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Resumo - Este trabalho aborda a questão de identificação
de sistemas complexos com o auxílio de lógica nebu-
losa. Apresentam-se dois métodos numéricos para estimar os
parâmetros de modelos relacionais, que são modelos construídos
a partir de equações relacionais nebulosas. O primeiro método
é baseado na solução de uma sequência de problemas quadráti-
cos com o objetivo de refinar modelos previamente identifica-
dos através de outros algoritmos. A partir deste método, obtém-
se também um algoritmo recursivo adequado a aplicações “on-
line”. Avalia-se o desempenho dos métodos propostos através
da modelagem de um sistema dinâmico real.

Palavras-Chave: ModelagemFuzzy, Otimização, Sistemas
Não-lineares.

Abstract In this paper the issue of complex system identifica-
tion with the aid of fuzzy logic techniques is addressed. Models
based on fuzzy relational equations, i.e. fuzzy relational mod-
els, are presented. Two numerical methods to estimate the pa-
rameters of such models are proposed. The first one is an op-
timization based methodology using sequential procedures of
quadratic programming to refine models previously estimated by
other methods. From this methodology, a recursive algorithm
suitable for on-line identification is derived. The performance of
the methods proposed is evaluated by modeling a real dynamic
process.

Keywords: Fuzzy modeling, Optimization, Non-linear systems.

1 INTRODUCTION

The concept of fuzzy modeling can be defined as the represen-
tation of systems based on fuzzy logic techniques. Its essence
comes from the early ideas of Zadeh, 1973 on human behav-
ior representation using fuzzy algorithms. Fuzzy models have
become an important mathematical tool for the identification of
complex systems, such as the physically unknown and strongly
non-linear ones, especially because these models can be con-
structed as universal approximators (Wang and Mendel, 1992,
Kosko, 1992, Sudkamp and Hammell II, 1994, Kosko, 1997)
and can deal with linguistic knowledge about the systems to be
identified.

The first attempt at system identification using fuzzy models was

0Artigo submetido em 08/10/1998
1a. Revisão em 03/03/1999;
Aceito sob recomendação do Ed. Cons. Prof. Dr. Ricardo Tanscheit

made by Tong, 1978. In his work Tong used a rule-based model
(constituted by a set of fuzzy rules) to model dynamic systems.
In this kind of fuzzy model, called linguistic models, the prob-
lem of getting an adequate rule set is not a trivial task since the
rules involve linguistic terms (fuzzy sets) in their antecedents
and consequents. An alternative structure was proposed by Tak-
agi and Sugeno, 1985. The Takagi-Sugeno fuzzy model is con-
stituted by a set of fuzzy rules whose consequents are crisp (non-
fuzzy) functions which map the model inputs into the output.
The parameters of these functions can be estimated using Least
Squares (LS) methods or Kalman filter (Ljung, 1987). In this
approach, however, the linguistic interpretability of the rules is
lost. Another approach for fuzzy modeling is based on the the-
ory of fuzzy relational equations (Pedrycz, 1993). This kind of
model, called fuzzy relational models, can be viewed as a sim-
plification of the linguistic models since a set of fuzzy rules can
be written as a relational equation (Yager and Filev, 1994). The
main advantage of this simplification is that in linguistic models
the fuzzy relation of the relational equation is derived from the
aggregation of the rule set whose linguistic terms must be deter-
mined, whereas in relational models the fuzzy relation is only a
matrix to be estimated.

The use of relational models in system identification and control
was first investigated by Czogała and Pedrycz, 1981. Neverthe-
less, this kind of model became quite useful in practical applica-
tions when Pedrycz, 1984 proposed the utilization of the fuzzy
discretization technique (see Appendix) for data representation
in relational equations. This technique was widely spread in the
field of fuzzy relational models since it can provide significant
reductions in the dimensions of these models as well as linguis-
tic meaning for them (Pedrycz, 1984, Graham and Newell, 1989,
Campello and Amaral, 1999).

In the present paper two new methods to estimate the parameters
of fuzzy relational models are proposed. The first one is an opti-
mization based methodology (called refinement or fine-tuning
algorithm) using sequential procedures of quadratic program-
ming to refine models previously estimated by other methods
(e.g. Pedrycz, 1984, Xu and Lu, 1987, Campello et al., 1998).
From this methodology, a recursive algorithm with a very simple
updating law is derived. This algorithm is well-suited for on-line
identification.

The paper is organized as follows. In the next section the de-
tailed formulation of the fuzzy relational models is presented.
Following, the methods for refinement and recursive estimation
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of these models are derived in Section 3. Next, in Section 4 a
numerical example is provided to evaluate the performance of
the proposed methods in the identification of a dynamic system.
Finally, the conclusions are addressed in Section 5.

2 DYNAMIC AND STATIC FUZZY RELA-
TIONAL MODELS

Consider the following dynamic system1:

y(k) = F( y(k � 1); � � � ; y(k � py);

u1(k � t1 � 1); � � � ; u1(k � t1 � pu1); � � �

u�(k � t� � 1); � � � ; u�(k � t� � pu� ) )
(1)

wherepy andpui for i = 1; � � � ; � are the “orders” of the output
y and inputsui, respectively,ti are the time delays,k is the dis-
crete time variable andF is a non-linear operator. This system
can be rewritten as

y(k + 1) = F(x1(k); x2(k); � � � ; xn(k) ) (2)

wheren = py + pu1 + pu2 + � � �+ pu� and

x1(k) = y(k); x2(k) = y(k � 1); � � �

xpy (k) = y(k � py + 1); xpy+1(k) = u1(k � t1); � � �

xn(k) = u�(k � t� � pu� + 1)

(3)

System (2) can be represented (modeled) using the following
fuzzy relational equation:

Y (k + 1) = X1(k) �X2(k) � � � � �Xn(k) �R (4)

where Y = [Y1 � � �Yc0 ] and Xi = [Xi1
� � �Xici

] (i =
1; � � � ; n) are linguistic (fuzzy) representations of the nu-
merical (non-fuzzy) outputy and inputsx i, respectively,R
(c1 � � � � � cn � c0) is the fuzzy relational matrix (fuzzy rela-
tion) and “�” denotes the fuzzy composition operator.

Equation (4) can be simplified as

Y (k + 1) = X(k) �R (5)

whereX (c1 � � � � � cn) is the Cartesian product (Lee, 1990) of
the fuzzy inputs,

X(k) = X1(k) � X2(k) � � � � � Xn(k) (6)

which is generically defined as the product of a triangular norm
(t-norm) (Pedrycz, 1993, Pedrycz and Gomide, 1998) over the
cross product space of the fuzzy inputs.

Equations (5) and (6) can be written pointwisely for specific
fuzzy composition operator and t-norm of the Cartesian product,

1For simplicity, only multi-input/single-output (MISO) discrete-time dy-
namic systems are discussed.

respectively. With respect to the fuzzy composition operator, the
present paper deals with the well-known max-t fuzzy compo-
sition which is the most commonly used composition operator
in fuzzy systems such as fuzzy models and controllers. Then,
Equations (5) and (6) are rewritten as

Yj(k + 1) =

ci_
li = 1

i = 1; � � � ; n

Xl1;:::;ln
(k)�Rl1;:::;ln;j

; j = 1; � � � ; c0

(7)

and

Xl1;:::;ln
(k) = X1l1

(k) X2l2
(k) � � �  Xnln

(k) (8)

whereXl1;:::;ln
andRl1;:::;ln;j

(li = 1; � � � ; ci ; i = 1; � � � ; n ;
j = 1; � � � ; c0) are elements ofX andR, respectively, “_” stands
for the max operator,� is the t-norm associated with the max-t
composition and is the t-norm associated with the Cartesian
product in (6).

Given a set of input-output data pairs the identification problem
is to find a matrixR such that Equation (4) is completely or
approximately satisfied for these data. According to the fuzzy
discretization concept (see Appendix) the input and output data
can be represented (fuzzified) using normal and convex reference
fuzzy sets, as follows:

Xi(k) = [Xi1(xi(k)) Xi2(xi(k)) � � � Xici (xi(k)) ]
(9)

Y (k + 1) = [Y1(y(k + 1)) � � � Yc0(y(k + 1)) ] (10)

whereXili
is theli-th reference fuzzy set in thei-th input inter-

face andYj is thej-th reference fuzzy set in the output interface.
The reference fuzzy setsXili

(li = 1; � � � ; ci ; i = 1; � � � ; n) and
Yj (j = 1; � � � ; c0) are defined over the universes of discourse
Xi andY of xi andy, respectively. The number of fuzzy sets
used in the fuzzy model determines its degree of specificity. This
means that the approximation capability of the model is propor-
tional to the quantitiesc0 andci (i = 1; � � � ; n). By the other
side, the number of parameters of the model to be estimated
(given by the size of the relational matrixR) is also proportional
to these quantities.

Now, consider the following static system:

y = G(x1; � � � ; xn ) (11)

wherex1; � � � ; xn and y are numerical input and output vari-
ables, respectively, andG is a non-linear function which maps
x1; � � � ; xn into y. The representation of this system by means
of a fuzzy relational model is straightforward and can be derived
just by omitting the time variablek in Equations (4) to (10). In
this way, although the present paper focus on the problem of
dynamic system identification, the algorithms and results pre-
sented in the following sections also hold in the context of static
systems.
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3 RELATIONAL MATRIX ESTIMATION

3.1 Optimization criterion

Consider the estimated output of the fuzzy model~y, the mea-
sured output of the real systemy and their linguistic represen-
tations~Y andY , respectively2. The relations between these nu-
merical and linguistic outputs can be written as

Y = L(y) (12)

~y = N ( ~Y ) (13)

whereL andN represent the mappings between numerical and
linguistic information in the fuzzification and defuzzification
procedures, respectively. In the present paper, the fuzzification
L is based on the fuzzy discretization concept, as discussed in
Section 2. It is given by Equations (9) and (10) (for the in-
put and output variables, respectively). The defuzzification used
is a slight modification of the center of gravity method, called
weighted average (Pedrycz, 1993, pp. 109).

Let the input (fuzzification) and output (defuzzification) inter-
faces of the fuzzy relational model be constructed as optimal
interfaces (Oliveira, 1995), meaning that they satisfy the infor-
mation equivalence criterion3 (Pedrycz and Oliveira, 1996) for
all numerical values of their universes of discourse, as follows:

8 a 2 A : N (L(a)) = a (14)

whereA is the universe of discourse of a hypothetic optimal
interface. Examples of optimal interfaces are those associated
with the fuzzification and defuzzification methods considered
above, having fuzzy sets with triangular membership functions
overlapped at a degree of0:5 and equally spaced centers. Op-
timal interfaces with other shapes of membership functions can
be constructed using optimization algorithms (Oliveira, 1995).

From the above considerations an optimization criterion for
fuzzy relational model identification can be derived based on the
following proposition.

Proposition 1

Let the mappings N and L in (13) and (12), respectively, be
implemented through an optimal interface. Then, the equality
~Y = Y between the fuzzy outputs of the model and the system
results in the equality ~y = y between their respective non-fuzzy
outputs.

Proof: If ~Y = Y , then Equation (13) can be rewritten as

~y = N (Y ) (15)

Substituting (12) into (15) results in

~y = N (L(y)) (16)

2The time variablek is omitted for simplicity.
3The information equivalence criterion means that a numerical value can be

completely recovered after a fuzzification-defuzzification sequence through an
interface.

Then, the equality~y = y is obtained using both Equation (16)
and the optimal interfaces concept (14).

The above result means that an approach for fuzzy model iden-
tification can be derived by the minimization, over the relational
matrixR, of a criterion of distance between the fuzzy outputs of
the system and model, i.e.

min
R

f(Y; ~Y ) (17)

wheref is a generic distance criterion. However, the fuzzy out-
put of the model is bounded above by the fuzzy input in the re-
lational equation, i.e.,~Y (computed by means of Equation (7))
belongs to the interval[ 0; G0 ]c0 , whereG0 2 [0; 1] is given by

G
0 = max (X) =

ci_
li = 1

i = 1; � � � ; n

Xl1;:::;ln
(18)

Since the fuzzy output of the systemY (computed by means of
Equation (10)) belongs to the interval[0; 1]c0 , ~Y belongs to a
subinterval ofY and, consequently, a direct minimization as in
(17) may be inefficient.

For the worst case scenario concerning the numerical inputs
xi 2 Xi (i = 1; � � � ; n), G0 takes on the lowest possible value,
designatedG, that is

G = Inf max
xi 2 Xi

i = 1; � � � ; n

(X) (19)

Then, Problem (17) can be changed into

min
R

f(GY; ~Y ) (20)

whereGY 2 [0; G]c0 . Since by definitionG0 � G for all xi 2
Xi (i = 1; � � � ; n), GY belongs to a subinterval of~Y and the
minimization in (20) can be successfully undertaken.

In this context it is important to notice that, in general, a gain in
the values of the membership function of an output fuzzy set, for
exampleA, does not change the defuzzified output~a, as follows
(see Figure (1)):

~a = N (A) = N (GA) (21)

This is the case for classical defuzzification methods, such as
the center of gravity, mean of maxima and weighted average, as
shown in the equation below:

~a =

X
j

GAj�j

X
j

GAj

=

X
j

Aj�j

X
j

Aj

(22)

where�j is the modal value of thej-th reference fuzzy set of
the output interface. As a consequence, the result of Proposition
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1 can be extended for Problem (20) by means of the following
proposition.

~a

GA

1

A

Figure 1: Defuzzification of two proportional fuzzy sets.

Proposition 2

Regarding the conditions of Proposition 1, if the defuzzifica-
tion mapping N is such that Equation (21) is satisfied, then the
equality ~Y = GY is optimal since it results in the equality ~y = y

between the non-fuzzy outputs of the system and the model.

Proof: If ~Y = GY , then Equation (13) can be rewritten as

~y = N (GY ) (23)

From (23) and (21),

~y = N (Y ) (24)

and analogously to Proposition 1,

~y = N (Y ) = N (L(y)) = y (25)

The computation ofG is derived from the following theorem.

Theorem 1 The value G in (19) is given by:

G = g1 g2 � � � gn (26)

gi = Inf max
xi 2Xi

(Xi1 (xi);Xi2 (xi); � � � ;Xici (xi)) (27)

where  is the t-norm defined in (8) and gi is the minimum grade
for the union of the reference fuzzy sets in the i-th input interface
(see Figure (2)).

Proof: From Equation (8) and due to the monotonicity of
the triangular norms (i.e. fora � b andd � e: a d � b  e

8a; b; d; e 2 [0; 1]) the following equation can be written:

max (X) = max (X1)  max (X2)  � � �  max (Xn)
(28)

Analogously,

Inf max
xi 2 Xi

i = 1; � � � ; n

(X) = Inf max
x1 2 X1

(X1)  � � �  Inf max
xn 2 Xn

(Xn)

(29)

Defininggi as

gi
4

= Inf max
xi 2 Xi

(Xi) (30)

and using Equation (19), Equation (29) becomes

G = g1 g2 � � � gn (31)

Moreover, from Equations (9) and (30) the following equation
holds:

gi = Inf max
xi 2Xi

(Xi1 (xi);Xi2 (xi); � � � ;Xici (xi)) (32)

gi

xi

1

Xi1(xi);Xi2 (xi)

Figure 2: Minimum gradegi for the union of two reference fuzzy
sets.

It is important to notice that if the input interfaces are optimal,
then they satisfy the condition of completeness (coverage of the
universes of discourse) (Pedrycz, 1993). This property assures
that null gi’s can not occur. Consequently, it can avoid a null
gainG. However, to avoid numerical problems due to a very
small value ofG the t-norm should be carefully chosen, espe-
cially when the number of inputs is too large (n too large). In
these cases, an adequate choice could be, for instance, the min
operator. Despite this, a triangular norm commonly used to im-
plement the Cartesian product in fuzzy systems is the algebraic
product, which is considered in the example presented in Sec-
tion 4.

3.2 Refinement algorithm

Let a set ofN + 1 input/output data pairs be available to be
used in the refinement of a fuzzy relational model previously
identified by any method (e.g. Pedrycz, 1984, Xu and Lu, 1987,
Campello et al., 1998). The distance criterion in Problem (20) is
defined as the following set of independent cost functions:

Jj =
1

2

NX
k=1

(GYj(k + 1)� ~Yj(k + 1))2 (33)

142 Revista Controle & Automação /Vol.10 no.3/Set., Out., Nov. e Dezembro de 1999



wherej = 1; � � � ; c0. Since~Yj is computed using (7), Equation
(33) can be rewritten as

Jj =
1

2

NX
k=1

(GYj(k + 1) �

ci_
li = 1

i = 1; � � � ; n

Xl1;:::;ln
(k)�Rl1;:::;ln;j

)2

(34)

Moreover, since an initial model to be refined (namely an initial
relational matrix) is available, the information about which ele-
mentX(�)�R(�);j of the fuzzy composition is maximum at every
time instantk = 1; � � � ; N is known (a priori). Then, Equation
(34) can be simplified as

Jj =
1

2

NX
k=1

(GYj(k + 1)�Xmk (k)�Rmk;j)
2 (35)

wheremk 2 f1; 2; : : : ; lg (l = c1 � c2 � � � cn) is the combination
of l1; : : : ; ln such thatXmk�Rmk;j is the maximum element of
the composition at the time instantk, i.e.

m
k = arg max

m=1;���;l
Xm(k)�Rm;j (36)

To guarantee thatXmk�Rmk;j remains maximum during the op-
timization procedure, for everyj = 1; � � � ; c0 a set ofN(l � 1)
inequalities must be taken into consideration in the optimization
problem, as follows:

Xmk(k)�Rmk;j � Xqk (k)�Rqk ;j

k = 1; � � � ; N
q
k = 1; 2; � � � ;mk � 1;mk + 1; � � � ; l

(37)

Due to the monotonicity of the triangular norms, the inequalities
in (37) can be replaced by

Rmk;j � �mk;qk;j(k)

k = 1; � � � ; N
q
k = 1; 2; � � � ;mk � 1;mk + 1; � � � ; l

(38)

where�mk;qk;j is the smallest value ofRmk;j for which the in-
equality in (37) related to the respectivek andq k is satisfied. If
the t-norm� is continuous on its domain ([0; 1]2 ) and satisfies
the conditiona0 � b < a � b : a0<a 8 a; a0; b 2 [0; 1], then the
smallest value ofRmk;j for which an inequality in (37) is satis-
fied is that value for which the lower bound of the inequality (the
equality) is satisfied. Then, the constraints�mk;qk;j are given by
the solution of the following equations:

Xmk(k)��mk ;qk;j(k) = Xqk (k)�Rqk ;j

k = 1; � � � ; N
q
k = 1; 2; � � � ;mk � 1;mk + 1; � � � ; l

(39)

Furthermore, it is necessary to assure during the optimization
procedure thatRmk;j belongs to[0; 1] (membership function in-
terval) for everyk = 1; � � � ; N . Since any solution�mk;qk;j

of Equation (39) belongs to the interval[0; 1], the condition

Rmk;j � 0 is assured in (38). Then, it is only necessary to
assure that the conditionRmk;j � 1 is satisfied.

For the sake of the issues presented above, a set of optimization
problems to refine the relational matrixR is given by

min
R
mk;j

Jj =
1

2

NX
k=1

(GYj(k + 1)�Xmk(k)�Rmk;j)
2

s. to �mk;qk;j(k) � Rmk;j � 1

q
k = 1; 2; � � � ;mk � 1;mk + 1; � � � ; l (40)

wherej = 1; � � � ; c0. If the t-norm� is the algebraic product
then (40) becomes a convex and continuous quadratic problem,
that is

min
R
mk;j

Jj =
1

2

NX
k=1

(GYj(k + 1)�Xmk (k)Rmk;j)
2

s. to �mk;qk;j(k) � Rmk;j � 1

q
k = 1; 2; � � � ;mk � 1;mk + 1; � � � ; l (41)

where�mk;qk;j is derived from (39) as

�mk;qk ;j(k) =
Xqk (k)Rqk;j

Xmk(k)
(42)

Problem (41) can be solved by means of quadratic programming
(Bazaraa and Shetty, 1979) using as an initial feasible condi-
tion the fuzzy relational matrix of the model to be refined. It
is worthwhile to remark that in this problem only the elements
of the relational matrix which maximize the fuzzy composition
are optimized. Also, the optimization is done inside the bounds
(constraints) determined by the structure of the model to be re-
fined together with the available data. Hence, the refinement will
achieve better results for a model such that the majority of its el-
ements (which are significant to represent the system) maximize
the fuzzy composition at least at one time instant, and also for a
consistent data set.

It is important to notice that the values of the elementsRqk;j in
(42) are in general given by the initial relational matrix to be re-
fined. However, ifmk1 6= m

k2 for k1 6= k2, then there existqk1

andqk2 such thatqk1 = m
k2 andqk2 = m

k1 , i.e., specific ele-
mentsRmk1 ;j andRqk2 ;j (alsoRmk2 ;j andRqk1 ;j) are the same
element of the relational matrix. Then, the elementsRmk ;j to be
optimized in (41) can also be involved in constraints�mk;qk;j . In
these cases, these constraints are not single constants to be com-
puted using Equation (42); They are function of the elements
to be optimized and, consequently, the respective inequalities
�mk;qk;j � Rmk;j in (41) should be manipulated to be numer-
ically implemented. For example, the constraint�mk1 ;mk2 ;j is
given by

�mk1 ;mk2 ;j(k) =
Xmk2 (k)Rmk2 ;j

Xmk1 (k)
(43)

and the inequality�mk1 ;mk2 ;j � Rmk1 ;j should be rewritten as
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X
m
k2 (k)Rm

k2 ;j
�X

m
k1 (k)Rm

k1 ;j
� 0 (44)

i.e., with two optimization variables.

Finally, if the refinement procedure does not provide satisfactory
results according to some criteria for model evaluation, then the
structure of the fuzzy relational matrix can be changed. Roughly
speaking, since the relational matrix of the model to be refined
is by definition non-optimal, the information about the elements
which maximize the composition fork = 1; � � � ; N may be in-
correct. In this case, a methodology can be used after the so-
lution of Problem (41) to substitute the elements which maxi-
mize the composition in such a way that the cost functionsJ j

(j = 1; � � � ; c0) are decreased. This methodology is explained
using the following example and subsequently a generic algo-
rithm is presented.

Example: Consider a specific elementRm̂;j of the columnj of
the relational matrix which maximizes the fuzzy composition,
for example, atk = k1,k2,k3. Then, according to Equation (36),

m̂ = m
k1 = m

k2 = m
k3 (45)

For everyk = k1; k2; k3, there is a set of(l � 1) constraints
�mk;qk;j in (41), but only the greatest one can restricts the value
of Rm̂;j . After the solution of (41) all constraints�mk;qk;j are
known and can be computed by Equation (42) usingR derived
from (41). For eachk, the greatest constraint is given by:

��mk;j(k) = max
qk

�mk;qk;j(k);

q
k = 1; 2; � � � ;mk � 1;mk + 1; � � � ; l

(46)

Suppose that��mk1 ;j <
��mk2 ;j <

��mk3 ;j in this example. Sup-
pose also thatRm̂;j was bounded below in (41). This means that
Rm̂;j = ��mk3 ;j after the solution of (41). From this equality and
Equations (46) and (42),

Rm̂;j = max
qk3

�mk3 ;qk3 ;j(k3) =

max
qk3

�
Xqk3 (k3)Rqk3 ;j

Xmk3 (k3)

�
4

=
Xq̂k3 (k3)Rq̂k3 ;j

Xmk3 (k3)
(47)

where

q̂
k3 = argmax

qk3

�mk3 ;qk3 ;j(k3)

q
k3 = 1; 2; � � � ;mk3 � 1;mk3 + 1; � � � ; l

(48)

Equation (47) can be rewritten as

Xm̂(k3)Rm̂;j =
Xm̂(k3)Xq̂k3 (k3)Rq̂k3 ;j

Xmk3 (k3)
(49)

From Equation (45) the equalityXm̂(k3) = Xmk3 (k3) holds
and Equation (49) becomes

Xm̂(k3)Rm̂;j = Xq̂k3 (k3)Rq̂k3 ;j (50)

By analyzing Equation (50) it can be noted that decreasingR m̂;j

the elementR
q̂
k3 ;j

of the relational matrix automatically starts
to maximize the composition atk = k3, but the maximum value
(X

q̂
k3Rq̂

k3 ;j
) of the composition remains constant. Hence, the

component of the cost functionJj related tok = k3 does not
change whenRm̂;j is decreased. Moreover, sinceXm̂Rm̂;j de-
creases whenRm̂;j is decreased,Rm̂;j does not start to maxi-
mize the composition atk 6= k1; k2; k3. Hence, the components
of the cost functionJj related tok 6= k1; k2; k3 do not change ei-
ther. Consequently, only the components ofJ j related tok = k1

andk = k2 changes. Therefore,Jj can be minimized (over
Rm̂;j) by minimizing only its components which are related to
k = k1 andk = k2 inside the range so thatRm̂;j decreases with-
out stopping to maximize the composition atk = k1 andk = k2,
as follows4:

min
R
mk;j

J
0

j
=

1

2

X
k=k1;k2

(GYj(k + 1)�Xmk(k)Rmk;j)
2

s. to ��mk2 ;j(k2) � Rmk;j � ��mk3 ;j(k3)
(51)

The optimal solutionR�

m̂;j
(= R

�

mk;j
for k = k1; k2; k3) is ob-

tained from

@J
0

j

@Rmk;j

=
X

k=k1;k2

(X2
mk (k)Rmk;j �GXmk(k)Yj(k + 1)) = 0

(52)

Then,R�

m̂;j
is given by

R
�

m̂;j
=

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

��
mk2 ;j

(k2); if

G

X
k=k1;k2

Xmk (k)Yj(k + 1)

X
k=k1;k2

X2

mk
(k)

� ��
mk2 ;j

(k2)

��
mk3 ;j

(k3); if

G

X
k=k1;k2

Xmk (k)Yj(k + 1)

X
k=k1;k2

X2

mk
(k)

� ��
mk3 ;j

(k3)

G

X
k=k1;k2

Xmk (k)Yj(k + 1)

X
k=k1;k2

X2

mk
(k)

; otherwise

(53)

Afterwards, ifR�

m̂;j
= ��mk2 ;j (i.e. if R�

m̂;j
is bounded below)

then the present context is equivalent to the initial context of the
example and a similar analysis can be done only fork = k1; k2.
In this way,

R
�

m̂;j
=

8>>><
>>>:

��mk1 ;j(k1); if GYj(k1+1)

X
m
k1
(k1)

� ��mk1 ;j(k1)

��mk2 ;j(k2); if GYj(k1+1)

X
m
k1
(k1)

� ��mk2 ;j(k2)

GYj(k1+1)

X
m
k1
(k1)

; otherwise

(54)

In this example it can be seen that after the solution of the
quadratic problem (41) specific elements of the relational matrix

4The inequalityRmk;j �
��
mk1 ;j

is not taken into consideration in Problem

(51) because it is redundant since��
mk1 ;j

is lower than��
mk2 ;j

.
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(i.e. elements which were bounded below) can be optimized in
such a way that they stop to maximize the composition at some
time instants, reducing the values of cost functionsJj . The al-
gorithm is summarized below.

Algorithm for changing the relational matrix structure

Given a fuzzy relational matrix derived from (41), its structure
can be changed using the following basic algorithm:

a) For j = 1 to c0 execute all operations until Stepj.

b) For i = 1 to l execute all operations until Stepj.

c) If the elementRi;j maximizes the fuzzy composition at least
at onek 2 f1; � � � ; Ng (i.e. if there existk 2 f1; � � � ; Ng such
thati = m

k, wheremk is given by (36)) then execute all opera-
tions until Stepj, else do nothing.

d) Find the set0 = fk1; � � � ; k�g of time instantsk for
which Ri;j maximizes the composition, i.e., the instantsk =
k1; � � � ; k� for which i = m

k (i = m
k1 = � � � = m

k�).

e) For each element of0 compute the greatest constraint
�mk;qk;j , i.e., fork = k1; � � � ; k� compute

��(k) = max
qk

�mk;qk;j(k);

q
k = 1; 2; � � � ;mk � 1;mk + 1; � � � ; l

(55)

where the constraints�mk;qk;j are given by Equation (42).

f) Construct a ordered setf��1; � � � ; ���g with ��(k) such that
��1 � ��2 � � � � � ���, where

��1 = max
k20

��(k) (56)

��� = min
k20

��(k) (57)

g) For� = 1 to �� 1 execute all operations until Stepj.

h) If Ri;j = ��� execute all operations until Stepj, else do noth-
ing.

i) Find the solutionR�

mk;j
of the following optimization prob-

lem:

min
R
mk;j

J
0

j
=

1

2

X
k20

(GYj(k + 1)�Xmk(k)Rmk;j)
2

s. to ���+1 � Rmk;j � ��� (58)

j) ComputeRi;j = R
�

mk;j
.

If the the values of the cost functionsJj (j = 1; � � � ; c0) are
reduced after the execution of the algorithm presented above,

then Problem (41) can be solved again using the new fuzzy re-
lational matrix as an initial condition. Otherwise, the refinement
has achieved its best possible solution. However, if there are el-
ements of the final optimized matrix which never maximizes the
composition for the available data set, then these elements can
be made equal zero since they do not influence the model out-
put. In this case, some constraints of (41) are relaxed and the
refinement can go on.

3.3 Recursive algorithm

An algorithm for recursive identification of fuzzy relational
models can be derived from the issues presented in the last sec-
tion as follows. Starting from an initial estimate of the fuzzy re-
lational matrix and taking into consideration only a single input-
output data pair (X(k) andY (k+1)), i.e.N = 1, Problem (40)
is rewritten as

min
R
mk;j

Jj =
1

2
(GYj(k + 1)�Xmk(k)�Rmk ;j)

2

s. to �mk;qk ;j(k) � Rmk;j � 1

q
k = 1; 2; � � � ;mk � 1;mk + 1; � � � ; l (59)

wherej = 1; � � � ; c0 andRmk;j is the element of the columnj
of the relational matrix which maximizes the fuzzy composition
atk. Unlike Problem (40), since only one instantk is taken into
consideration in (59) the use ofl � 1 constraints is redundant
because the greatest one (��mk;j) is known. Thus, Problem (59)
can be rewritten as

min
R
mk;j

Jj =
1

2
(GYj(k + 1)�Xmk(k)�Rmk;j)

2

s. to ��mk;j(k) � Rmk;j � 1 (60)

where��mk;j (given by Equation (46)) is the smallest value of
Rmk;j for whichXmk�Rmk;j remains the maximum element of
the composition.

Using the penalty function method (Bazaraa and Shetty, 1979),
the constrained optimization problem (60) is replaced by an un-
constrained one, as follows:

min
R
mk;j

J
0

j
=

1

2
(GYj(k+1)�Xmk(k)�Rmk;j)

2+ Jpj (61)

with

Jpj =



2

� �
max(0 ; Rmk;j � 1)

�2
+

+
�
max(0 ; ��mk;j(k)�Rmk;j)

�2 � (62)

where

2

is the gain of the penalty functionJpj which must be
large enough in relation to the original cost functionJ j in (60).
SinceJj in (60) belongs to the interval[0; 1

2
], the condition
 >

1 should be satisfied.

The fuzzy relational matrix can be updated using the gradient
method as
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R
�

mk;j
= Rmk;j � �

@J
0

j

@Rmk;j

; j = 1; � � � ; c0 (63)

whereR�

mk;j
is the new value ofRmk;j and� is the learning rate

of the method. The gradient is given by

@J
0

j

@Rmk;j

=

(Xmk(k)�Rmk ;j �GYj(k + 1) )
@(Xmk(k)�Rmk;j)

@Rmk;j

+

+ 
max
�
0 ; Rmk;j � 1

�
�
max

�
0 ; ��mk;j(k)�Rmk;j

�
(64)

Equations (63) and (64) are a generalization of the adaptation
law proposed in Campello and Amaral, 1998, where the t-norm
� used is the product and the gradient is given by

@J
0

j

@Rmk;j

=

X
2
mk(k)Rmk;j �GXmk(k)Yj(k + 1) +

+ 
max
�
0 ; Rmk;j � 1

�
�
max

�
0 ; ��mk;j(k)�Rmk;j

�
(65)

It is important to note that the algorithm updates the relational
matrix recursively and takes the constraints given by an estimate
of this matrix into consideration. This estimate is given by the
relational matrix itself at the previous time instant, but its infor-
mation remains reliable at the present instant only if there are
no abrupt changes in the system. Thus, the algorithm is well-
suited for the identification of slowly time-variant systems, i.e.,
systems which have no abrupt changes in their dynamics. For
the identification of generic time-varying systems a more com-
plex adaptive algorithm can be utilized, as that one developed in
previous work (Campello et al., 1997, Campello et al., 1998).

4 NUMERICAL EXAMPLE

The gas furnace of Box and Jenkins, 1970 is used to evaluate the
performance of the proposed methods in the identification of a
dynamic system. The data set consists of 296 input/output data
pairs observed from the process. The input (u) is methane gas
feed rate and the output (y) is carbon dioxide concentration in a
mixture of gases. The relational model used for the identifica-
tion of this process follows the structure investigated in Pedrycz,
1984 and Lee et al., 1994, i.e.

Y (k + 1) = Y (k) � U(k � 2) �R (66)

where “�” denotes the max-product composition (t-norm� is
the product). In this example, is the product t-norm and
the interfaces havec0 = c1 = c2 = 5 reference fuzzy sets with
Gaussian membership functions optimized by the�-PAFIO al-
gorithm (Oliveira, 1995). The defuzzification method used is
the weighted average (see Equation (22)). To get round the
well-known difficulty of the method to defuzzify extreme val-
ues, the output interface is expanded (10%) over its universe of
discourse.

A random initial fuzzy relational matrix is used to evaluate the
performance of the recursive algorithm presented in Section 3.3
when a model to be refined is not available. This matrix is con-
sidered to be the iteration zero (' = 0) of the identification pro-
cedure, since there is no identification associated with it, and is
set up as the initial condition for the recursive algorithm. The
choice of the recursive algorithm parameters is as follows. The
gain of the penalty function method should be greater than 0.5
(see Section 3.3). The choice of this gain is not critical and in
this example it is set equal to 2. The value of the learning rate
of the gradient method basically changes the convergence rate
of the algorithm. A high value (0.9) is assigned to it in this
example since the algorithm starts the identification procedure
from a random relational matrix (i.e. without an initial model).
In this algorithm the data set is recursively used four times, i.e.
' = 1; 2; 3 and4, where each iteration' means the utilization
of the entire data set. The algorithm is stopped at' = 4 because
beyond this iteration it can not provide significant improvement
of the model anymore. More specifically, the mean squared error
(MSE) between the non-fuzzy outputs of the process and model
can not be reduced with rate greater than a previously established
threshold of 5% between two iterations'. After the execution of
the recursive algorithm, the resulting model is refined using the
refinement algorithm presented in Section 3.2 until a satisfactory
fine-tune is achieved (' = 5; � � � ; 9).

The evolution of the MSE between the non-fuzzy outputs of the
process (y) and model (~y) throughout the iterations' is illus-
trated in Figure (3). In this figure the convergent behavior of
both the proposed algorithms can be observed.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

'

M
S

E

Figure 3: Evolution of the mean squared error betweeny and
~y: Recursive algorithm (solid line) and refinement algorithm
(dashed line).

Figure (4) displays the output of the system together with the
output of the model for one-step-ahead prediction and synthetic
data (also called recursive or open-loop simulation). The syn-
thetic data are generated to evaluate the generalization of the
model, since in this kind of simulation there is feedback of the
prediction errors. Figure (4) illustrates the accuracy of the model
obtained using the proposed algorithms, showing that an effi-
cient identification can be performed even starting from a ran-
dom relational matrix. Despite this, in the case of hard user
requirements these results can be significantly improved using
a more complex model with two samples of the input signal
instead just one (as in Sugeno and Yasukawa, 1993), that is
Y (k + 1) = Y (k) � U(k � 2) � U(k � 3) � R. In this case,
however, the dimensions of the model increase, especially the
size of the relational matrix.
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Figure 4: System output (solid line) and model output (dotted
line): One-step-ahead prediction (above) and synthetic data (be-
low).

5 CONCLUSIONS

Two numerical methods for identification of fuzzy relational
models have been proposed. The first one is an optimization-
based methodology which solves a set of quadratic problems to
refine rough estimative of relational matrices. The second one
is a recursive algorithm which is derived as a simplification of
the first method and is well-suited for on-line applications. The
proposed methods were evaluated using a real dynamic system.
The recursive algorithm provided a model with reasonably small
prediction errors, even starting the identification from a random
initial relational matrix. The refinement algorithm provided a
fine-tune for the model identified using the recursive algorithm,
showing that it can improve relational models previously identi-
fied by other methods. These results illustrate that efficient mod-
els can be derived to be used in several application fields such
as, for example, system monitoring, time series forecasting and
(adaptive/predictive) model-based control. In the latter, specifi-
cally, better models can lead to more accurate control strategies
and, consequently, better performances for the closed-loop sys-
tems.
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APPENDIX: FUZZY DISCRETIZATION

The fuzzy discretization technique for data representation in
fuzzy systems was proposed by Willaeys and Malvache, 1981
and have been widely utilized in fuzzy model identification (for
instance see (Pedrycz, 1984) and (Wang and Langari, 1996)).
This technique is outlined in this appendix as follows.

LetX1; � � � ;X� be fuzzy sets, called reference fuzzy sets, defined
in the universe of discourseX of the non-fuzzy variablex, i.e.

Xi : X! [0; 1] ; i = 1; � � � ; � (67)

such that they satisfy the frame of cognition concept5, especially
the condition of completeness:

8x 2 X 9i : 1 � i � � : Xi(x) > 0 (68)

Then, according to the fuzzy discretization concept any fuzzy set
X inX can be represented by a possibility vector as follows:

Px = [Px1 � � � Px� ] (69)

wherePxi represents a possibility measure (Zadeh, 1978) ofX

with respect to thei-th reference fuzzy setXi, that is

Pxi = Poss(X jXi )
4

= Sup[X(x) t Xi(x) ] ;
x 2 X

i = 1; � � � ; �

(70)

with “t” being a triangular norm.

The formulation presented above means that a non-fuzzy vari-
able x 2 X can be fuzzified generating a fuzzy setX , and
further, it can be represented by means of reference fuzzy sets
X1; � � � ;X� using equations (69) and (70). If the fuzzification is
implemented using the (non-fuzzy) singleton, then for a given
valuex0:

X(x) =

�
1; if x = x

0

0; otherwise
(71)

5The frame of cognition (Pedrycz, 1995, Pedrycz and Gomide, 1998) is a set
of conditions which determines that a collection of fuzzy sets associated with a
linguistic variable is semantically interpretable, having clear linguistic meaning.

Due to the boundary conditions of the triangular norms, i.e.,
0 t a = 0 and1 t a = a (8 a 2 [0; 1]), equations (70) and
(71) yield

Pxi = Xi(x
0) (72)

and consequently

Px = [X1(x
0) � � � X�(x

0) ] (73)

whereXi(x
0) is the grade of membership of the numerical value

x
0 in relation to thei-th reference fuzzy setX i.

SinceXi(x
0) 2 [0; 1] (i = 1; � � � ; �), the possibility vector (73)

is, by definition, a fuzzy set (with� discretization elements).
Then, since generally� � 9 (because a linguistic variable is
commonly associated with7 +

�
2 fuzzy sets (Pedrycz, 1995)) it

is possible to represent linguistically a non-fuzzy variablex by
means of a fuzzy setPx using a small number of parameters. As
a consequence, the dimensions of fuzzy models can be signifi-
cantly reduced by the use of the fuzzy discretization technique.
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