 Resistance  

𝑅𝑡 Teaching factor 

𝑅𝑛𝑏
 Resistance 𝑛𝑏

th branch of  the distribution system 

𝑇𝑘 Average knowledge of the teacher 

𝑉𝐴,𝑉𝐵 The magnitude of the voltage at point A and B 

𝑉𝑟 The magnitude of the voltage at rth bus 

𝑉𝑟
𝑟𝑒𝑓

 The magnitude of the suitable voltage 

𝑉𝑚𝑎𝑥 Upper voltage  magnitude limits 

𝑉𝑚𝑖𝑛 Lower voltage magnitude limits 

𝑉𝑛𝑜𝑚 Nominal voltage 

𝑉𝑠𝑢𝑏 The magnitude of slack bus voltage 

𝑋̅ Vector of location and size of DGs  

𝑋̅𝑛𝑒𝑤 New learner (a new member of the population) 

𝑋̅𝑜𝑙𝑑  Old learner(an old member of the population) 

𝑋𝐾
𝑚𝑢𝑡,𝑣 

Mutation vector (with K vector component for vth 

Member of population)  

𝑋𝐾
𝑣 

Feasible solution vector (with K vector component for vth 
member of population) 

𝑋𝐾
𝑛𝑒𝑤 New generated member of the population 

𝑌𝑠𝑢𝑏,𝑗 Value of admittance between slack bus and jth bus 

𝑋𝐾+1
𝑛𝑒𝑤 Equal to 𝑋𝐾

𝑛𝑒𝑤 or 𝑋𝐾
𝑣  based on mentioned conditions 

𝜃𝑠𝑢𝑏,𝑗 The angle of admittance between slack bus and jth bus 

Δ𝑡 New tap ration position  

Δ𝑉 Difference of voltages 

𝛿𝑠𝑢𝑏 The angle of the slack bus voltage 

𝛿𝑗 The Angle of the voltage at the jth bus 

2. Placement of DGs formulation 

2.1 Objective function 

The bus voltage deviation in a power electrical 

distribution system objective function can be defined as 

follows: 

𝑓1(𝑋) = ∑
|𝑉𝑛𝑜𝑚 − 𝑉𝑟|

𝑉𝑛𝑜𝑚

𝑁𝑏𝑢𝑠

𝑚=1

 (1) 

𝐹1(𝑋) = min(𝑓1(𝑋)) 
(2) 

𝑓1(𝑋)  is the second objective function that should be 

minimized by the optimization algorithm (Niknam, 

Azizipanah-Abarghooee, and Rasoul Narimani 2012). 

2.2 Constraints 

• Limitation of voltage 

Permissible limits of voltage for the network should be 

kept as follows: 

𝑉𝑚𝑖𝑛 ≤ |𝑉𝑚| ≤ 𝑉𝑚𝑎𝑥  (3) 

Where |𝑉𝑚| is the magnitude of the voltage at mth bus and 

𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛  are upper and lower voltage limits, 

respectively. 

• DG’s number 

Actually, in the ‘ideal case’, losses of distribution system 

could be omitted if all loads would be supplied by their local 

DGs. This assumption is unrealistic as the cost of capital 

investment is too high but it can be considered in the VPP as 

a realistic assumption instead of a distribution system. 

Therefore, this paper has suggested a limit number of DGs in 

the distribution system, all loads of the VPP has a DG, to the 

implementation of the objective function and reduce the 

power losses with a given number of DGs. 

𝑛𝐷𝐺 ≤ 𝑁𝐷𝐺 (4) 

Where 𝑁 𝐷𝐺 and 𝑛𝐷𝐺 are the maximum number of DGs 

specified and the number of DG determined, respectively. 

• Size of DGs 

To limit the maximum allowable investment of DGs, the 

total size of DGs should be selected as: 

∑ 𝐾𝑊𝐷𝐺
𝑛 ≤ 𝜂𝑃𝑙𝑜𝑎𝑑

𝑛𝐷𝐺

𝑛=1

 
     

(5) 

Where Pload  is the total load power and KWDG
n  is the 

capacity of the nth DG. η is the mean demand of the load. 

• PV System working time 

In this paper, the working time for the PV system is 7:00 

to 17:00 because in this range the PVs send power more than 

10% of rated power. 

2.3 Model for DG 

DG can be modeled as PQ or PV models with considering 

simultaneous or independent three-phase control. It is noted 

that PV models should be considered reactive power for 

keeping the magnitude of bus voltage in their proper 



     

magnitudes (Hosseinpour, Niknam, and Taheri 2011). In the 

proposed approach of this paper, DGs are modeled as PQ 

buses, and each load has a DG with the same characteristic of 

the load in terms of connection. 

The voltage profile and power flow of the distribution 

network can be changed when a DG unit has been connected 

to the network. The low value of 
𝑋

𝑅
 in the distribution network 

may cause the effects of connecting DGs to the distribution 

network to become considerable (Niknam, Azizipanah-

Abarghooee, and Rasoul Narimani 2012). For better 

clearance, two buses of the test system are shown in Fig. 1. 

This figure shows the DG and load models for bus 2 are 

considered as PQ models. In this paper, this model is used in 

the test system (i.e. 13-bus test system). The voltage sag from 

bus 1 to bus 2 is determined as follow:  

∆𝑉 = (𝑉1 ≺ 𝛿1) − (𝑉2 ≺ 𝛿2)     (8) 

∆𝑉 = (𝑅 + 𝑗𝑋)𝐼    (9) 

𝐼 =
(𝑃 + 𝑗𝑄)∗

𝑉2
∗   (10) 

𝑃 = 𝑃𝐷𝐺 + 𝑃𝐿𝑜𝑎𝑑  (11) 

𝑄 = 𝑄𝐷𝐺 + 𝑄𝐿𝑜𝑎𝑑  (12) 

|Δ𝑉|2 =
(𝑅𝑃+𝑋𝑄)2+(𝑋𝑃−𝑅𝑄)2

𝑉2
2 ≈

(𝑅𝑃+𝑋𝑄)2

𝑉2
2      (13) 

Where reactive and active power components of Load 

and DG are shown by 𝑄𝐿𝑜𝑎𝑑 ,  𝑃𝐿𝑜𝑎𝑑 ,  𝑄𝐷𝐺 , and 𝑃𝐷𝐺  

respectively, and angle and magnitude of the voltage at the 𝑖𝑡ℎ 

bus are shown by 𝛿𝑖 and 𝑉𝑖, respectively. Moreover, the line 

impedance is considered as 𝑅 + 𝑗𝑋 in the Eq. (13) neither 𝑋𝑄  

nor 𝑅𝑃   is negligible. Furthermore, the impacts of reactive 

power components on DGs are less than the active power 

components because the 
𝑋

𝑅
 ratio is low. 

 

 

 

 

 

Fig. 1 Two buses of the test system show the PQ model of 

DG and load for Bus 2  

2.4 Virtual Power Plant Model 

VPP is defined as a combination of DGs and loads 

participating in the power market as an independent power 

plant for minimizing the voltage deviation (Yu et al. 2019). 

All kinds of DGs such as photovoltaic units, wind turbine or 

diesel generators can be implemented in the VPP structure. 

The core of VPP is EMS that it’s duty is to coordinate the 

output power of generators, the load demand, and ESS 

capacity (Kong et al. 2019). 

Fig. 2 illustrates a schematic overview of a VPP structure 

that is implemented in this paper. The passive management of 

distribution network which is generally found in a centralized 

system where power electricity flows from large power plants, 

through the transmission lines, and then through the 

distribution system to the load is changed here by VPP 

structure. 

 
Fig. 2 The proposed VPP structure 

3. PSO-GA algorithm 

3.1 PSO algorithm 

PSO is a stochastic search algorithm that was first 

introduced by (Zhang, Wang, and Ji 2015). It has been used 

extensively to solve optimization problems (Bukar, Tan, and 

Lau 2019). PSO algorithm consists of a population 

continuously updating the searching space knowledge. In the 

multidimensional space, each particle is moved toward the 

optimal point by changing its position according to velocity. 

The velocity of a particle is calculated by three components: 

inertia, cognitive and social.    

The position and velocity of each particle are updated as 

follow: 

 

𝑆𝑖
𝑘+1 = 𝜔 × 𝑆𝑖

𝑘 + 𝐶1 × 𝑟𝑎𝑛𝑑()1 × (𝑝𝑖
𝑘 − 𝑋𝑖

𝑘) +

𝐶2 × 𝑟𝑎𝑛𝑑()2 × (𝑔𝑘 − 𝑋𝑖
𝑘)                                                    

(14) 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑆𝑖
𝑘+1                                                   (15) 

  

Where 𝑆𝑖
𝑘  is the velocity of 𝑖𝑡ℎ  particle at 𝑘𝑡ℎ  iteration, 

𝑝𝑖
𝑘  is the best previous experience of the 𝑖𝑡ℎ particle that is 

recorded, 𝑔𝑘 is the best particle among the entire population, 

𝑆𝑖
𝑘+1is the velocity of  𝑖𝑡ℎ particle at (𝑘 + 1)𝑡ℎ iteration, 𝜔 is 

an inertia weight, 𝐶1, 𝐶2 is positive coefficients between 0 and 

2 that 𝐶1 + 𝐶2 ≤ 4 , and 𝑟𝑎𝑛𝑑()1 , 𝑟𝑎𝑛𝑑()2  are random 

numbers selected between 0 and 1. The performance of the 

V1‹б1 V2‹б2 

R+jX 

P+jQ 



     

simple PSO greatly depends on 𝐶1, 𝐶2, and 𝜔. The PSO details 

and Pseudocode of PSO are gathered in (Bukar, Tan, and Lau 

2019).    

3.2 GA algorithm 

The Genetic optimization algorithm is based on random 

search methods that are useful for global optimization 

problems (Jafar-Zanjani, Inampudi, and Mosallaei 2018). GA 

encodes the initial candidate solutions by using a population 

of strings. And then, it employs genetic operators (i.e. 

crossover, mutation, and selection) to generate new 

population-based on gradually evolves towards the best 

solution and initial population. The convergence velocity of 

GA is based on the values of genetic operators and the 

procedure of GA. The GA details and Pseudocode of GA are 

gathered in (Jafar-Zanjani, Inampudi, and Mosallaei 2018).    

3.3 Hybrid GA-PSO algorithm for Dispatch problem 

In this optimization algorithm, the population is 

simultaneously updated by PSO and GA algorithms (i.e. the 

results of both algorithms save in a repository and this 

repository is optimized by the proposed algorithm). If the new 

achieved solution of PSO or GA is better than the previous 

one, the best solution replaces the old solution. Otherwise, the 

existing solution is memorized. The flowchart and 

Pseudocode for implementation of the proposed algorithm for 

a sample of 10 times runs are shown in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 The flowchart and Pseudocode for combining PSO 

and GA 

The impact of decision in GA leads to increase accuracy 

and the impact of decision in PSO algorithm leads to increase 

velocity. Thus, the proposed algorithm benefits the both 

impacts. 

The proposed algorithm saves and updates the data in a 

repository for each iteration. Thus, it is possible to get the best 

solution even if all minimization process is not concluded or 

stopped. In this paper, the best solution of the worst scenario 

is the full dispatch solution or no dispatch solution (i.e. PV 

panels not working). Moreover, in this paper, we do not stop 

the minimization process but in the real system, the operator 

of the system stops and selects the best solution among 

optimized solutions. Therefore, we consider in each hour 5 

minutes for the operator for performing the selection. 

The fitness function for the implementation of the 

proposed algorithm is shown in Fig. 4. This function 

calculates a fitness value for each member of population (i.e. 

x) based on related forecast issues of next hour (I(h), c(h), and 

T(h)). In this figure, 𝑃𝑖  is related power dispatched of the PV 

system. 𝑃𝑛𝑜𝑚 is the nominal power of the ith PV system and 

𝑥𝑖 is the dispatch of the ith PV system. 𝐼(ℎ), 𝑐(ℎ)𝑎𝑛𝑑 𝑇(ℎ) 

are mean irradiation for the next hour (i.e. forecast), circuit 

topology (i.e. load demand for each hour, and mean 

temperature for the next hour (i.e. forecast), respectively. 𝑥 is 

PVs dispatch (i.e. a vector that contains dispatch for each PV 

panel with considering the available power for each PV). The 

fitness function is defined as follow: 

𝑓(𝑥, [𝐼(ℎ), 𝑐(ℎ), 𝑇(ℎ)])                                               (16) 

In this paper, each load contains a PV panel. The 

maximum absolute voltage deviation is calculated as follow: 

𝑀(𝑥, ℎ) = 𝑚𝑎𝑥(|𝑣𝑝𝑢(𝑙𝑜𝑎𝑑𝑖) − 1| ⋅ 100)                  (17) 

 
Fig. 4 the fitness function 

4. Simulation Results 

The proposed algorithm is employed to find the dispatch 

function on a test VPP IEEE 13-bus distribution system to 

optimize the objective function. This test feeder consists of the 

underground and overhead line segments, with various 

phasing and unbalanced loading with different types of loads. 

Data and details of the 13-bus test system are gathered in 

(Kersting 1991). The proposed method is implemented in a 

Start 

k=1, Run PSO 

Run GA 

k=k+1 

Get the best among GA an PSO solutions 

Best solution for the next hour 

End 

Include in initial 

population full 

dispatch 

solution (All 

vector of x 

equals to 1) and 

the no-dispatch 

solution (All 

vector of x 

equals to 0) 
NO 

Yes 

Time 

elapsed 

≥55 

minutes 

 

k>10 

 
Yes 

NO 



     

MATLAB software coupled with OpenDSS software and 

simulations are performed on a personal computer having an 

i7 core processor, 3.70 GHz, and 32 GB RAM. The types of 

load demand prediction and interpolated curves that are used 

in this paper are shown in Fig. 5. 

 
Fig. 5 Kinds of load demand prediction and interpolated curves 

 The prediction curve is obtained based on the next day 

load demand forecast. The next day, the load curve will not be 

the same but at least it is prepared some guesses for the 

operator of the VPP system. Also, the idea of decreasing the 

time of a day ahead to an hour ahead or a minute ahead can be 

performed with the same strategy. The VPP system is shown 

in Fig. 6. In this paper, the nominal power of each PV system 

is the average power of the load and we considered that all 

PVs have a power factor equal to one. Data and Power flow 

between VPP and other sections are considered in this 

simulation. 

 
Fig. 6 Standard 13 bus VPP system as a test system 

(Kersting 1991) 

Analysis of Fig. 7 shows the best places and capacities for 

working PVs. This figure is results of using fitness function in 

the proposed algorithm (i.e. fig.4 shows the details of 

implementation). It is noted that the results are based on the 

predicted load curve and it is considered that solar panels can 

work from 7 AM to 5 PM and weather prediction is not 

considered. In this paper, all buses (i.e. vertical axis of fig. 7) 

have the same PV panel but their electricity generation is 

optimized based on the objective function. Thus, in this figure, 

the best buses and size for electricity generation of solar panels 

are the buses that have the numbers near the 100. 

 
Fig. 7 Best fitness for the next day to show the best buses and size 

for electricity generation of solar panels 

Fig. 8 shows the cumulative distribution function for the 

standard deviation of the dispatch. Analysis of this figure 

shows GA optimum solutions are more dispersion than the 

PSO algorithm. It means that in some cases the PSO algorithm 

may achieve local optimum instead of global optimum but as 

shown in Fig. 9, in this case, the result of both optimization 

algorithms was the same.   

 
Fig. 8 Cumulative distribution function for the voltage standard 

deviation of dispatch to compare optimization algorithms 

The performance between PSO and GA optimization 

algorithm is shown in Fig. 9. Analysis of the figure shows the 

PSO and GA algorithms have the same outputs in 

minimization. However, GA has a higher standard deviation 

than the PSO algorithm.  

 
Fig. 9 Performance between PSO and GA algorithms 

Fig. 9 and Fig. 10 show the best solutions (i.e. the best 

dispatch). Analysis of Fig.10 shows the average voltage 

deviation for controlled, full and no-load dispatch is 1.38%, 

1.62%, and 2.01%, respectively. Fig. 11 shows three phases 

voltage deviation in loads and the best voltage profile at 11:00 

for controlled, full and no dispatches. This figure shows the 

voltage profile via increasing distance from the feeder.  

                                 

 

   

   

   

   

   

   

 
  
  

  
  
  

  
  
  
  
  
  

  

  

   

                      

                   

                  

 

   

 

   

 

   

 
  
  

  
  
 
 

  

   



     

Analysis of this figure shows the no-dispatch voltage 

deviation is more than the others and the voltage deviation of 

the controlled dispatch is less than the full dispatch. 

5. Conclusion 

A new hybrid GA-PSO algorithm has been presented for 

optimizing the dispatch function of a VPP. The proposed 

algorithm has been employed in the purpose of optimizing 

voltage profile. Simulation results prove the capability of the 

proposed algorithm to minimize the voltage deviation of the 

distribution system. The results obtained by other 

evolutionary algorithms such as GA and PSO in compare of 

proposed algorithm results demonstrate the prevalence of 

proposed hybrid optimization algorithms from the perspective 

of calculation accuracy. The 13-bus system was used as a 

small sample of distribution system to approve the capability 

of the proposed algorithm in optimization issues and the use 

of a more complex system should be reserved for future work. 

 

Fig. 10 Mean and maximum absolute voltage deviation for 

different dispatches

           
Fig. 9 Voltage profile via increasing distance from the feeder (i.e. bus 650) to show the voltage deviation at 11:00 for the different 

dispatches that are A. controlled, B. no-dispatch  
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