
SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999 59

AN OBJECT-ORIENTED ENVIRONMENT FOR INTELLIGENT CONTROL
ENGINEERING

Wagner C. Amaral+ , R. M. Nazzetta+ and Lúcia Valéria R. Arruda++

+ School of Electrical and Computer Engineering - FEEC / DCA
State University of Campinas - UNICAMP

P. O. Box 6101
13081-970, Campinas SP, Brazil

tel: 55-92-397074
fax: 55-92-391395

e-mail: wagner@dca.fee.unicamp.br

++ Federal Center of Education in Technology - CEFET - PR
Av. 7 de Setembro, 3165

80230 - 901, Curitiba PR, Brazil
tel: 55-41-3224544

fax: 55-412-2245170
E-mail: arruda@cpgei.cefetpr.br

Abstract Most industrial processes have several particular
characteristics, system and performance requirements, which
may not be obtained by classical control methodologies. In this
case advanced control strategies must be considered. In face of
different options, simulation using software packages is a
common practice. In this paper, a simulation environment
aimed at consistently and uniformly integrating different
software resources is proposed. It is based on object-oriented
approach implemented into a knowledge-based shell. Full
potential of knowledge based systems can be used for
intelligent decision. An application example is described to
illustrate the abilities of the proposed environment. This
example is a prototype for simulation and control of a
multivariable process: a heavy oil fractionary column.

Keywords Object-oriented approach, knowledge-based
system, hybrid knowledge representation, expert CAD,
intelligent control design, system identification, industrial
process.

Resumo - Alguns processos industriais são caracterizados por
requisitos de ambiente e desempenho que não podem ser
tratados através de metodologias clássicas de controle. Nestes
casos, é usual a utilização de pacotes de simulação, a fim de se
testar estratégias avançadas de controle, antes de aplicá-las em
tais processos.

Neste artigo, propõe-se um ambiente de simulação e projeto
que integra de maneira consistente e uniforme vários recursos
de software que facilitam o desenvolvimento de sistemas
avançados de controle. Este ambiente é baseado numa

abordagem orientada a objeto e implementado dentro de um
núcleo baseado em conhecimento, suportando por isso decisões
inteligentes. Um exemplo aplicativo (protótipo para simulação
e controle de uma coluna fracionadora de óleo pesado) é
descrito, a fim de ilustrar as potencialidades do ambiente
proposto.

Palavras-chave: Orientação a objeto, sistema baseado em
conhecimento, CAD, controle inteligente, controle adaptativo,
identificação, processo industrial.

1 INTRODUCTION
Industrial process control commonly requires the
implementation of complex systems in which controllers must
satisfy requirements such as stability and robustness without
system performance degradation. In this case advanced control
methodologies must be considered and the tasks of problem
formulation, model validation, design methodology choice,
closed-loop execution and supervision should be performed.
Intelligent control is coming up as promising scheme. The
hybrid approaches including procedural and heuristic control
actions are considered.

In face of different options and a large number of
computational algorithms, testing in simulation environments
is a necessity. Simulation can be used to validate a specific
approach before application to a process. Computational
support, such as CAD systems, is an essential tool for control
engineering tasks. Today, intelligent CAD systems are also
available. Among them, a diversity of system architectures is
noted (Taylor et alii,1990; Amaral et alii,1992; Pang, 1992;
Baker et alii,1993). These systems are primarily aimed at
environments for system development. The capability to adapt

Artigo submetido em 02/09/97
1a. Revisão em 26/02/98; 2a. Revisão em 03/06/98;
Aceito sob recomendação do Ed. Cons. Prof.Dr Ricardo Tanscheit

60 SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999

to the user is fundamental. In many systems, the overall
package functionalities are always independently present if, for
instance, the user needs only a small set of the available tools.
This is a serious drawback because the resulting software is
often large, inefficient, and difficult to use.

Moreover, architectures used by environments for control
systems design are typically composed by three basic parts:

• a set of tools implementing the tasks of simulation, control,
analysis;

• an interface to make task specification more suitable to the
end-user;

• a main program to coordinate the tools and interface
execution.

In this case, a set of tools is usually implemented by programs
with a structure that maps system tasks as a sequence of user
actions and tool calls. This information is embedded in main
program code lines. Every future modification (inclusion of
new tools, new user options or system reduction) modifies the
main program structure. If modifications are not properly
handled, the resulting software is inefficient.

In this paper a system architecture that structures the main
program in a more suitable way for modification and evolution
is proposed. This architecture is based on the object-oriented
approach, with a graphical representation of the information
flow derived from the main program structure. A knowledge-
based system is used to manage the software resources and
make user-interaction friendly. The final environment
supporting intelligent design and supervision of control system
is developed to satisfy the following requirements:

• a modular and flexible environment;

• interaction with available control tools;

• easy and uniform user interaction;

• knowledge representation capability.

But why object-oriented approach?
Object-oriented is a class of computing scheme in which data
and associated procedures are encapsulated to form an object
(Peterson, 1990). An object is a computational structure similar
to a frame that contains both data and related procedures
(Dechampeaux et alli, 1993). Therefore, objects provide a
coarser level of granularity for program decomposition than is
available by using data or procedures. The key concepts,
collections of data and related operations, should be treated as
a single entity rather than separate things.

This approach has gained considerable interest in the last few
years, due to the following characteristics (Peterson, 1990):

• In traditional software development, procedures and data
structures are considered as independent entities while in
object-oriented systems a single type of entity, the object,
represents both;

• Unlike data, an object can act. It can determine what to do
when a message is received and different objects can cause
different actions for the same message;

• Many different objects may be nearly identical in their
capabilities. These objects can be collectively unified by
defining a class. Moreover, classes may be organized as a
tree structure, with the parent of each class being its
superclass. Each class inherits the capabilities from its
superclass (and all ancestors of this superclass).

Advantages of using object-oriented computing include (Coard
e Yourdon, 1991):

• information hiding and data abstraction increase reliability
and help decoupling procedural and representational
specification from implementation;

• dynamic binding increases flexibility by permitting the
addition of new classes of objects without modification of
existing code;

• inheritance coupled with dynamic binding permit code to
be reused, therefore it enhances code "factoring". Code
factoring means that a code to perform a particular task is
found in only one place and this simplifies software
maintenance.

A disadvantage of object-oriented approach, often debated, is
the run-time cost of the dynamic binding mechanism. A
message-send takes more time than a straight function call.

The architecture proposed herein is undergoing implementation
in a Sun SPARC station based network using G2, a real-time
expert system shell, and MATLAB package. It is an evolution
of those proposed in (Arruda et alii,1994a; Arruda et
alii,1994b). In fact, the environment described in this paper is
based on the same ideas proposed in these former papers. The
difference is a new module for control supervision with some
special toolboxes for analysis, help and knowledge acquisition.
With these toolboxes a non-expert user can build complex
applications in adaptive control design and develop intelligent
solutions for them. The final environment is aimed at
education, research and development purposes.

The paper is organized as follows. Section two introduces a
formal description of system architecture. Section three
describes an implementation of system architecture using G2.
A presentation of toolboxes for control engineering available in
the environment is in section four. The methodology to include
new toolboxes is described in section five. Section six gives an
application example using MATLAB as an engine machine.
Finally, section seven presents some conclusions.

2 SYSTEM ARCHITECTURE
The proposed architecture models the main program through a
set of objects, a connection diagram and a scheduler as shown
in figure 1. Objects encapsulate algorithm models while the
connection diagram represents the flow information between
objects. The scheduler translates the connection diagram
associated with an object definition into a suitable sequence of
execution using various software resources. These resources
are part of the object definition to which they return their
results. The user acts on the system through an user interface,
which is a part of the object definition and the connection
diagram. It provides user interaction with the software
resources and can be used to modify the information flow
among objects. The system also has a logical integer clock
representing the sampling time interval. At each time interval,
the scheduler searches for an algorithm execution.

SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999 61

C O N N E C T IO N
D IA G R A M

S C H E D U LE R

O B JE C T D E FIN ITIO N

U S E R IN T E R FA C E

S U B R O U TIN E S M A T H E M A T IC A L
T O O LS

LIB R A R IES

M A IN P R O G R A M

E X E C U T IO N

M O D E L

T O O LS
O TH E R

LO G IC A L

C LO C K

Figure 1 - System architecture.

Object definition
An object models an algorithm with the following attributes:

• status : algorithm status (see scheduler);

• time_increment : time interval for algorithm execution;

• last_update : last time that the algorithm was executed;

• input : algorithm input data;

• output : algorithm output data;

• parameters : parameters to adjust algorithm behavior;

• user_interface_resources: algorithm interface objects to
user interaction.

Each object is associated with a behavior, implemented by
various integrated software resources. For example, an object
may have a procedural behavior implemented by means of a
specific subroutine, a mathematical tool or a library function.
During an execution, if an algorithm must be executed, its
associated object receives an executing-message from
scheduler. Then the data related in input attribute are collected,
the algorithm code runs and the variables in output attribute are
updated.

Connection diagram
The connection diagram establishes the information flow
between algorithms. It can represent processes (plant),
controllers, or both as shown in figure 2. The connection
diagram is a graphical representation of the dependencies
among algorithm procedures, i. e., a visual representation of
how the algorithm procedures depend on each other. This
representation can be easily and consistently manipulated to
create, modify or destroy relations between objects.

Scheduler
The scheduler provides control mechanisms to translate the
information contained in the connection diagram and the object
definition into a suitable sequence of software resource calls.
These control mechanisms are designed to provide complete
independence from algorithm details. At the scheduler level, an
algorithm is viewed as a processing cell that collects input data,
returns output data, and is inserted in a context of
dependencies, i.e. it depends on the other algorithm results.

This level of abstraction allows the use of several algorithms in
a uniform and distributed way. The scheduler sets different
algorithm status and uses a set of rules for status transition, as
shown in figure 3.

OK

CHECKING

POST-WAITING

PRE-WAITING

COMPLETE

ERROR EXECUTING

HISTORY

Figure 3 - Algorithm status and status transitions.

The status definition is:

• OK: the input and output algorithm data have valid values
until the next algorithm execution time;

• CHECKING: the algorithm must be executed in the actual
time interval and the scheduler is checking for
dependencies on other algorithms;

• PRE(POST)-WAITING: there are not enough conditions to
execute an algorithm and it must wait;

• HISTORY: all algorithms are waiting for executing
conditions but any event can change this situation. This
deadlock situation can occur in a connection diagram with
feedback;

• EXECUTING: an algorithm has collected input data,
started execution of the associated code, and is waiting for
results;

• COMPLETE: the algorithm has received the results;

• ERROR: the algorithm did not run in the same time interval
(this must indicate inconsistent information flow).

The set of rules defining status transition is derived (for each
algorithm A contained in the connection diagram) by analysis
of the necessary conditions for status change. For instance:

• OK→CHECKING: time_increment and last_update of A
define the execution of A in actual time interval;

• CHECKING→PRE-WAITING: an algorithm connected to
the input of A must be executed before;

SUPERVISOR

PROCESSCONTROLLER

CONNECTION DIAGRAM

outputset-point control

CONTROLLER object SUPERVISOR object PROCESS object

w

y

u

p

u y

p

u y

Figure 2 - Connection diagrams and their objects.

62 SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999

• PRE(POST)-WAITING→CHECKING: the status of an
algorithm connected to either input or output of A was set
to OK;

• COMPLETE→OK: A has run successfully in the same
time interval.

3 G2 SYSTEM IMPLEMENTATION
The Real-Time Expert System G2 (Gensym, 1992) is a shell
for knowledge-based system design. It was chosen as design
tool for implementing the architecture presented in last section
due to the following features:

• hybrid knowledge representation: object-oriented, rule-
based and procedural formalisms;

• communication interface with external programs;

• powerful user interface and debugging facilities;

• incremental and modular design;

• system documentation facilities.

The architecture implementation in G2 is shown in figure 4.
The main program model was entirely implemented in G2
using its inference machine to construct the scheduler block
and to provide global coordination. Algorithm codes are
distributed through many software running at the same or
remote G2 machine in a network. The GSI package (G2
Standard Interface) is used to access external software and to
perform suitable routing of G2 sends and requests.

USER INTERFACE

INFERENCE

ENGINE

INFORMATION FLOW ROUTING

SUBROTINES MATHEMATICAL

PACKAGES

LIBRARIES

G2

EXTERNAL

ALGORITHMS

WORLD

CONNECTION

DIAGRAM

OBJECT

DEFINITION

MAIN PROGRAM
MODEL

Figure 4 - Architecture implementation in G2.

The implementation of this system is under execution in a
modular fashion. This is useful in incremental system design,
because developers can easily introduce or reduce system
features. The modular architecture is shown in figure 5. In this
figure TOP LEVEL module represents the final application, i.e.
the system itself. TOOL modules are specified by the
developer and contain specific tools for tasks as simulation,
control or analysis. Dotted lines means that certain modules
may or may not be present in the final application.
INTERFACE module provides the elements to support
consistent user interface development. Finally, the
SCHEDULER module defines the algorithm class and contains
knowledge to implement the scheduler policy.

Algorithm class definition
The algorithm class attributes for corresponding objects are
status, time_increment and last_update. Every algorithm object
defined by the developer is a sub-class of an algorithm class
and may have particular capabilities (as input, output,

parameters and user_interface_resources). This warrants
proper scheduler functioning, providing the flexibility to
accommodate particular algorithm features.

Scheduler rules
The scheduler policy was implemented by four rules; one for
each main status, and four procedures - as shown in figure 6.
Rules deal with status transitions while procedures take actions
such as check for attribute condition and set status. Rules are
fired by forward chaining after algorithm status change. The
last rule and procedure have a special role: when the scheduler
sets algorithm status to EXECUTING it gives control to the
algorithm, enabling the execution of actions programmed at
algorithm level. The end of execution is signed by setting the
algorithm status to COMPLETE, returning control to the
scheduler. While an algorithm is running, the inference engine
maintains the scheduler policy over other objects.

Logical clock
The dynamics of status transition is taken into account by a
logical clock. It is implemented by a pair rule-procedure as
described in figure 7. For each clock update, each algorithm in
the connection diagram is tracked and status transition started.
Clock update is either done automatically by the inference
engine in normal mode or manually (step by step) in debug
mode.

TOP LEVEL
MODULE

INTERFACE
MODULE

SCHEDULER
MODULE

TOOL
MODULE

TOOL
MODULE

TOOL
MODUL

TOOL
MODULE

Figure 5 - Modular system implementation

Figure 6 - Scheduler rules and procedures.

SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999 63

4 TOOL MODULES FOR CONTROL
ENGINEERING

Presently there are four general toolboxes in our environment.
These toolboxes gather functions related to the main tasks in
control engineering: simulation, identification, control and
supervision.

The simulation module gathers all implemented process
available to the users. There is also a specific tool to read any
process written by the user. These users process can be coded
in “C” language or they can be an “m-file” developed in
MATLAB or SIMULINK.

The identification toolbox is formed by many modules, which
implement the tasks related to system modeling. The tools can
be a single procedure, a knowledge base, an artificial neural
network or a fuzzy method. The identification modules and the
corresponding tools included in our environments are:

• Data processing: Square root compensation for signals
acquired directly from different sensors; graphical
visualization and signal editing, spectral analysis via FFT,
data filtering, etc.

• Model structure determination: The general approach
adopted for process identification is based on the ARMAX
model. The following procedures are available: determinant
ratio; instrumental determinant ratio; Akaike information
criterion; F-test.

• Parameter estimation: There are several recursive
parameter estimation methods available, including the
extended least squares, the instrumental variable, Kalman
filtering, standard least squares, etc. Some methods to
identify a set in the parametric space are also provided.

• Model validation: This module contains a set of rulebases
performing tests based on the loss function behavior,
prediction error analysis, and correlation analysis.

From the environment philosophy, it is worth to note that any
procedure or rulebase in a sub-module can use a function in
another sub-module. For instance, the F-test procedure in the
Model structure sub-module is used by Loss-function rules at
Model validation sub-module.

Like the identification toolbox, the Control module is formed
by some modules that implement the tasks related to control
system. The following tools are available:

• Controller configuration: To select the most appropriate
controller and its parameters, the configuration tasks
consider process model characteristics such as order, poles
and zeros provided by identification tools and the control
requirements specified by the user. Some available
functions are selection of criteria performance; selection of
initial controller parameters; and pre-identification
analysis.

• Control Methods: PID controller, generalized minimum
variance, generalized predictive controller, dynamic matrix
controller, etc.

• Control Design: This module contains rulebases and
procedures to modify the controller parameters in order to
achieve the user specified requirements.

• Performance criteria determination: The procedures in
this module are charged to compute the criteria to be used
by the supervisor module to analyze the performance of
closed-loop system: unit-step response, impulse response,
sensitivity function, rise time, overshoot, settling time, peak
time, root locus, nyquist plot, and others.

The tools performing the supervision of closed-loop system are
grouped into the Supervision Module. There are two kinds of
sub-modules: help tools and analysis tools. The first ones are
the sub-modules (Help modules) helping the user to build an
experiment by use of all available tools, and the tools to
coordinate the final application (Coordination module). The
Help modules contain procedures and rulebases for the
selection of the identification algorithm, selection of the
control algorithm, selection of the criteria performance,
selection of input signal and data processing tools, and
selection of graphics tools. In the Coordination module we
can found the scheduler, the user interface and other modules
described in sections 2 and 3.

The second kind of sub-module performs the supervision of the
closed-loop system. Usually these modules are rulebases to
diagnose the state of the complete system. For instance the
Performance detection module includes rulebases and
procedures to detect the presence of model non-stationarity,
persistent excitation, estimator convergence and estimated
parameters bias. Moreover there are rules to suggest and to run
some actions that warrants the specified performance level.
Some rules from these modules are illustrated in figure 8.

Figure 7 - Status transition rule.

64 SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999

The third module, named knowledge acquisition, is part of the
supervision toolbox, but it is usually used before running any
control application. The goal of this module is to get from the
user or another module, information about the process such as
noise characteristic, impulse and step responses, non-minimum
phase behavior, etc.

To illustrate the use of tools cited above, we present in figure 9,
a connection diagram to implement the adaptive control of a
generic process. From this diagram we can explode every
module to get the complete connection diagram shown in
figure 10. Therefore for sake of clarity we eliminate from this
picture all modules forming the TOP-LEVEL of application:
the coordination rulebases, the scheduler, the user-interface, the
communication interface and so on. This new connection
diagram reflects the methodology used in our environment to
implement a control design application.

5 TOOL INTEGRATION METHODOLOGY
The integration of new modules (process, controller or any
other tool for analysis/design) is based on the object-oriented
paradigm. By the use of G2 tools, the user must associate to
each new module, two specifically objects. The first one
belongs to the user-interface class and the other one is an
algorithm object (for instance, if the new tool is a controller
this object belongs to control-algorithm sub-class). The main
steps involved in module definition are:

i) identification of input and output variables and algorithm

parameters;

ii) data association between G2 and algorithm implementation;

iii) user interface building;

iv) algorithm implementation.

The algorithm implementation can be coded in MATLAB or
“C” language. Example of data shared between G2 and
MATLAB is shown in figure 11. This figure shows input and
output variables and their respective element vectors needed by
MATLAB. There is a vector "w" whose elements contain
values for algorithm inputs. These values are specified in G2
and sent to MATLAB. Also, there is a vector "y" whose
elements contain values of the algorithm outputs obtained by
application of the algorithm upon the input values. These
values are requested from MATLAB by G2. The algorithm
code acts on these vectors for each algorithm call. The
"routing" have the necessary information to associate G2
requests with proper variables mapped either in G2 or in
MATLAB. This bridge-code is automatically generated by GSI
package, when the module definition is completed.

User interface is built creating a process image and a pleasing
way for parameter adjustment. This is done using G2 interface
facilities: icon description, input data, display objects, etc. The
end-user has a process schematic in a color graphic
multiwindowing display including mouse interaction.

After the new module definition is consistently completed, the
tool becomes available to any module in the environment.

6 APPLICATION EXAMPLE
The application example is a prototype for simulation and
control of a multivariable process: a distillation column.

Problem Control Description
The process is a heavy oil fractionary column considered in
literature as Shell Process. It is based on a model developed by
Prett et alii (1990) to include all important control problems of
a real fractionary column. The process schematic is shown in
right side of figure 13.

The column feed flow provides necessary heat to proper
column operation. There are three output flows: top, side and

for any process P
for any control_algorithm G upon the workspace of P

if the type of G is GPC,
and the excitation_status of P is LOW
and the control_horizon of G is less than the final_prediciton_horizon of G
and the closed_loop_rise_time of P is HIGH
or the first_peak of P is HIGH then

inform the operator ‘that the control_horizon of G is SMALL”
and start update_control_horizon(G)

UPDATE_CONTROL_HORIZON

for any process P
for any control_algorithm G and any filter F upon the workspace of P

Whenever the status of G is OK
and the status of the filter connected to the input of P is OK
and the status of the filter connected to the output of P is OK
and the status of the filter connected to the reference of P is OK then

inform the operator that “the control design is COMPLETE”
show the parameter_design_workspace of G
and start run_control(G)

RUN_CONTROL

Figure 8 - Rules from supervision module

SUPERVISION

IDENTIFICATION

PROCESSCONTROL process
outputcontrol

set
point

estimated
model

parameters

parameters

Figure 9 - Connection diagram to adaptive control
application.

SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999 65

bottom draws. Top and side product specifications are fixed by
economic and operational goals. Composition values are
measured by analyzers in the top and side end. The bottom
temperature must be controlled between fixed limit set by
operational constraints. There are three control loops to
regulate heat flow: the upper, intermediate and bottom reflux
duties. The bottom loop has an enthalpy controller to regulate
heat removal through the bottom reflux duty. Heat removed
from the other parts acts as column disturbances.

The composition and bottom temperature are the controlled
variables. The input variables top and side draws are used to
control the top and side compositions, respectively. The bottom
temperature is controlled by the bottom reflux duty. All
manipulated and controlled variables are constrained within the
limits of 0.5 and -0.5. The controller must be design so that the
following control objectives are satisfied in the presence of
input and output constraints and model uncertainty:

• Maintain the top and side draw products end points at

specification (0.0 ± 0.005 at specification).

• Maximize steam production in the steam generators in the
bottom circulating reflux. This means maximize heat
removal.

• Reject the disturbance entering the column from the upper
and intermediate refluxes due to changes in the heat duty
requirements from other columns.

• Keep the closed loop speed of responses between 0.8 and
1.25 of the open loop process bandwidth.

Since this module integrates process simulation and control
into a single input-output model, only values for reference and
output are available (control variables are internals) as shown
in figure 11. The control algorithm implemented is a
Generalized Predictive Controller with input constraints
described in (Lopez et alii, 1995).

Application Example Design
The whole plant is shown in upper left corner of figure 13.
There are five objects in the plant (sub-classes of algorithm
object): top draw composition, side draw composition and
bottom temperature set points; shell-process and supervisor.
Set-point objects provide set-point patterns to test process
behavior. They can be a sequence of set-point changes or they
can be read from real process data. For every time interval, set-
point objects provide values for the inputs of shell-process. The
control algorithms are executed with these values and the
results can be displayed for analysis. Supervisor object realizes
intelligent plant diagnostics. These tasks are separate modules
and they were presented in section 4.

design
paremeters

KNOWLEDGE BASES FOR ANALYSIS, DIAGNOSE AND DECISION ACTIONS

SUPERVISON MODULE

EXPERIMENT DESIGN MODULEON-LINE SUPERVISION MODULE

PERFORMANCE CRITERIA
COMPUTATION

KNOWLEDGE ACQUISITION
PRE-IDENTIFICATION

IDENTIFICATION MODULECONTROL MODULE

ESTIMATION

NORMALISATION

PROCESS

CONTROL

DESIGN

LOW PASS

FILTER

LOW PASS

FILTER

CONTROLLER

MODEL

STRUCTURE

parameter tuning
for estimation and

data processing
module

model to
control

controller
tuning

type of
controller

w(t)

u(t)
y(t)

yf(t)uf(t)

ϕf
n(t)

θ(t)

Figure 10 - All modules used into adaptive control application.

ROUTING

TOP COMPOSITION

SIDE COMPOSITION

BOTTOM TEMPERATURESIDE COMPOSITION

TOP COMPOSITION

BOTTOM TEMPERATURE

G2

w = [w1 w2 w3] y = [y1 y2 y3] MATLAB

T

A

A

INPUTS (set-points) OUTPUTS

Figure 11 - G2 / MATLAB input and output mapping.

66 SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999

In this application example, the workspace Shell-Process-
Details is automatically created and shown by clicking on
Shell-Process object into Plant-Overview workspace.
Numerical values for any variable can be displayed into a
graphics (as shown in figure 13 for side draw composition), by
choosing the analyzer or another sensor associated with the
variable. Moreover to prevent the user when a problem or an
important event has occurred, the supervisor changes the color
of the icon associated with the variable that has changed. For
instance, the set of rules used to supervise the flow
composition in an analyzer is presented in figure 12. In this
figure, an analyzer with yellow-icon is under normal operation
and red-state assigns a fault situation. In summary, the user
interface is a front-end for external software that is very similar
to the operator panel of the real plant.

Control algorithm description and some
results
To implement the Generalized Predictive Control law, we have
used the methodology proposed by Lopez et alli (1995). In this
case, the cost function is defined by

[] []

[] []

[] [])1jt()1jt(uR)1jt()1jt(u

)1jt(uR)1jt(u

jt()jt(yR)jt()jt(y)u(

u1

tNY

1Nj
u

2

tNU

1j

yp1

tNU

1j
yp

−+ω−−+−+ω−−+

+−+∆−+∆

++ω−++ω−+=∆

∑

∑

∑

=

=

=
J

where N1 and NY define the output prediction horizon; NU is
the control horizon; R1, R2 and R3 are the weighting diagonal-
matrices, acting respectively on the output error, the control
increments and the control error; yp(t) represents the prediction
of the output signal y(t) and u(t) is the control signal; wy(t) and
wu(t) are respectively the output and input set points; and ∆u(t)
= u(t) - u(t-1) represents the incremental control signal.

By using the Knowledge acquisition module, and considering
the particularities of the Shell process, i.e. the regulation of y1

(top draw composition) and y2 (side draw composition) while
minimizing u3 (bottom reflux duty), the tuning parameters for
the control algorithm were chosen as: [N1, NY, NU] = [1, 100,
5], diag R1 = [10 0 0], diag R2 = [5 5 5] and diag R3 = [0 0 0.1].
From the supervisor’s rule explanations, the reasons for these
value choices are:

• the third output isn’t a controlled variable, so its weight in
the matrix R1 is chosen equal to zero,

• in the matrix R3, the only non-zero value (0.1) is the weight
associated with the input u3 we have to minimize,

• the other weights in matrices R1 and R2 were selected to
achieve the performance requirements specified to the
input/output signals.

The bottom reflux duty (u3) minimization is performed by
putting the corresponding set point at -0.5, which is the
minimum value for all control signal; and all output set points
values are null in order to achieve the output regulation. Two
disturbances were considered: the first one corresponds to a
step, whose magnitude value is -0.5, in the intermediate reflux
duty (e1); and the other one corresponds to an unmeasured
disturbance of 0.5, in the upper reflux duty (e2).

The complete application was runned over 400 minutes, the
final values of y1 (top draw composition) and y2 (side draw
composition) are -0.0013 and 0.0042. These values satisfy the
specifications 0.0 ± 0.005. The bottom reflux duty
minimization after this time leads to -0.221 as final value for
u3. The side draw composition (y2) graphic is displayed in the
right side of figure 13.

7 CONCLUSION
A simulation environment is proposed for intelligent control
engineering. The environment has four mainly software
requirements:

• object-oriented implementation,

• hybrid knowledge representation,

• procedural knowledge is completely dissociated from
intelligent knowledge,

• modularity and flexibility characteristics are prioritized
before run-time cost.

By use of object-oriented approach, the environment is
designed to assure an easy, uniform and consistently
interaction with users. They can manipulate different tools
(objects) to create a dedicated software configuration according
to their preferences and application. These characteristics avoid
the use of a large and inefficient environment and provide
rational profit of available software resources.

To illustrate the environment potentialities, a prototype for
simulation and control of an oil industry process was described.
This prototype has a friendly user interface and its algorithms
are implemented in MATLAB. There are also some knowledge
bases to help the control design and supervise the closed-loop.

In summary, the environment proposed in this paper has four
main characteristics: existing software can be easily integrated

Figure 12 - Rules to supervise the flow composition in an
analyzer.

SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999 67

allowing the use of desirable software properties (access to a
large set of solutions to common problems, good numerical
properties, efficient implementation, etc.); the end-user
interacts with only one interface; modular and object-oriented
development allows custom versions to be easily created, and
the use of an expert shell allows "intelligent" solutions as a
natural option. The potential of the proposed approach is aimed
at developing more complex systems integrating control,
identification, analysis and design tools.

REFERENCES
Amaral, W C, Gomide, F A C, Nazzetta, R and Oliveira, G H

C (1992). Intelligent environment for system
identification and adaptive control, in Jamshidi, M and
Herget, C J (eds.), Recent Advances in Computer-Aided
Control System Engineering, Elsevier Science
Publishers B. V.

Arruda, L V R, Lüders, R, Amaral W C, Gomide, F A C
(1994a). A Knowledge-based Environment for
Intelligent Design and Supervision on Control Systems,
IEEE Int. Conf. on System, Man and Cybernetics, San
Antonio, Texas, USA, pp. 2680 - 2685

Arruda, L V R, Lüders, R, Amaral W C, Gomide, F A C
(1994b). An Object-oriented Environment for Control
Systems in Oil Industry, 3rd IEEE Conf. on Control
Applications, Glasgow, Scotland, pp. 1353 - 1358

Barker, H A, Chen, M, Grant, P W, Jobling, C P Townsend, P
(1993). Open architecture for computer-aided control
engineering, IEEE Control System, vol.13, n° 3, pp. 17-
27.

Coad, P, Yourdon, E (1991). Object-oriented Analysis,
Prentice-Hall, USA

DeChampeaux, D, Lea D, Faure P (1993). Object-oriented
system development, Addisson Wesley, USA

Gensym Corporation (1992). G2 Reference Manual - version
3.0

Lopez, J F, Oliveira, G H C, Amaral, W C, Latre, L G, Favier,
G, and Acundeger, E (1995). Multivariable constrained
predictive control methods applied to the shell
benchmark problem: a comparison. 3rd European
Control, Rome, Italy, pp. 3259 - 3264

Pang, G K H (1992). Knowledge Based Control System
Design, in Jamshidi, M and Herget, C J (eds.), Recent
Advances in Computer-Aided Control System
Engineering, Elsevier Science Publishers B. V.

Peterson, G E (1990). Tutorial: Object-oriented computing,
vol. 1, IEEE Computer Society Press, USA

Prett, D M, García C E, and Ramaker, B L (1990). The Second
Shell Process Control Workshop. Butterworths,
Stoneham, USA

Taylor, J H, Frederick, D K, Rimvall, C M, and Sutherland, H
(1990). Computer - aided control engineering
environments: architecture, user interface, database
management and expert aiding. Proc. 11th IFAC
Congress, Taillin, USSR, pp. 337-348

Figure 13 - System Interface.

