
A Parallel Mix Self-Adaptive Genetic

Algorithm for Solving the Dynamic

Economic Dispatch Problem

Egidio de Carvalho Ribeiro Júnior ∗

Omar Andres Carmona Cortes ∗∗

Osvaldo Ronald Saavedra ∗∗∗

∗ Programa de Pós-Graduação em Engenharia da Computação e
Sistemas (PECS), Universidade Estadual do Maranhão (UEMA), MA,

(e-mail: egidio.carvalho@gmail.com).
∗∗ Departamento de Computação (DComp), Instituto Federal do

Maranhão (IFMA), MA, (e-mail: omar@ifma.edu.br)
∗∗∗ Instituto de Energia Elétrica (IEE), Universidade Federal do

Maranhão (UFMA), MA, (e-mail: o.saavedra@ieee.org)

Abstract: The purpose of this paper is to propose a parallel genetic algorithm that has adaptive
and self-adaptive characteristics at the same time for solving the Dynamic Economic Dispatch
(DED) problem that is a challenging problem to solve. The algorithm selects the proper operators
(using adaptive features) and probabilities (using the self-adaptive code) that produce the most
fittable individuals. Regarding operations, the choice is made between four different types of
crossover: simple, arithmetical, non-uniform arithmetical, and linear. Concerning mutation, we
used four types of mutations (uniform, non-uniform, creep, and enhanced apso). The choice is
made scholastically, which is uniform at the beginning of the algorithm, being adapted as the
AG executes. The crossover and mutation probabilities are coded into the genes, transforming
this part of the algorithm into self-adaptive. The multicore version was coded using OpenMP.
An ANOVA test, along with a Tukey test, proved that the mixed self-adaptive algorithm works
better than both: a random algorithm, which chooses operators randomly, and a combination
of operators set previously in the DED optimization. Regarding the performance of the parallel
approach, results have shown that a speedup of up to 3.19 can be reached with no loss in the
quality of solutions.

Keywords: Genetic Algorithms; Adaptive; Self-adaptive; Dynamic Economic Dispatch; Parallel.

1. INTRODUCTION

The Economic Dispatch (ED) (Pereira-Neto et al., 2005)
(Barros et al., 2013) can be considered as one of the essen-
tial tools in the operation of power systems. In its purest
form, the input-output characteristics or cost function of
generators can be approximated by a quadratic function,
making it possible to formulate the ED as an optimization
problem. Thus, the primary purpose of ED is to minimize
the total energy production costs, while various generator
constraints are satisfied. However, generator output curves
have a high degree of non-linearities and discontinuities
due to the effect of ”valve points”.

In the current context, natural gas thermal units play an
important role in helping to mitigate rapid generation vari-
ations caused by the large insertion of wind farms in the
electricity grid. This makes the economic dispatch problem
a revisited and current problem. Since the operating costs
of different generating units differ significantly, it is a
challenging problem to schedule the best mix of generation
from several units to attend a particular load demand at
minimum cost. This problem is called Economic Dispatch
Problem, which is a static optimization problem. Even

though this scheduling might be beneficial for a particular
hour of the day, it might not be for different hours. To tack-
ling the different demand scenarios imposed by twenty-four
hours of a day, we can transform the classical Economic
Dispatch into the Dynamic Economic Dispatch (DED), in
which each hour of the day may demand a different power
consumption.

The DED problem is a much more challenging problem
than classical EDP because, as previously stated, it has
to satisfy different demands during the day. In this con-
text, classical optimization methods are inefficient mainly
because they can deal neither with constraints nor with
many variables. In this context, evolutionary approaches
such as Genetic Algorithms (GA) represent an attractive
form of solving this kind of optimization problem. A GA
implements a search method to find out a solution for a
particular problem. To do so, a set of parameters, such
as crossover and mutation operators, crossover and muta-
tion probabilities, population size, the number of genes,
the number of individuals, and selection method, need to
be set before the execution starts. These parameters are
directly responsible for the exploration and exploitation
capabilities of the algorithm. Thus, setting them is a chal-

creacteve_alessandra
Texto digitado
DOI: 10.48011/sbse.v1i1.2499

lenge because different problems might require different
parameter combinations, demanding consequently more
executions and computational time.

In order to automatically choose those parameters, two
types of algorithms are common: adaptive and self-
adaptive algorithms. In adaptive algorithms, there is some
form of feedback from the search that serves as inputs
to a mechanism used to determine the change to the
strategy parameter (Eiben et al., 2006). In self-adaptive
algorithms, parameters are encoded into the chromosomes
and undergo mutation and recombination along with all
genes. There is a third kind of adaptive algorithm called
deterministic. In which all parameters are updated using
a deterministic rule that usually is an equation. Some
efforts have been made to either adapt or self-adapt genetic
algorithms. For example, Lu et al. (2015), Xiao et al.
(2015), and Miranda et al. (2015) developed adaptive
or self-adaptive genetic algorithms; however, these works
are not parallel. On the other hand, Pessini (2003) and
da Silva et al. (2013) studied multi-thread genetic algo-
rithms; nonetheless, they are neither adaptive nor self-
adaptive. The first attempt to implement a multi-thread
adaptive algorithm was Carvalho et al. (2017), in which
some multimodal benchmarks functions are solved.

Regardless of which kind of GA has been developed, it is
clear that adaptive techniques are adequate to the task of
choosing operators. On the other hand, it would be chal-
lenging to select which operator to use based on crossover
operations such as arithmetical or linear crossover because
they are naturally real-coded operations. In opposition,
selecting the best probabilities (crossover and mutation)
seems suitable for self-adaptive algorithms regardless of
the operator being used during the execution of the GA.
In this context, our solution aims to mix both kinds of
selectors: adaptive and self-adaptive, giving more flexibil-
ity to GAs to solve different kinds of problems efficiently.
Moreover, these algorithms are parallelized using OpenMP
in order to improve the performance of our proposal. At
the best of our knowledge, there are no other works that
mix adaptive and self-adaptive GA in a parallel environ-
ment.

This work is divided as follows: Section 2 presents the
DED problem. Section 3 introduces the adaptive and self-
adaptive algorithm, including how the algorithm has been
parallelized. Section 4 shows how the experiment has been
set up, including the configuration of the DED system and
the results of the experiment. Finally, Section 5 presents
the conclusions of this work and future directions.

2. DYNAMIC ECONOMIC DISPATCH

In the Dynamic Economic Dispatch problem, we aim to
optimize the power dispatch in a power plant. In other
words, we have to attend different demands of power dur-
ing a day minimizing the cost of doing it. Computationally,
we calculate the necessary power in the available generator
units according to the expected demand during a period.
Furthermore, the generation must obey all restrictions
of the system. Hence, the ultimate goal is to minimize
the cost of power generation, satisfying all the following
constraints: (i) real power balance limit; (ii) real power
generation limit; and (iii) generation unit ramp rate limits.

Besides the constraints, there are more challenges to face
in the DED problem. Whenever the demand changes,
the power generation must change as well. This causes a
hitch because there are costs associated with changing the
levels of production in the power generation. This behavior
becomes the problem impossible to solve by a gradient-
based method; thus, the problem is entirely suitable to be
tackled by evolutionary algorithms. According to Kumar
and Alwarsamy (2011), DED is a dynamic problem, due
to the dynamic nature of the power system and the
considerable variation of load demands.

Regarding the cost, Equation 1 calculates the power gener-
ation cost, in which F is the power generation cost within
the considered period, T is the number of time intervals, N
represents the quantity of generation units, and Fit(Pit) is
the cost according to the real power Pit in a time interval
t. The function uses 24 intervals of 1 hour each.

minF =

T∑
t=1

N∑
i=1

Fit(Pit) (1)

Considering the valve effects, the function that computes
the cost of the generation unit i can be expressed as a
sum of a quadratic and sinusoidal function as shown in
equation 2, in which ai, bi, and ci are cost coefficients, ei
and fi are constants of the valve effect of the generation
unit i, and Pi is the power output of this unit expressed
in MW.

Fit(Pit) = ai + biPit + ciP
2
it + |ei sin fi(Pimin − Pit)| (2)

Concerning constraints, Equation 3 expresses the power
balance constraint, where PDt represents the total power
demanded in a period t, PLt is the power loss during
transmission in the same period, both are in MW. The
second constraint is the capacity of generation of each
unit, as shown by Equation 4, in which Pimin is the lower
bound and Pimax is the upper bound of the generation
unit i, respectively. Equations 5 and 6 describe the ramp
limit constraints of a unit i, where URi represents the
increasing limit of a generation unit i, and DRi is the
decreasing limit. Furthermore, PDt must obey the loss
constraint presented in Equation 7, in which B is a matrix
of loss coefficients.

N∑
i=1

Pit − PDt − PLt = 0, in which t = 1, 2...T (3)

Pimin ≤ Pit ≤ Pimax, in which t = 1, 2...T, i = 1, 2...N
(4)

Pit − Pit−1 ≤ URi, in which i = 1, 2...N (5)

Pit−1 − Pit ≤ DRi, in which i = 1, 2...N (6)

PDt =

n∑
i=1

n∑
j=1

PiBijPj +

n∑
i=1

B0iPi + B00 (7)

3. THE MIX SELF-ADAPTIVE GA (MSGA)

Genetic Algorithms are search techniques able to discover
the best candidate solution among a massive number of
possible solutions. They were inspired by Darwin’s natu-
ral selection and use concepts like inheritance, crossover,
and mutation. Details of the canonical GA for numerical
optimization and its genetic operators can be seen in the
work of Cortes and da Silva (2019).

In our approach, the first thing we have to take into
account is how the algorithm chooses the best operators
and taxes for crossover and mutation. Firstly, the MSGA
must choose which genetic operators will be used in the
first iteration. The chosen is made by using a uniform
distribution in all operators, i.e., the same probability
for each crossover and mutation operator (because we
are using four crossovers and four mutations operators
the probability of choosing each one is 25%). The fol-
lowing operators can be chose: (i) Crossover - Simple,
Arithmetical, Non-Uniform Arithmetical, and Linear; (ii)
Mutation - Uniform, Non-uniform, Creep and Enhanced
APSO (EAPSO)

After setting the genetic operators, the algorithm verifies
whether an enhancement was produced in the best so-
lution; if so, the probabilities of that kind of crossover
and mutation will be increased according to Equation
8, in which t is the current iteration and Tmax is the
maximum iteration count. As we can see, the increment
is smaller at the beginning of the algorithm and increases
as the algorithm evolves. The purpose of this equation is to
avoid a premature convergence to a specific combination
of crossover and mutation operators.

step =
t

Tmax
(8)

As mentioned previously, our approach is also self-
adaptive, i.e., the probabilities of crossover (Pc) and mu-
tation (Pm) are embedded into the genes. Thus, when
a crossover occurs, the probabilities for generating sons
will depend on parents’ probabilities. Therefore, there is
a tendency to repeat the taxes along with the population
because those more adapted individuals tend to generate
more offspring. The Algorithm 3 shows the pseudo-code of
the MSGA.

Pop ← InitPopulation();
fit ← Eval(Pop)
for (i←1 to #Generations) do

for (p←1 to #PopSize) do
NewPop ← tournamentSelection(Pop);
Cross ← decideCrossover(NewPop);
Mut ← decideMutation(NewPop);
Pc ← decideCrossoverProb(step);
Pm ← decideMutationProb(step);
applyCrossover(NewPop, Cross, Pc);
applyMutation(NewPop, Mut, Pm);

end for
Pop ← NewPop;
fit ← fitNewPop;

end for

Figure 1. MSGA Pseudo-Code

As we can observe, the MSGA is very similar to a canonical
GA excepting the choosing of the genetic operators and
the application of Pc and Pm. It is important to notice
that: (i) the selection of individuals is made by using
tournament selection; (ii) we use elitism, keeping the
best solution in the population; (iii) the probabilities of
selecting an operator are updated using Equation 8; (iv)
when a crossover or mutation is applied, the decision of
performing the crossover (Pc), or the mutation (Pm) is
based on the mean of their parents. For example, if the
algorithm selects indiv1 and indiv2 for performing a simple
crossover, the decision of either doing it or not is based on
a new Pc, which is computing by P offspring

c = (P indiv1
c +

P indiv2
c)/2. In the same step the probability of mutation is

updated by Pm = P offspring
m = (P indiv1

m +P indiv2
m)/2; and

(v) when the time of performing the mutation has come,
the operation is performed on each individual using the
Pm computed previously. Next, we show details on how
the MSGA was parallelized using OpenMP.

3.1 The Parallel MSGA

As mentioned previously, we parallelized the MSGA using
OpenMP. Its use starts by adding the library < omp.h >
in a program that can be C, C++, or Fortran. In our
case, we implemented the adaptive algorithm using C
language. The second step is to choose which part of
the code will run in parallel. To do so, the directive is
#pragma omp parallel for. Parallel directives say to
the compiler to distribute all operations inside a block.
In this case, we are using parallel for; therefore, the
compiler will try to distribute all instruction inside the
loop between threads. The number of threads can be set
by using the instruction set OMP NUM THREADS =
number of threads in the shell, using the instruction
omp set num threads(number of threads) in the code,
or using a parameter num threads(number of threads)
in the #pragma omp parallel for. Figure 3.1 shows where
the directive was placed to achieve a better speedup factor.

Same initialization process of the MSGA
for (i←1 to #Generations) do

OMP Parallel For Directive
for (p←1 to #PopSize) do

Same operations of the MSGA
end for
OMP Barrier
Pop ← NewPop;
fit ← fitNewPop;

end for

Figure 2. Parallel MSGA Pesudo-Code

Note that directives were placed before dealing with the
population and after computing it (barrier). The first
directive informs the compiler to distribute the creation
of the new population between the available threads. The
second one notifies the compiler to proceed the execution
only after all threads have processed the entire population.
The parallel mode is the master-slave, in which each thread
receives part of the task to be completed. On the one
hand, this form of parallelism can generate poor speedup
if functions are not computationally intense. On the other
hand, placing the directive as we have done guarantees

that the quality of solutions will not be affected as occurs
when the directive is located before the iteration loop.

3.2 Dealing with Constraints

There are some ways of dealing with constraints. The
most radical is the death penalty, in which any violation
in constrains leads to the elimination of the individual.
The drawback of this approach is to obtain a low number
of individuals if the problem has many constraints. A
common way of tackling constraint is the static penalty,
in which a penalty is added to the objective function for
any violations in the constrains. Mathematically, the static
penalty is shown in Equation 9, in which x is a solution
(an individual), p(x) is a penalty function, and F is the
feasible search space.

fitness =

{
f(x), If x ∈ F

f(x) + p(x), If x /∈ F
(9)

In our approach, p(x) is the sum of all values that exceed
or are inferior to the constraints.

4. EXPERIMENTS

4.1 Setup

The algorithm was executed in a Core i7 2.8GHZ com-
puter, 8Gb of Ram, Windows 7 - 64 bits, and a hard drive
of 1TB. The processor has 4 physical cores and handles
up to 2 simultaneous threads per core. Functions were
executed for 600 and 2000 generations, using 50 trials,
allowing parametric tests such as ANOVA and Tukey test.
The H0 hypothesis says the averages are the same, i.e.,
the difference between algorithm is not meaningful. The
acceptance region in the F table for the H0 hypothesis
is within the range [-2.605, 2.605]. The comparison was
done between the MSGA (MOD1), an approach where
the operators are randomly chosen (MOD2), and every
possible combination between the crossover and mutation
operators. Table 1 refers to all abbreviations used in this
work. The probability of crossover and mutation were
set to 75 and 5 percent, a dimension of 30 genes, and
respectively with a population size of 25. Two, four and
eight threads were used in the parallel version.

The DED problem solved in this work is shown in Table 2
according to the definitions introduced in Section 2. Ta-
ble 3 presents all required demands along 24h of the day.
The system data was obtained in Alsumait et al. (2010).

4.2 Results

The Dynamic Economic Dispatch (DED) Problem was
tested with 600 and 2000 iterations and Table 4 shows
the best, the worst, the average fitness, and the standard
deviation for every set. As we can notice, the best costs
that attends all the demands were reached by our adaptive
algorithm. The value of F is 2262.298 in the ANOVA test,
consequently we reject H0. Table 5 shows the Tukey test, in
which we can notice that our approach definitively presents
the best results.

Table 1. Comparision Sets

Abb. Operators

MOD1 Adaptive operators and selfadaptive taxes

MOD2 Random Crossover and Mutation operators

MOD3 Simple Crossover and Uniform Mutation

MOD4 Simple Crossover and Non-Uniform Mutation

MOD5 Simple Crossover and Creep Mutation

MOD6 Simple Crossover and Eapso Mutation

MOD7 Arithmetical Crossover and Uniform Mutation

MOD8 Arithmetical Crossover and Non-Uniform Mutation

MOD9 Arithmetical Crossover and Creep Mutation

MOD10 Arithmetical Crossover and Eapso Mutation

MOD11 Non-Uniform Arithmetical Crossover and
Uniform Mutation

MOD12 Non-Uniform Arithmetical Crossover and
Non-Uniform Mutation

MOD13 Non-Uniform Arithmetical Crossover and
Creep Mutation

MOD14 Non-Uniform Arithmetical Crossover and
Eapso Mutation

MOD15 Linear Crossover and Uniform Mutation

MOD16 Linear Crossover and Non-Uniform Mutation

MOD17 Linear Crossover and Creep Mutation

MOD18 Linear Crossover and Eapso Mutation

Table 2. Five Unit System

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

ai 25 60 100 120 40

bi 2 1.8 2.1 2 1.8

ci 0.0080 0.0030 0.0012 0.0010 0.0015

ei 100 140 160 180 200

fi 0.042 0.040 0.038 0.037 0.035

Pmin
i 10 20 30 40 50

Pmax
i 75 125 175 250 300

URi 30 30 40 50 50

DRi 30 30 40 50 50

Table 3. Load demand for the five-unit system

Hour Load
(MW)

Hour Load
(MW)

Hour Load
(MW)

1 410 9 690 17 558

2 435 10 704 18 608

3 475 11 720 19 654

4 530 12 740 20 704

5 558 13 704 21 680

6 608 14 690 22 605

7 626 15 654 23 527

8 654 16 580 24 463

This experiment was repeated with 2000 generations. The
results in favor of our approach improved even more as
shown in Table 6. The value of F is 3545.329 in the
ANOVA test, so we reject H0. Table 7 suggests that our
approach is the best one for solving the DED problem
considering our experiment environment.

The efficiency of the results presented by our adaptive
GA is compared against six other approaches for solving
the DED problem: an adaptive PSO and original PSO
(Niknam and Golestaneh, 2012), an enhanced DE (Bal-
amurugan and Subramanian, 2007), a Hybrid Harmony
Search (HS) mixing HS and DE (Chakraborty et al., 2012),
using Maclaurin series and Lagrange methods (Hemama-
lini and Simon, 2010), Artificial Bee Colony (Hemamalini
and Sishaj, 2011), Hybrid DE with Sequential Quadratic

Table 4. DED function results with 600 gener-
ations

MOD Best Worst Average St. Dev.

MOD1 43033.396 44145.354 43508.565 267.858

MOD2 44739.187 46777.094 45666.455 447.813

MOD3 44947.823 46792.516 45955.839 365.487

MOD4 45254.125 47083.895 46265.956 406.646

MOD5 46985.017 49807.796 48293.546 708.029

MOD6 50507.091 53266.839 51747.328 586.930

MOD7 45782.635 47732.233 46700.023 469.022

MOD8 46064.331 47669.766 46788.025 453.361

MOD9 47973.116 50197.533 49246.654 522.190

MOD10 50793.328 52741.426 51943.302 504.483

MOD11 46774.862 48913.740 48085.977 413.210

MOD12 48076.383 49987.787 48950.502 475.592

MOD13 51691.106 54283.460 52862.064 551.949

MOD14 54838.061 56867.487 55780.407 467.042

MOD15 44345.968 45870.094 45021.371 287.278

MOD16 44724.122 45898.430 45292.000 325.259

MOD17 45719.850 47819.367 46787.815 429.319

MOD18 48545.007 51191.313 49787.084 601.141

Table 5. Tukey test for DED function with 600
generations

MODs Avg. Differ. DMS Conclusion

1 e 2 -2157.890

242.708

The difference is meaninful.
1 e 3 -2447.275 The difference is meaninful.
1 e 4 -2757.391 The difference is meaninful.
1 e 5 -4784.981 The difference is meaninful.
1 e 6 -8238.764 The difference is meaninful.
1 e 7 -3191.458 The difference is meaninful.
1 e 8 -3279.460 The difference is meaninful.
1 e 9 -5738.090 The difference is meaninful.
1 e 10 -8434.737 The difference is meaninful.
1 e 11 -4577.412 The difference is meaninful.
1 e 12 -5441.937 The difference is meaninful.
1 e 13 -9353.499 The difference is meaninful.
1 e 14 -12271.842 The difference is meaninful.
1 e 15 -1512.806 The difference is meaninful.
1 e 16 -1783.435 The difference is meaninful.
1 e 17 -3279.251 The difference is meaninful.
1 e 18 -6278.519 The difference is meaninful.

Table 6. DED function results with 2000 gen-
erations

MOD Best Worst Average St. Dev.

MOD1 42767.573 43245.864 42906.757 104.277

MOD2 43019.313 44237.415 43559.208 337.673

MOD3 43234.213 45109.266 43834.154 345.072

MOD4 43130.079 45376.238 44141.758 464.060

MOD5 45450.687 47597.517 46491.233 579.420

MOD6 50210.717 52830.333 51689.640 591.785

MOD7 43470.334 44614.110 44075.960 237.773

MOD8 43300.878 44620.560 44005.227 281.200

MOD9 44943.132 46985.304 46115.605 467.918

MOD10 50328.768 53227.408 51894.550 494.512

MOD11 43854.935 45843.169 44744.837 453.699

MOD12 44377.233 46303.106 45229.291 448.603

MOD13 47559.731 50055.640 49005.567 606.409

MOD14 54689.069 56883.415 55852.117 501.519

MOD15 42981.929 43933.902 43300.202 219.038

MOD16 42842.028 43843.120 43336.296 251.725

MOD17 43324.205 45164.966 44130.372 429.116

MOD18 47704.689 49868.205 48777.485 620.822

Table 7. Anova results for DED function with
2000 generations

MODs Avg. Differ. DMS Conclusion

1 e 2 -652.451

224.8

The difference is meaninful.

1 e 3 -927.398 The difference is meaninful.
1 e 4 -1235.001 The difference is meaninful.
1 e 5 -3584.477 The difference is meaninful.
1 e 6 -8782.884 The difference is meaninful.
1 e 7 -1169.203 The difference is meaninful.
1 e 8 -1098.470 The difference is meaninful.
1 e 9 -3208.849 The difference is meaninful.
1 e 10 -8987.793 The difference is meaninful.
1 e 11 -1838.080 The difference is meaninful.
1 e 12 -2322.534 The difference is meaninful.
1 e 13 -6098.810 The difference is meaninful.
1 e 14 -12945.360 The difference is meaninful.
1 e 15 -393.445 The difference is meaninful.
1 e 16 -429.540 The difference is meaninful.
1 e 17 -1223.616 The difference is meaninful.
1 e 18 -5870.728 The difference is meaninful.

Table 8. Results Comparision for DED Func-
tion

Approach Best Average

Our Adaptive GA 43033.395 43508.564

Adaptive PSO 43784 43794

Original PSO 45194 46499

Enhanced DE 45800 Not available

Hybrid Harmony Search 43210.95 Not available

MSL 49219.81 Not available

ABC 44046.00 44065.00

DE-SQP 43161 Not available

HPSO 43223.00 43732.00

SPS-DE 43848.511 44345.294

Problem (DE-SQL) (Elaiw et al., 2013), a hybrid PSO
(HPSO) (Zhang et al., 2014), and SPS-DE (Zou et al.,
2018) using a Differential Evolution Algorithm.

Table 8 presents the comparison. The comparison is in
terms of best and average results, even though, some of
the related papers did not present the mean. As we can
observe, our adaptive GA presented better results than all
referred propositions. Therefore, all in all, we consider the
results presented by our adaptive GA very promising.

4.3 Speedup

As stated previously, the MSGA was parallelized using
OpenMP, which is an API for developing multi-thread
applications. Thus, we tested the parallel version using
two, four, and eight threads. The speedup is computed
by Sp = Ts

Tp
, in which Ts is the time executing the

application using one thread and Tp is the time executing
the application in parallel (Alba, 2002). The primary
motivation to use this metric is because Ts is the same
code of the parallel version but using only one thread.

The efficiency is computed by Ef = Sp
np , in which Sp is the

speedup, and np is the number of processes or threads.
Table 9 present the results regarding the speedup and
efficiency.

Concerning efficiency, the best trade-off is using two
threads because cores are well used, reaching a speedup
of 1.829 that is almost the ideal speedup. As expected in

Table 9. Speedup and efficiency of the MSAG
in the optimization of DED

2 threads 4 threads 8 threads

Speedup 1.829 2.635 3.914

Efficiency 0.915 0.659 0.489

parallel applications, the efficiency tends to decrease as
the number of threads increases due to overhead in the
communication between threads. However, a speedup of
3.914 represents that the application can run almost four
times faster using eight threads, which is significant in an
application that demands computationally intensive tasks.

5. CONCLUSIONS

This paper presented a parallel adaptive and self-adaptive
genetic algorithm for solving the DED problem. Results
have shown that the adaptive algorithm overcomes all
combinations of operators for solving the DED problem
using 600 and 2000 generations. The differences between
MSGA and the combination of operators has been demon-
strated meaningful using an ANOVA and a Tukey test. In
terms of parallelism, the algorithm reached a speedup of
3.914 with one crucial characteristic: there was no loss in
the quality of solutions. This means that more processor
units can be added if the users require faster solutions.

Future work includes: a parallel version using C-CUDA in
a General Purpose Graphical Processor Unit (GPGPU);
extension of the code for solving multiobjective prob-
lems, including de the Environmental-Economic Dispatch
(EED); and, hybridizing the Adaptive GA with other
meta-heuristics, such as Differential Evolution and Particle
Swarm Optimization in order to obtain better results.

REFERENCES

Alba, E. (2002). Parallel evolutionary algorithms can
achieve super-linear performance. Information Process-
ing Letters, 82, 7–13.

Alsumait, J., Qasem, M., Sykulski, J., and Al-Othman, A.
(2010). An improved pattern search based algorithm
to solve the dynamic economic dispatch problem with
valve-point effect. Energy Conversion and Management,
51(10), 2062 – 2067.

Balamurugan, R. and Subramanian, S. (2007). An im-
proved differential evolution based dynamic economic
dispatch with nonsmooth fuel cost function. Journal of
Electrical Systems, 3(3), 151–161.

Barros, R.S., Cortes, O.A.C., Lopes, R.F., and Silva, J.C.d.
(2013). A hybrid algorithm for solving the economic
dispatch problem. In 2013 BRICS Congress on Com-
putational Intelligence and 11th Brazilian Congress on
Computational Intelligence, 617–621.

Carvalho, E., Cortes, O.A.C., Costa, J.P., and Vieira,
D. (2017). A parallel adaptive genetic algorithm for
unconstrained multimodal numerical optimization. In
Simpósio Brasileiro de Automação Inteligente.

Chakraborty, P., Roy, G.G., Panigrahi, B.K., Bansal, R.C.,
and Mohapatra, A. (2012). Dynamic economic dispatch
using harmony search algorithm with modified differen-
tial mutation operator. Electrical Engineering, 94(4),
197–205. doi:10.1007/s00202-011-0230-6.

Cortes, O.A.C. and da Silva, J.C. (2019). Unconstrained
numerical optimization using real-coded genetic algo-
rithms: a study case using benchmark functions in r from
scratch. 11(3), 1–11.

da Silva, F.J.M., de Oliveira, A.C., and de M. S. Veras,
R. (2013). Um algoritmo genético paralelo aplicado ao
problema de cobertura de conjuntos. SBSI UFMG.

Eiben, A., Schut, M., and de Wilde, A. (2006). Boosting
genetic algorithms with self-adaptive selection. In IEEE
Congress on Evolutionary Computation, 1534–1589.

Elaiw, A.M., Xia, X., and Shehata, A.M. (2013). Hybrid
de-sqp method for solving combined heat and power
dynamic economic dispatch problem. Mathematical
Problems in Engineering, 1–7.

Hemamalini, S. and Simon, S.P. (2010). Dynamic eco-
nomic dispatch with valve-point effect using maclaurin
series based lagrangian method. Energy Convers. Man-
age, (5), 2212–2219.

Hemamalini, S. and Sishaj, P. (2011). Dynamic economic
dispatch using artificial bee colony algorithm for units
with valve-point effect. Electrical Energy Systems, 21(1),
70–81.

Kumar, C. and Alwarsamy, T. (2011). Dynamic economic
dispatch – a review of solution methodologies. European
Journal of Scientific Research, (4).

Lu, H., Wen, X., Lan, L., An, Y., and Xiao-ping, X.L.
(2015). A selfadaptive genetic algorithm to estimate ja
model parameters considering minor loops. Journal of
Magnetism and Magnetic Materials.

Miranda, R.C., Montevechi, J.A.B., and de Pinho, A.F.
(2015). Development of an adaptive genetic algorithm
for simulation optimization. Acta Scientiarum: Technol-
ogy, 37(3).

Niknam, T. and Golestaneh, F. (2012). Enhanced adaptive
particle swarm optimisation algorithm for dynamic eco-
nomic dispatch of units considering valve-point effects
and ramp rates. IET Generation, Transmission Distri-
bution, 6(5), 424–435. doi:10.1049/iet-gtd.2011.0219.

Pereira-Neto, A., Unsihuay, C., and Saavedra, O.R. (2005).
Efficient evolutionary strategy optimisation procedure
to solve the nonconvex economic dispatch problem with
generator constraints. IEE Proceedings - Generation,
Transmission and Distribution, 152(5), 653–660.

Pessini, E.C. (2003). Algoritmos genéticos paralelos -
uma implementação distribúıda baseada em javaspaces.
Dissertação de Mestrado da Universidade Federal de
Santa Catarina. Orientador: J.Mazzucco Jr.

Xiao, W., Wu, L., Tian, X., and Wang, J. (2015). Ap-
plying a new adaptive genetic algorithm to study the
layout of drilling equipment in semisubmersible drilling
platforms. Mathematical Problems in Engineering.

Zhang, Y., Gong, D.W., Geng, N., and Sun, X.Y. (2014).
Hybrid bare-bones pso for dynamic economic dispatch
with valve-point effects. Applied Soft Computing,
18(Supplement C), 248–260.

Zou, D., Li, S., Kong, X., Ouyang, H., and Li, Z. (2018).
Solving the dynamic economic dispatch by a memory-
based global differential evolution and a repair technique
of constraint handling. Energy, 147, 59 – 80.

