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Abstract: This paper proposes a solution for fault detection in power systems using machine
learning algorithms, namely Random Forest and Support Vector Machines. A Phasor Mea-
surment Unit (PMU) network is emulated in the IEEE 39-Bus New England Power System,
and several fault types are simulated, including three-phase to ground, two-phase, two-phase
to ground and single-phase to ground as well as line and load contingencies. The magnitude
and phase of voltage and current, alongside with frequency, are measured from each PMU,
and used as input to the machine learning models. Two scenarios were contemplated in this
work, the first with a network of 14 PMUs, and the second with half that number, in order
to verify the robustness of the aforementioned methods in relation to the number of PMUs
present in the system. A Feature Importance analysis is also made, via Permutation Feature
Importance, indicating which features contributed the most to the classification task at hand.
Both algorithms reached a performance of around 93% accuracy and 0.94 F1-Score and the
feature analysis method seems to be suitable for systemic visibility analysis. Future works are
also discussed in this paper, briefly elaborating on the possibilities and immediate impacts of
the addition of a feature engineering stage in this problem and on the application of the used
algorithms on problems such as fault identification and location.

Keywords: Support Vector Machine, Random Forest, Fault Detection, Phasor Measurment
Units, Feature Importance

1. INTRODUCTION

Electrical faults can happen anywhere and anytime through-
out the electric grid, impacting the power system as a
whole and hindering the delivery of electricity to customers
(Ajenikoko and Sangotola, 2014). In order to increase a
system’s sustainability and reliability, it’s necessary to cap-
ture the real-time dynamics with high enough resolution
to detect dynamic events such as faults. The synchronous
phasor measurement unit (PMU) technology comes as a
solution to this problem, monitoring the voltages, currents
and frequencies of distinct buses with sufficient sampling
rates to do so (Phadke, 1993). The measurements are
made synchronously, even if the buses are geographically
distant from each other, composing the so-called Wide
Area Measurement Systems (WAMS). With a WAMS, the
overall visibility, reliability and control of a power system
can be improved (Phadke et al., 2016).

However, PMUs generate a large quantity of data in a
short time span, rendering real-time observation by human
operators unfeasible. Thus, the application of some kind
of computational technique prior to the presentation of
the data to the operator becomes necessary. The type of
technique may change accordingly to one’s goal. Jiang
et al. (2012) propose a method for fault detection and
location method based on the injected fault current and
the estimated fault distance. Das et al. (2017) tackled

this task with a different approach, using only the voltage
measurements and the system’s admittance matrix.

A strong trend of artificial intelligence techniques for fault
detection and location has been noted in recent years,
since they are more easily adaptable and more robust
to transmission line parameters and fault type. Out of
them, Artificial Neural Networks (ANN) and Support
Vector Machines (SVMs) are the most used, and achieve
good performance when coupled with a feature extraction
procedure (Chen et al., 2016; Rivas and Abrão, 2020).
Zhang et al. (2011) used pattern recognition and linear
discrimination to detect and locate faults, and extract
interpretative decision rules based on voltage and current
measurements. Gopakumar et al. (2015) used SVMs for
the same tasks, classifying the Equivalent Voltage Phasor
Angle, estimated using Clark and Park Transform followed
by the Fourier Transform. Barreto et al. (2021) studied the
removal of a feature extraction step and applying an ANN
directly to PMU measurements, being able to successively
detect faults and identify their types in the IEEE 39-Bus
New England Power System.

This paper serves as a continuation of the research con-
ducted by Barreto et al. (2021). Here, machine learning al-
gorithms, such as SVMs and Random Forests will be used
for fault detection, instead of ANNs in the aforementioned
work. An additional Feature Importance analysis is made
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Figure 1. New England Power System Diagram

with Permutation Feature Importance, to determine which
were the most important electrical quantities or the most
critical buses for the classification. These analyses will be
made for two scenarios: The first with 14 PMUs installed
in the aforementioned power system, and then only seven,
in order to verify the robustness of these techniques in
relation to the number of PMUs present in a system.

This paper is organized as follows: Section 2 presents
details about the power system used in this work, the
IEEE-39 Bus New England Power System, how the PMU
networks were emulated in it, and the structure of the
resulting dataset. In section 3 encompasses all machine
learning techniques, the algorithms, evaluation metrics,
and feature importance assessment methods. Section 4
details how these techniques were applied and the obtained
results, and finally section 5 presents a conclusion and
perspectives for future works.

2. IEEE 39-BUS NEW ENGLAND POWER SYSTEM

The New England Power System, operated by the ISO
New England company, encompasses six states in the New
England area of the United States of America, providing
energy for about 15 million inhabitants, including a major
metropolis in Boston. When operating under normal con-
ditions, the system presents 39 buses, 10 generators and 46
transmission lines, with a total consumption of around 6,3
MW. The system’s diagram can be seen in figure 1. Ever
since its adoption as a standard IEEE system, a wide range
of studies were made in order to better characterize its
dynamic behaviour, some of which can be found in Hiskens
(2013) and Law (2007).

2.1 PMU Network Emulation

The PMU-based WAMS for the New England Power
System (NEPS) is emulated and the PMU placement was
decided after a line contingency study, identifying the
most sensible buses of each area.Therefore, these, alongside
generator buses (whose monitoring is essential for the
operation of the system and the reaction to faults and
outages) were selected as monitored buses, as described in
Barreto et al. (2021). In the first scenario, emulations were
made with PMUs at buses 4, 8, 16, 28, 31 to 39, totalling 14
PMUs. Afterwards, this number is halved by reducing the
number of generators monitored, limiting the monitoring

to buses 4, 8, 16, 28, 31, 33, and 39. The first 4 buses have
large loads allocated their immediate surroundings, are
located in different areas and/or interconnect said areas.

Each PMU continuosly measures both magnitude and
phase of voltage and current, as well as frequency of
the bus the unit is installed to. Measurement noise is
modelled after a Gaussian distribution with zero mean and
signal-to-noise ration of 45 dB, as characterized in Brown
et al. (2016), rendering the simulations more truthful to a
real application. Proceeding to the simulations themselves,
seven distinct situations were contemplated: Short-circuits
events (3ϕ, 2ϕ, 2ϕ—G and ϕ—G), load contingency, line
contingency, and no dynamic events (normal operation),
in all 39 buses and transmission lines. Each simulation
runs for a duration of eight seconds, with a sampling
rate of 60 Samples/s, totaling 480 samples per simulation.
Each sample contains every variable measured by the
aforementioned PMUs. These were later downsampled by
a factor of 12, resulting in a sampling rate of 5 Samples/s
and 96 samples/simulation to reduce computational effort
while maintaining the main characteristics of system’s
dynamics.

2.2 Dataset Structure

PMU emulations were made based on the IEEE NEPS
one-line diagram. The data is organized in such way
that a given column represents one of the five variables
measured by the PMUs, and each line corresponds to
one sample of one simulation. Since the scope of this
work implies binary classifications identifying whether the
system is operating under normal condition (index 0)
or under anomalies (index 1), a single Operation Index
column was added after all the variable columns. Table 1
illustrates the overall structure of the data set. For each
PMU present in the simulation, the five displayed columns
will be repeated, meaning that in the first scenario, the
data set has 70 variable columns, while the second has only
half, 35 variables, all of them being normalized between 0
and 1 column-wise. Since all faults were present in the
same dataset, this normalization does not result in the
loss of information on the severity of the fault. After
normalization, the samples are also randomized - meaning
that not necessarily two consecutive samples come from
the same simulation and/or are ordered. These variables
will be used as inputs for the machine learning algorithms,
while the operation index serves as the labels for each
sample.

Table 1. Dataset structure

Bus
Voltage

Magnitude

Bus
Voltage
Angle

Bus
Current

Magnitude

Bus
Current
Angle

Frequency
Operation

Index

96 Samples/Simulation
Columns are repeated for each PMU

0 - Normal
Operation

1 - Anomalous
Operation

3. MACHINE LEARNING TECHNIQUES

This sections describes the two machine learning algo-
rithms used in this paper, Random Forest and Support
Vector Machines, and how their parameters were tuned.
Information concerning the evaluation metrics and the
Feature Permutation Importance is also provided.
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3.1 Random Forest

The Random Forest algorithm consists of multiple decision
trees, in order to reduce the variance when in comparison
to an individual tree. Normally, a Decision Tree would
perform successive binary partitions on the data set D
of size N , based on an impurity criteria, for instance the
Gini Index, until a certain stop criteria is reached, be it
a pure node, a node containing only samples of a certain
class, or when the number of samples on the node is less
than a threshold defined by the user Hastie et al. (2009).

The bagging technique generates, from the data set D, n
subsets Di, by randomly selecting samples of the original
data set with replacement, ensuring that each subset Di is
different from each other. For each subset, a decision tree
will be grown, and in each, and in each node of this tree,
a reduced number of m features are randomly chosen out
of the available M will be used. For classification problem,
the chosen number of features at each decision split of
each tree is usually m =

√
M . The Random Forest is

an aggregation of the n Decision Trees generated on the
available subsets, and it’s prediction is based on a plurality
vote of all of them Breiman (2001).

Due to the replacement of samples during the bagging pro-
cess, it’s estimated that around one third of the total sam-
ples are not viewed during the training process (Breiman,
2001). These are the so-called Out-Of-Bag (OOB) samples,
and are a common subset used to assess the performance
of the Random Forest model, specially for hyperparameter
selection. This was the selected approach for the choice
of the number of decision trees n. Classification error (1
- Accuracy), was measured for Random Forest models
containing one to 250 trees. The number of trees n is
chosen when there increasing n does not decrease the OOB
classification error. For this reason, an number of n = 100
was chosen.

3.2 Support Vector Machines

Support Vector Machines uses hyperplanes decision bound-
aries to linearly separate samples belonging to different
classes. The optimal separating hyperplane is found on the
max distance of the two closest points of different classes,
the support vectors, the ones that define the position of
the separator (Cortes and Vapnik, 1995). However, perfect
linearly separable data is very hardly found. In this situa-
tion, the input samples are mapped to a sufficiently higher
dimension until they become linearly separable. Although
this seems computationally expensive, it is possible to
represent the transformed feature vectors involving the
input features with inner products, represented by a kernel
function K.

In this work, the parametrization of the SVM was limited
to the choice of the kernel function K, since it’s the
parameter with the most effect on the resulting model’s
performance. The choice was made based on the accuracy
and F1-Score of each kernel function, with 70% of the data
set and the remaining 30% used for testing. For higher
complexity functions to be chosen, they must provide have
a non-negligible impact on the metrics, since they also
increase the computational burden and overall likely-hood
of an over-fitted model. Seven different functions were

tested: Linear, Gaussian, and Polynomials with degree two
to six.

Table 2 shows the results for each of these functions. In the
14 PMUs case, a significant drop in performance is noted
for the sixth degree polynomial, indicating that the model
is over-fitted at this point. The fifth degree polynomial
performed better than the fourth degree, but the increase
in accuracy is under 0.2%. The same happens with the
F1-Score Because of this, the fourth degree polynomial
was chosen as the kernel function for this case. A similar
behaviour is observed for the 7 PMU scenario, where
the increase of performance is negligible after the fourth
degree polynomial, of under 0.2% accuracy. For the same
reason as the previous case, the fourth degree polynomial
is chosen.

Table 2. SVM performance with different ker-
nel functions

14 PMU 7 PMU
Accuracy (%) F1-Score Accuracy (%) F1-Score

Linear 89.44 0.9223 89.95 0.9279
Gaussian 89.96 0.9269 90.00 0.9326

Polynomial

Degree 2 90.81 0.9358 90.76 0.9364
Degree 3 91.59 0.9425 91.27 0.9406
Degree 4 92.08 0.9458 91.85 0.9446
Degree 5 92.24 0.9464 91.93 0.9472
Degree 6 71.89 0.7821 92.03 0.9494

3.3 Evaluation Metrics

Most of the most common evaluation metrics of machine
learning algorithms can be extracted via the confusion
matrix, a way to visually inspect the performance of a
model, where each row represents the instances in an
actual class while each column represents the instances
in a predicted classes. An example of a confusion matrix
can be seen in figure 2.

Figure 2. Example of a generic confusion matrix

Accuracy, F1-Score, Precision, and Recall were the chosen
metrics, and can all be extracted of the confusion matrix.
Accuracy (ACC) is a ratio between correctly predicted
observations, both true positives (TP) and true negatives
(TN), to the total observations. This metric however does
not fully grasp the underlying performance of a model,
specially in the case of unbalanced data, or when the
classifier’s predictions favors one class over the other. In
this case, one should also analyse precision (P), the ratio
of correctly predicted observations, to the total positive
predicted observations, true and false positives, recall
(R), the ratio of correctly predicted observations to all
of predictions of a certain class, true positives and false
negatives. F1-Score, their harmonic mean, can also be
calculated as shown in equation 1.

F1 =
2 · P ·R
P +R

(1)
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Values of F1-Score closer to 1 indicate a good balance of
class prediction, meaning that no class is favored by the
model’s prediction.

3.4 Permutation Feature Importance

Analysing feature importance is important if one is in-
terested on gather more insights from the available data,
specially which features are more or less discriminant or
the ones that contributed the most to the solution of the
problem at hand. One technique to do so is the Permuta-
tion Feature Importance, as proposed by Breiman (2001),
that can be used on any fitted estimator. By randomly
shuffling one of the estimators while maintaining the others
and the target variable, breaking the relation between the
feature and the target, one can measure the decrease of
performance of a model. This procedure is repeated for
each estimators, and the ones that decrease the most
the performance of the model are said to be the most
important for this problem.

In this paper, the selected score is accuracy. The original
accuracy of the model ACCorig is calculated, and for the
shuffling of each feature j, the accuracy ACCpermj is
calculated. The FI value assigned to the feature j will be:

FIj = ACCorig −ACCpermj (2)

In the case of bagged classifiers, such as Random Forests,
this metric is calculated for each individual predictor. The
FI estimate in this case will be computed with respect to
equation 3:

FIj =
dj
σj

(3)

where dl is the mean of the FI values over all classifiers, and
σj the standard deviation. It’s important to note however
that this method does not reflect to the intrinsic predictive
value of a feature by itself but how important this feature
is for a particular model, since it carries all possible bias
the model has.

4. APPLICATION AND RESULTS

Having defined the hyperparameters of the algorithms, the
evaluation metrics and the feature importance assessment
methods, it is possible to train and validate the models on
the IEEE 39-bus emulated WAMS dataset.

4.1 K-Fold Cross Validation

In order to assure generalization and to validate the
robustness of the algorithms in regards to the training
data, K-Fold Cross Validation is used. The dataset is
randomly divided into K different subsets, and K − 1 will
be used for the training of the model, and the remaining
one for validation. This is then repeated until every subset
is used for validation, where the chosen metrics will be
computed. For this work, the chosen number of folds is
K = 10. This procedure is made on both datasets, the
one resulting from the 14 PMUs scenario and the one with
seven.

4.2 Performance Evaluation

Model’s performance are displayed here in the form of a
table, containing two columns, each corresponding to a
simulated dataset. The lines corresponds to the chosen
metrics, and results are presented in the form of mean
± std, the mean and standard deviation over the 10 folds
respectively.

Feature Importance is analysed via graphs, containing the
FI estimates on the y-axis and their corresponding features
on the x-axis. For the sake of good visibility, only the
20 most important features for each model and for each
scenario is shown.

Table 3 and 4 show the evaluation metrics for the random
forest and the SVM models respectively. Both these algo-
rithms yielded satisfactory results, of accuracy over 90%
and F1-Scores of above 0.94, in both simulated datasets.
Random Forest performed slightly better, reaching around
93% accuracy, 0.95 F1-Scores and 0,91 recall, all of them
with non significant standard deviation.

Table 3. Performance of the Random Forest
Models

10-Fold Cross Validation
14 PMU 7 PMU

Accuracy 92.98 ± .68 92.91 ± 0.2
F1-Score 0.953 ± 0.005 0.953 ± 0.002
Precision 0.999 ± 0.0006 0.999 ± 0.0006
Recall 0.911 ± 0.008 0.911 ± 0.004

Table 4. Performance of the SVM models

10-Fold Cross Validation
14 PMU 7 PMU

Accuracy 92.0 ± 0.69 91.72 ± 0.31
F1-Score 0.943 ± 0.003 0.94 ± 0.007
Precision 1 ± 0 1 ± 0
Recall 0.893 ± 0.006 0.894 ± 0.004

It’s also interesting to note that both models have very
high precision scores, the SVM having exactly 1, and
the Random Forest near that value. This means that
likelihood of false positives, a situation where the models
predict a fault while the system is operating under normal
conditions, is extremely low. The SVM model specifically
never predicted a fault while under normal operation.

Evaluation scores did not drop significantly in the second
scenario, even though the system had only half the number
of PMUs. In fact, lower levels of standard deviation were
observed, indicating that these methods are not only have
a degree of robustness in regards to the number of PMUs
present in a power system, but also that less PMUs may
reduce the overall bias of the training data used. One
reason as to why recall levels are not higher, is the fact
that some simulated faults present post-fault data that
are very similar to normal operation levels.

4.3 Feature Importance Analysis

Figures 3 to 6 show the FI estimates, calculated with equa-
tion 2 for the SVM models and equation 3 for the Random
Forest ones. Features here are represent by two letters and
a number: C corresponds to current, V to voltage, M to
magnitude, A to Amplitude and the number to the bus
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on which this variable was measured. For instance, fea-
ture CM16 corresponds to the current magnitude variable
measured in bus 16.

As seen in figure 3 out of the 20 most important features,
for the Random Forest, in the dataset with 14 PMUs, only
seven of them were from generator buses. The remaining
ones are distributed between buses with large loads allo-
cated to them, with the most present one being the bus
28.

Figure 3. FI Estimates for Random Forest with 7 PMUs

A similar event is observed in figure 4, in the dataset
containing only 7 PMUs, where only features from gen-
erator buses were not ranked amongst the most important
feature. Out of these, three belonged to bus 31, the ground
bus. By viewing the remaining 15, the most important
features belonged to buses 8, 16, and 4, in that order,
indicating that these buses were crucial for the correct
predictions made by the model.

Here, the features presented an wider range of mean FI
values, ranging from 0.6 to 1.5, in contrast with the
previous scenario where the FI values ranged from 0.7 to
1.1, showing that no feature severely outweighed others
in the importance criteria. Moving to the SVM models,

Figure 4. FI Estimates for Random Forest with 14 PMUs

in the first data set of 14 PMUs, shown in figure 5, most
of the important features belonged to generators buses,
more specific, buses 31,32,35, and 38. Similarly to the

Random Forest model for this data set, the range of FI
values is low, going from 0.04 to 0.08. Note that, since
the FI estimates from bagged and non bagged classifiers
are calculated differently, their numerical values should be
compared directly.

Figure 5. FI Estimates SVM with 14 PMUs

Upon viewing figure 6, it is clear that there are 15 features
significantly more important to the classification, having
FI values about four times greater than the remaining
ones. All of them belong to only four buses, 8, 16, 31,
and 33. Four out of the five most import features belong
to bus 31, the ground bus. Bus 16 was the second most
important feature in this case.

Figure 6. FI Estimates SVM with 7 PMUs

The proposed feature importance analysis method seems
more suited to extract the most critical buses for the
classification at hand, and not determining a specific
electrical magnitude. Frequency estimations however, were
the magnitude that appeared the least in the top 20 most
important features in every scenario, likely due to the that
the faults contemplated in the emulations have a higher
impact on voltage and current.

Overall, the bus that contributed the most for fault detec-
tion in this paper was bus 31, the ground bus. Measures
from buses 8 and 16 were the most important for both
machine learning models when the system had only 7
PMUs. The first one, had the largest load allocated to it,
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and the second interconnects the three geographical areas
of the system. This indicates that this method may be
suited for a system visibility or sensibility analysis.

5. CONCLUSION

In this paper, a new method of fault detection in power
systems using Random Forest and Support Vector Ma-
chines is proposed. Electrical faults emulated on the IEEE
39-Bus New England Power System previously found in
Barreto et al. (2021) was used, without the need of pre-
fault data. Two scenarios were contemplated in this work,
the first with 14 PMUs and the second with only seven, and
the magnitude and angle from both voltage and current,
as well as the estimated frequency, were measured from
each of them. Both machine learning algorithms presented
satisfactory results, reaching 93% of global accuracy and a
F1-Score of 0.95, for both scenarios, indicating that these
techniques are robust to decreasing the number of PMUs
present in the system. This methods have an extremely low
likelihood of presenting false alarms to the operator, with
SVM never having incorrectly predicted a normal situation
as an anomalous one.

A feature importance analysis is also proposed, using the
Permutation Feature Importance method, determining the
most important PMU measurement, and from which bus
it was extracted, for the detection of a given fault. This
analysis provides useful information on which buses were
more affected by a certain fault, regardless of the nature of
the fault, indicating that this method may be suitable for
systemic visibility or analysis, or even PMU placement.

The methods here presented go along the financial con-
straints of PMU network installation, since they work with
a reduced number of PMUs. They can also be used in
real time operation, and can serve of great help to system
operators, presenting them with a fast diagnosis of the
state of the system and possibly aiding them to react faster
to faults.

Future developments in this area can consist of adding a
feature engineering stage, considering the temporal nature
of the data at hand. This could render the prediction time
slower, but could also increase performance scores. One
could also consider applying these algorithms for fault
type detection, or even fault localization, even tough the
proposed PMU network is not implemented on every bus
and line of the power system.
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