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ABSTRACT:   This paper describes the framework and the
approach that are utilized in the implementation of a software
for automated mathematical modelling of dynamic systems.
Application examples illustrate the main features and
possibilities of this software. The formalism utilizes a system
linear graph representation associated to a systematic
procedure in order to obtain a state-space model of lumped-
parameters systems. This mathematical modelling method is
automated using modern computational symbolic processing
capabilities.

RESUMO: Este trabalho descreve a base formal e a
abordagem utilizada para a implementação de um ambiente
computacional para modelagem simbólica de sistemas
dinâmicos. Os recursos implementados  são ilustrados através
da resolução de problemas-exemplos. O formalismo se aplica a
sistemas a parâmetros concentrados e utiliza a representação
tipo grafo de sistemas associada a um procedimento
sistemático para obter um modelo matemático do sistema no
espaço de estados.  A automatização do processo de
modelagem explora os recursos computacionais modernos de
processamento simbólico.

1 INTRODUCTION
Mathematical modelling can become an essential part in the
process of analyzing a dynamic system, as a mean to make
predictions, to optimize performance or to perform  qualitative
evaluations about the system. In addition, models expressed in
symbolic form allow the derivation of alternative models
appropriate to the objectives of the analysis; for example,
modelling for purpose of control system design.

There are several computer programs available to support
dynamic systems analysis  and simulations studies; for
example, Felez et al., 1990, which utilizes a bond graph
approach; Andrews, 1971, which utilizes a vector network
approach. However, computer programs designed to derive
mathematical models, i.e. models in symbolic form, are scarce.

The system graph representation associated with a systematic
procedure for obtaining state-space equations provides an
interesting alternative to automate the process of mathematical
modeling of lumped parameters systems,  making use of the
available modern computational symbolic processing

resources. Automated modelling provides greater reliability on
the derived models, reduces the time and effort to obtain them
and in general, results in more efficient analysis studies.

In the next two sections we present a theoretical-computational
formalism to derive a symbolic state-space model for lumped-
parameters dynamic systems. A section dedicated to examples
is provided to highlight the main features of the developed
software.

2 SYSTEM REPRESENTATION AND
THEORETICAL ASPECTS

2.1 Models Comprised In This Analysis
In this paper, we treat lumped-parameter dynamic systems and
we consider two classes of systems: linear time-variant systems
having two-terminal RLC (resistance-inductance-capacitance)
generalized elements, mutual inductances and four-terminal
generalized transformer elements; and non-linear time-
invariant systems, having two-terminal RLC generalized
elements. In both cases the systems may contain independent
generalized voltage and current sources (external inputs). A
large family of plants is considered, especially those
constituted by the interconnection of mechanical, electrical,
electro-mechanical, hydraulic and electro-hydraulic
components.

Seeking generalization and consistency, it was necessary to
impose some hypotheses; in the linear case, they  were kept to
a minimum in order not to burden the user or to restrain
unnecessarily the practical applications of the developed
software. In the nonlinear case, they are listed in the section
2.4.2.

2.2 System Graph Representation
In the System Graph (or Linear Graph) representation (Shearer
et alii, 1969), a set of connected branches, representing the
lumped elements of the system,  forms a graph describing the
real system or its physical model. The generalization of the
Kirchhoff laws to electrical circuits can be utilized to impose
the graph the constraints to flows and  loops (continuity and
compatibility conditions). The dynamic equations of the
system, i.e. its  mathematical model, can be obtained by adding
to the constraint equations set, the equations which describe the
system elements. The mobility analogy (Firestone, 1933)
among electrical circuits and the other types of systems,
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mechanical, thermal and/or fluid, can be utilized in order to
deal with all of them in a generalized way.

 So, the problem is to exploit the system graph approach for
representing generalized lumped-parameters dynamic systems
and a systematic procedure for defining state variables and
relate them, in order to implement an integrated software that
automates the modelling process for obtaining the state-space
equations in a symbolic form as well as its numerical
simulation.

By making use of quantities like the incidence matrix of the
system graph, its normal tree, fundamental cutsets and loops,
defined in the section 2.3, it is possible to deduce a general
state-space model in terms of special matrices representing the
elements of the system and the way they are  connected (Kuh
and Roher, 1965; Adade Fo, 1992; Gonçalves, 1995). Several
algorithms were developed (Gonçalves, 1995) to extract
information from the system graph and to implement the
systematic procedure for modelling (as commented in the
section 3).

2.3 Systematic Procedure For Modelling In
The State-Space

A systematic procedure, as described in the sequel, allows us to
derive relationships among the variables, needed to automate
the process of obtaining state-space models from the system
graph representation:

a - define a normal tree. This tree is built  from the oriented
graph of the system, adopting the following sequence for
choosing the tree branches: all “across”  variable sources, the
maximum number of passive elements type-A (generalized
capacitors), type-D (generalized dissipators) and a minimum
number of  type-T (generalized inductors) passive elements;  in
the end of this process, the elements not included in the normal
tree will be included in the complementary graph, called co-
tree. Every branch not in the tree is called a link.

b - Choose as state variables:

b1  - the “across”  variables of the type-A (generalized
capacitors) elements inserted in the normal tree (vC) and
the “through”  variables of the type-T (generalized
inductors)  in the co-tree  (iL); or, alternatively,

b2 - the integrated “through”  variables of the type-A
elements inserted in the normal tree (qC) and the
integrated “across”  variables of the type-T elements in
the co-tree  (ϕϕL).

c - Write each (across and/or through)  variable of all type-D
and type-A elements in the co-tree, and of the type-T elements
inserted in the normal tree, as well as the generalized
transformers energy ports as functions of the state variables,
applying the loop law to the fundamental loops and the node
law to the fundamental cutsets, formed by those branches. A
fundamental loop is a unique loop formed by every link and
some tree branches; a fundamental cutset is a unique cutset
formed by every tree branch with some links.

d - Apply node law to the fundamental cutsets or the loop law
to the fundamental loops, of every branch that contributes with
a state variable.

It should be pointed out that the application of this systematic
procedure allows to describe the system utilizing a minimum

set of state variables, since steps (a) and (b) guarantee a non-
redundant choice of these variables.Also, from the
computational point of view, steps (c) and (d) are represented
in the calculation of the matrices presented in the next section.

 This systematic procedure is suggested in some texts like (Kuh
and Roher, 1965; Wellstead, 1979; Chen, 1984).

2.4 System Equations For Automated
Modelling

2.4.1 Linear systems

The algebraic manipulation utilizing the systematic procedure
to deduce a linear state-space model,

( ) ( ) ( ) )()( tutBtxtAtx +=� (1)

is extensive and can be found in details in Gonçalves (1995). In
this sub-section it is presented the final form of the models
considering two different sets of state-variables. Consider,

-  the vector of independent sources:

( ) [ ]TTT ejtu =  (2)

where:

j(nra,1) → vector of "through" variables sources, the k-th
element being the algebraic sum of the "through"  variables
sources belonging to the k-th fundamental cutset.

e(nb,1) → vector of "across" variables sources, the i-th element
being the algebraic sum of the "across" variables sources
belonging to the i-th fundamental loop.

Partitioning the vector of independent sources in accordance to
the type of the elements, using the notation for subscripts,

C : capacitors in the normal tree; S : capacitors in the co-tree;
L : inductors in the co-tree; Γ : inductances in the normal tree;
R : resistors in the co-tree; G: conductances in the normal tree;
θ : transformer port in the normal tree;  α : transformer port in
the co-tree,

we obtain,
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The fundamental loops and cutsets equations can be written as:
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where the vectors v2 and v1 (i2 and i1) denote the across
(through) variables of the passive elements inserted in the
normal tree (cotree), respectively. This matrix F is called the
fundamental loop matrix and its transpose is equal to the
fundamental cutset matrix. Partitioning F in accordance to the
systematic procedure to choose the normal tree (see the
Symbol List to a comment about each sub-matrix):
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Utilizing the equations describing the generalized RLC and
transformers elements, as well as the constraints equations
from the oriented system graph, the following matrices can be
defined (also see Symbol List):

-  the capacitive matrix of the system:

SC
T

SC FCFCC 12 +=     (6)

-  the inductive matrix of the system:
T

LL
T

LL FLFFLLFLL ΓΓΓΓ +++= 22122111 (7)

-  the resistive matrix of the system:
T

RGRG FRFRR 21 += (8)

-  the conductive matrix of the system:

RG
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RG FGFGG 12 +=  (9)

- the matrices related to the energy ports of the generalized
transformers:
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In addition, consider,
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To write the state-space equations in the standard form, the
state variables vector, as chosen in the step b1  of the systematic
procedure, is redefined as:
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In this case, the matrices A(t) e B(t) of the state-space model
are given by:
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where,
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 For the same reason, that is, to write the state-space equations
in the standard representation (without explicit derivatives of
the input), the vector of state variables, as chosen in the step b2

of the systematic procedure, is redefined as:
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In this case, the matrices A(t) e B(t) of the state-space model
are given by:
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2.4.2 Nonlinear systems

This section presents the formulation of a dynamic model to
systems which have non-linear RLC generalized elements.
Utilizing matrices conveniently chosen, this formulation allows
an automatization of the modelling process through the use of
symbolic manipulation software.

Only nonlinear generalized elements whose characteristics can
be represented by parametric equations are considered.
Conditions to  the existence of a state-space model are
presented in terms of the topological constraints and the
characteristics of the elements, allowing, by inspection of the
system graph, to check the existence of the required model.
This section is based on (Brayton and Moser, 1964; Chua and
Roher, 1965; Desoer and Katzenelson, 1965; Stern, 1966).

Lets define a parametric equation as a subset C in the
Euclidean plane E2,

( ) ( ) ( ) [ ]{ }baezzwwEzwC ,,:, 2 ∈==∈= ξξξ (40)

such that w e z are continuous functions of the parameter ξ,
being differentiable within the interval of interest.

With this definition it is possible to characterize the nonlinear
RLC generalized elements as follows.

The constitutive relationship to a nonlinear type-A element can
be represented by a curve in the q-v plane, being q the
integrated "through" variable and v the "across" variable of the
element, which equation is:

fC(v,q) =  0 (41)

If equation (41) can be solved for v as a function of q, v =
V(q),  the element is said to be integrated "through" variable
controlled; on the other hand, if his equation can be solved for
q as a function of  v, q = Q(v), the element is said to be
"across"  variable controlled.

Similarly, the characteristics of a nonlinear type-T element can
be represented by a curve in the φ-i plane, being φ the
integrated "across" variable and i the "through" variable, which
equation is:

fL(φ,i) = 0 (42)

If equation (42) can be solved for i as a function of  φ, i = I(φ),
the element is said to be integrated "across" variable controlled;
on the contrary, if this equation can be solved for φ as a
function of  i, φ = Φ(i), the element is said to be "through"
variable controlled.

The constitutive relationship of a type-D element can be
represented by a curve in the v-i plane, the equation being:

fR(v,i) = 0 (43)

If  equation (43) can be written as v = V(i), the element is said
to be "through" variable controlled; on the contrary, if  i = I(v),
the element is said to be "across" variable controlled.

Equations (41)-(43) make possible to deduce a dynamic model
in the sate-space,

( )uxfx ,=�   (44)

In addition, it is assumed the following hypotheses:

H1 - the system is time-invariant;

H2 - there are no two-ports (four terminals) elements;

H3 - the non-linear generalized RLC elements can be described
by parametric equations;

H4 - there are no fundamental loops formed by type-D
elements;

H5 - all type-D elements in the co-tree are “across”  variables
controlled;

H6 - all type-D elements in the normal tree are “through”
variables controlled;

H7 - the type-A elements are "across" variables controlled;

H8  - the type-T elements are “through” variables controlled.

Hypotheses H4-H6 allow us to express, in a direct way, the
variables of  type-D elements in terms of the adopted state
variables; otherwise, we should define inverse functions for the
characteristics of the elements (Desoer and Katzenelson, 1965).
Hypotheses H7-H8 allow us to derive, in a direct way, a
dynamic model in terms of the "across" variables of the type-A
elements in the normal tree and "through" variables of type-T
elements in the co-tree.

In accordance to the hypotheses  H1-H8 the equations for the
generalized RLC elements can be written using explicit
functions,
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for the generalized capacitors;
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for the generalized resistors; and
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for the generalized inductors.

The submatrices in the equations (45) and (47) are determined
by:
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The symbol (°) in these equations denotes function of
function.

In case hypothesis H4 is not verified (this condition is analysed
by the implemented software, which provides a warning
message in case of  its violation), we can introduce to the
original system graph, a linear capacitor in parallel to the type-
D elements of the co-tree that are forming the respective
fundamental loops; a linear capacitor inserted in the system
graph allows to simulate a residual parasitic capacitance, which
is a characteristic of physical  systems. Alternatively, we can
insert linear inductors in series to type-D elements in the
normal tree, that are forming the respective fundamental loops;
a linear inductor inserted this way  allow us to simulate
parasitic inductance, which is a characteristic of physical
systems. It is assumed no mutual coupling for the linear
inductances inserted in the original system graph.

The algebraic manipulation to derive state-space models is
similar to the linear case and can be found in details in
Gonçalves (1995). The results are presented in the sequel for
two different sets of state variables.

For the first set, vC  e iL, the dynamic model is given by:

( ) S
T
SCL

T
LCCRCRCRC

T
C eCFiFjevFGFvC

••
++++−= 11$ (54)

( ) ( ) LLGL
T
LGLGCLCL ejLFLjiFRFvFiL ++−+−−=

•

ΓΓ

•

22122$ (55)

where,

21 CFCFC SC
T
SC +=  (56)

T
LL

T
LL FLFFLLFLL ΓΓΓΓ +++= 22122111  (57)

To derive a dynamic model for the second set of state
variables, qC e φL, lets consider hypotheses  H9-H12 in
substitution of hypotheses H7-H8 as below:

H9 - the type-A elements in the normal tree are of  controlled
“through” variables;

H10 - the type-T elements in the co-tree are of controlled
integrated "across" variables;

H11 - the type-A elements in the co-tree are of controlled
"across" variables;

H12 - the type-T elements in the normal tree are of controlled
“through”  variables;

Utilizing hypotheses  H9-H12, we obtain the following dynamic
model:

( )[ ] ( )
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where,
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∂
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C

qV
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d
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1
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T
LL FLFLL ΓΓ
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1

11   (65)

3 ASPECTS OF THE COMPUTER
IMPLEMENTATION

The automatic  modelling software (called MASD, an acronym
for “Modelagem Automática de Sistemas Dinâmicos”) is
constituted by Turbo Pascal routines which implement the user
interface program (problem definition) and the system graph
characterization, as well as  a program written in Mathematica
to manipulate and obtain the state-space symbolic form
equations. MASD main features are illustrated in this paper
through application examples.

A flow diagram  of MASD is shown in figure 1. In this
diagram, system definition refers to the user input of data
describing the system graph topology (number of nodes,
number of branches, initial and final node numbers for each
branch element), the type of elements of the system and the
simulation parameters. This numerical data input is done in a

Figure 1 – MASD Program Flow Diagram
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questions and answers session, controlled by the user interface
routine. The dialog boxes for data input are presented in the
Appendix. Concluded the data input, the information about the
graph topology are then reorganized by MASD in  a matrix
form through an incidence matrix, which is the base for the
systematic classification of tree branches and links, in the
process of defining a normal tree and its respective co-tree.
Tree search algorithms are utilized in this process as well as to
obtain the fundamental loop matrix (Gonçalves, 1995).

Once the fundamental loop matrix is obtained and adequately
partitioned, the next step of the program is to save the required
information (those matrices defined in the modelling equations,
parameters of the elements, parameters of simulation etc) for
the symbolic processing session; such information are saved as
files .mat. The algebraic manipulation program to deduce the
dynamic mathematical model, as well as its simulation, is part
of MASD and implemented using the software Mathematica
for Windows v2.1. In the flow diagram of figure 1 the dashed
line indicates that the symbolic manipulation program must be
activated by the user, inside Mathematica Other algorithms, as
commented above, were implemented in Turbo Pascal v5.5.

MASD computational program, for the linear case, provides as
output the matrices A(t) e B(t) and the vectors x(t) and u(t); for
the non-linear case it provides a model in accordance to
eq.(45). In both cases, if required by the user, it provides a
numerical simulation of the model.

4 APPLICATION EXAMPLES

4.1 Linear System
This example shows results obtained using MASD for
modelling the mechanical system (Wellstead, 1979)
represented in the figures 2 and 3.

Figure 2 - Mechanical System
 Assuming numerical simulation of the system is required,
consider the following fictitious values for the lumped
elements of this system

M1 = 3 [kg] M2 = 3 [kg]

Is1 = 1[Nm] Is2 = 2 [Nm]

B1 = 1.9 [Ns/m] B2 = 1.2 [Ns/m]

B3 = 1.2 [Ns/m] B4 = 1.9 [Ns/m]

K1 = 1.8 [N/m] K2 = 1.8 [N/m]

K3 = 1.5 [N/m]

n1 = ra = 0.1 [m] n2 = 2 cos(α)

n3 = rb = 0.1[m] α = 0.524 [rad]

Figure 3 - System Graph

: After data input, which consists in defining the system graph
as shown in the Fig.3, in a questions and answers session
controled by the user interface program (see the Appendix),
MASD represents internally the graph through an incidence
matrix; also, utilizes an especific terminology in accordance to
each type of element (Cg, Bg, Kg for generalized capacitance,
resistance and inductance, respectively;  Fe, Fa for the
generalized across- and through-variable sources; Te, Ta for
the transformer ports inserted in the normal tree and co-tree,
respectively), and utilizes a numeric index for each element,
depending on the order they are entered by the user. Five files
are generated by MASD after data input, with information for
the next phase of the symbolic modelling process. For
example, MASD provides, in the file arq1.mat a description of
the elements of the system, in this problem the capacitance
matrix (C2), the resistance matrices (R1 e R2) and the
inductance matrix (L11); also, the transformation ratio matrix
(n12) as well as the external sources vector (Fa).  In the file
arq2.mat, MASD provides the sub-matrices of the fundamental
loop matrix F (see eq. (5)):

Arq1.mat
C2 = {{Cg1,0},{0,Cg2}};
R1 = {{1/Bg1,0},{0,1/Bg4}};
R2 = {{1/Bg2,0},{0,1/Bg3}};
L11 = {{1/Kg1,0,0},{0,1/Kg2,0},{0,0,1/Kg3}};
n12 = {{1/n1,0,0},{0,1/n2,0},{0,0,1/n3}};
Fa = {{Fa1,0},{0,Fa2}};

Arq2.mat
Fre = {{0,0,0},{0,0,0}};
Frc = {{-1,0},{0,-1}};
Frg = {{0,0},{0,0}};
Fle = {{0,0,0},{0,0,0},{0,1,0}};
Flc = {{0,0},{0,0},{0,0}};
Flg = {{-1,0},{0,-1},{0,0}};
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Fae = {{0,0,0},{1,0,-1},{0,0,0}};
Fac = {{-1,0},{0,0},{0,-1}};
Fag = {{0,0},{1,1},{0,0}};
Fic = {{-1,0},{0,1}};
Fig = {{0,0},{0,0}};

Also, at the end of the data input MASD generates the
following information for the user:

TREE BRANCHES:

Element initial node final node magnitude
Te1 3   1 0.1
Te2  5   6 2Cos[0.524]
Te3  8   1 0.1
Cg1 2 1 3
Cg2 9 1 3
Bg2 3 4 1.2
Bg3 7 8 1.2

LINKS (CO-TREE BRANCHES):
element initial node final node magnitude
Bg1 2  1 1.9
Bg4 9  1 1.9
Kg1 3  4 1.8
Kg2 7  8 1.8
Kg3 5  6 1.5
Fa1  2  1 1
Fa2  1  9 2
Ta1 1  2  0.1
Ta2 7  4 2Cos[0.524]
Ta3 1  9  0.1

Choosing a standardized set of state variables we have that the
state vector is composed by the integrated through-variable of
the mechanical capacitance Cg1 and the integrated across-
variables in the mechanical inductances kg1 and kg2,
respectively:

x(t) = {{qc[1][t]},{qc[2][t]},{ fi[1][t]},{ fi[2][t]},{ fi[3][t]}}

The input vector is:

u(t) = {{-Fa1}, {Fa2}, {0}, {0}}

At the end of the symbolic modelling process, the  ij-elements
of the system matrix A(t) were obtained by MASD as:

a[1,1] =  -(Bg1/Cg1),a[1,2]= 0, a[3,1] = 0, a[4,1] =  0,
a[5,1] = -((Kg3*n1)/n2)
a[2,1] = 0, a[2,2] = -(Bg4/Cg2), a[3,3] = 0, a[3,4] = 0,
a[3,5] = (Kg3*n3)/n2
a[3,1] = 0, a[3,2] = 0, a[3,3] = -(Kg1/Bg2), a[3,4] = 0,
a[3,5] = Kg3/(Bg2*n2)
a[4,1] = 0, a[4,2] = 0, a[4,3] = 0, a[4,4] = -(Kg2/Bg3),
a[4,5] = Kg3/(Bg3*n2)
a[5,1] = n1/(Cg1*n2), a[5,2] = -(n3/(Cg2*n2)),
a[5,3] = -(Kg1/(Bg2*n2)),
a[5,4] = -(Kg2/(Bg3*n2)),
a[5,5] = ((Bg2 + Bg3)*Kg3)/(Bg2*Bg3*n2^2)

and the  ij-elements of the matrix  B(t) were obtained as:

b[1,1] = 1, b[1,2] = 0, b[3,1] = 0, b[4,1] = 0
b[2,1] = 0, b[2,2] = 1, b[2,3] = 0, b[2,4]= 0
b[3,1] = 0, b[3,2] = 0, b[3,3] = Bg2^(-1), b[3,4] = 0
b[4,1] = 0, b[4,2] = 0, b[4,3] = 0, b[4,4] = Bg3^(-1)
b[5,1] = 0, b[5,2] = 0, b[5,3] = 1/(Bg2*n2),
b[5,4] = 1/(Bg3*n2)

4.2 A NONLINEAR SYSTEM
A hydraulic reservoir system is shown in figure 4 and its
analogous circuit (Q-i) is shown in figure 5. This system,
consisting of a large hilltop reservoir feeding two smaller town
reservoirs, is described in Athans et alii (1974),

where:

Cr hydraulic capacitance of the main reservoir

Figure 4 - Hydraulic

Figure 5 - Analogous Circuit
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Q2
C p2

C v2 C v1 F3F4
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C1 hydraulic capacitance of the reservoir 1

C2 hydraulic capacitance of the reservoir 2

Rv1 hydraulic resistance of the retention valve linked
between tanks 1 and main

Rv2 hydraulic resistance of the retention valve linked
between tanks 2 and main

Cp1 orifice coefficient of discharge of the pipe 1

Cp2 orifice coefficient of discharge of the pipe 2

Cv1 orifice coefficient of discharge of the R1

Cv2 orifice coefficient of discharge of the R2

Qj water flow rate into tank [ft3/s] j; (j = 1, 2)

Aj cross-sectional area of the reservoir j [ft2]; (j = 1, 2)

The mathematical model for the water flow rate in a reservoir
system:

Q = (Cp) pipeP∆ [ft 3/min] flow in pipe

Q = (Cv)(r) valveP∆ [ft 3/min] flow in valve

∆Γ = (Lf )(Q) [lb/(ft min)] fluid momentum in the
pipe 1 and 2

VL  =  (Cf )(∆P) [ft3] volume in the reservoir 1 and 2
VL  =  ƒ(∆P) [ft3] volume in the reservoir

principal

∑
=

=
2

1j
L QjV

dt

d
[ft 3/min] flow in tanks

where:

∆P pressure drop [lb/ft2]

r valve position (0 ≤ r ≥ 1)

VL volume of liquid [ft3]

Lf hydraulic inductance   [lb/ft4]

Cf hydraulic capacitance [(ft4 min2)/lb]

Based on the oriented system graph  of this hydraulic system,
we can write the following set of equations:

F4 + QC2 - QRv2 = 0   (66)
F6 - F5 - QCR - QRp1  - QRp2 = 0  (67)
F3 + QC1 - QRv1  = 0 (68)
QL2 = QRp2 = QRv2  (69)
QL1 = QRp1 = QRv1  (70)
PCR - (PL1  + PRv1 + PC1 + PRp1 ) = 0  (71)
PCR - (PL2  + PRv2 + PC2 + PRp2 ) = 0  (72)

Substituting eq. (69) in the eq. (66) and then using the
capacitance constitutive equation, we obtain

( )24
2

2
1

L
f

C QF
C

P
dt

d −−=  (73)

Similarly, substituting  equations (69) and (70) in eq. (67), we
obtain,

( )6521
1

FFQQ
C

P
dt

d
LL

R
CR −++−=  (74)

Notice that,

( ) CRRCRCRCRCR P
dt

d
CQV

dt

d
PfV ==→=

( )
CR

CR
R P

Pf
C

∂
∂∆

=

In the same way, substituting  eq. (70) in  eq. (68), we obtain

( )13
1

1
1

L
f

C QF
C

P
dt

d −−=  (75)

The constitutive equation to the hydraulic inductance L1, is

1
1

1
1

LL P
L

Q
dt

d =  (76)

Substituting eq. (71) in eq. (76) and utilizing the resistance
constitutive equations, we obtain

1

1

2

1
2

1

1 L

PPc
Q

cr
Q

Q
dt

d CRC
p

L

V

L

L

+−




−


−

=  (77)

In a similar way, utilizing eq. (72) and resistance constitutive
equations into the hydraulic inductance constitutive equation
L2, we obtain,

2

2

2

2
2

2

2
L

PPc
Q

cr
Q

Q
dt

d CRC
p

L

V

L

L

+−




−


−

=  (78)

Equations (73)-(75), (77) e (78) can be compared with the
model obtained utilizing MASD.

As commented in the previous example, data input consists in
defining the system graph, in a question and answer session
controled by the user interface program (see the Appendix). A
constitutive function is required in defining a nonlinear
element. It is shown below the information MASD generates:

TREE BRANCHES:
Element initial node final node statevariable
Cg1 8  1 vc[1]
 Cg2 5  1 vc[2]
 Cg3 2  1 vc[3]
 Bg1 7  8
 Bg2 5  6
 Bg3 5  4
 Bg4 3  2

LINKS (CO-TREE BRANCHES):
Element initial node  final node state ariable
 Kg1 6  7 il[1]
 Kg2 4  3 il[2]
 Fa1 8  1
 Fa2 5  1
 Fa3 1  5
 Fa4 2  1
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Choosing a standardized set of state variables, we have that the
state vector is composed by the “across” variables (pressures)
of the hydraulic capacitance Cg1, Cg2 and Cg3 and the
“through” variables (flows) of the hydraulic inductances kg1

and kg2, respectively. A dynamic model for this system was
obtained by MASD as:

Cf1

il[1][t] + -Fa1
 = vc[1][t]

dt

d

[ ]( )
vc[2][t]

vc[2][t]Vcr
il[2][t] - il[1][t] - Fa3 + -Fa2

 = vc[2][t]

∂
∂dt

d

Cf2

il[2][t] + -Fa4
 = vc[3][t]

dt

d

( ) ( )
( )

Lf1

 vc[2][t]+   vc[1][t]-
r*Cv

il[1][t]
 -

Cp

il[1][t]
-

 = il[1][t]
2

2

2

2

dt

d

( ) ( )
( )

Lf2

 vc[2][t]+   vc[3][t]-
r*Cv

il[2][t]
 -

Cp

il[2][t]
-

 = il[2][t]
2

2

2

2

dt

d

In these expressions, vc denotes pressure and il  denotes flow;
Vcr represents the nonlinear function relating volume and
pressure in the main reservoir.

5 CONCLUSION
Automated modelling provides greater reliability to the derived
models, reduces the time and effort spent to obtain them,
provides support to teaching in especific areas, and in general,
allows more efficiency in the analysis studies as a whole. This
paper describes a framework and the approach that are utilized
in the implementation of a software, acronym MASD, for state-
space automated symbolic modelling of lumped-parameters
dynamic systems. Application examples illustrate the main
characteristics and possibilities of this software. The main
contribution of this work is the implementation of a dedicated
software for mathematical modelling, as described in section 3,
and some generalizations in its system theoretical framework
which is represented by the equations (4)-(39)/(45)-(65).

Finally, it is worth pointing out that such a kind of a software
allows one to approach more complex systems in an efficient
and didatic way, also helping in teaching activities and
academic investigations.
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APPENDIX
MASD accepts data input through a file or the keyboard. In this
option, user interface basically is done through dialog boxes as
exemplified in the figures below for the linear case:
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CHOOSE THE CLASS OF THE DYNAMIC SYSTEM TO BE MODELLED

                              [1]  - Linear System

                              [2]  -  Non Linear System

               < Enter your option >:

Figure 6 - To choose the class of the dynamic system

DEFINE THE SYSTEM GRAPH

                               < Enter the number of nodes >      :

                               < Enter the number of elements > :

Figure 7 - To define the topology of the system graph

                CHOOSE A SET OF STATE VARIABLES TO THE SYSTEM

                 [1] - “Across” Variable of the Generalized Capacitor and
                           “Through” Variable of the Generalized Inductor.
                   [2]  - Integrated “Through” Variable of the Generalized
    Capacitor and Integrated “Across” Variable of the
    Generalized Inductor.

                         Enter your option:

Figure 8  - To choose the state variables



SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999     11

             TYPE OF THE SYSTEM\SUB-SYSTEM TO BE MODELLED

                            [1]  -  Electrical/Hydraulic/Thermal System

                            [2]  -  Mechanical System

         < Enter your option >:

Figure 9  - Application of the Mobility Analogy

                   DEFINE THE ELEMENTS OF THE SYSTEM GRAPH

  [1] – Source of “Across” Variable [5] – Source of “Through” Variable

  [2] – Generalized Capacitor           [6] – Generalized Transformer

  [3] – Generalized Resistor              [7] – Mutual Inductance

  [4] – Generalized Inductor

    CHOOSE THE ELEMENT OF THE GRAPH:

    # ELEMENT :

    # MAGNITUDE :                                   # INITIAL CONDITION :

    # INITIAL NODE :                                # FINAL NODE :

Figure 10 - Menu to define the linear elements

     DEFINE THE SIMULATION FINAL TIME

   Simulation Final Time ?

     Defining simulation final time equal to zero,
 the dynamic system will be modelled but not simulated.

Figure 11 - To define the simulation time



12    SBA Controle & Automação Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999

SYMBOL LIST
C1, R1, L11 Co-tree generalized capacitances, resistances and

inductances diagonal matrices, respectively.

C2, G2, L22  Normal tree generalized capacitances,
conductances and reciprocal inductances diagonal
matrices, respectively.

L12 = L21
T  Mutual inductances diagonal matrices.

N12 = N21
T  Transformation ratios diagonal matrices.

FSC   Fundamental loop matrix for the capacitors in the co-tree
(s) and the capacitors in the normal tree (c).

FSθ   Fundamental loop matrix for capacitors in the co-tree and
the transformers ports in the normal tree (θ).

FRθ  Fundamental loop matrix for resistors in the co-tree (R)
and the transformers ports in the normal tree.

FRG  Fundamental loop matrix for resistors in the co-tree (R)
and the conductances in the normal tree (G = R-1).

FLθ  Fundamental loop matrix for the inductors in the co-tree
(L) and the transformers ports in the normal tree.

FLC  Fundamental loop matrix for the inductors in the co-tree
(L) and the capacitors in the normal tree.

FLG  Fundamental lop matrix for the inductors in the co-tree (L)
and the conductances in the normal tree.

FLΓ  Fundamental loop matrix for the inductors in the co-tree
(L) and the reciprocal inductances in the normal tree (Γ =
L-1).

Fαθ  Fundamental loop matrix for the transformers ports in the
co-tree (α) and the transformers ports in the normal tree.

FαC  Fundamental loop matrix  for the transformers ports in the
co-tree and the cpacitors in the normal tree.

FαG  Fundamental loop matrix for the transformers ports in the
co-tree and the conductances in the normal tree.

FαΓ  Fundamental loop matrix for the transformers ports in the
co-tree and the reciprocal inductances in the normal tree.

I     Identity matrix.

nra  Total number of tree branches.

nb   Total number of  branches in the graph.


