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Abstract: This work proposes a 3D object recognition method
based on the matching of geometric attributes extracted from
polyhedral models. 3D attributes are determined by crossing
data obtained from three 2D views of the object. The recog-
nition method matches global, local and relational attributes, in
order to make possible the identification and positioning of both,
the models present in the scene and the visible surfaces in the
views.

1 INTRODUCTION

Technological development of modern society has led to increas-
ing research on methods and systems to automate human tasks.
“Machines with vision capability", has been a recurrent research
theme for the last three decades. The scope of application of
such machines is very large, ranging from military weapons and
space probes to industrial systems and medical devices.

Many applications of computer vision systems have been found
in industrial automation, where the need for recognizing 3D ob-
jects, or parts of objects, is frequently present. Such is the case of
industrial inspection systems, used for quality control in produc-
tion lines. In general, whenever only classification is required, it
is possible to perform 3D recognition by analysis of 2D images
of the object, taken from distinct view points by two or more
cameras. This approach has the advantage, compared to a direct
analysis of 3D contours, of utilizing the great number of existing
2D image processing algorithms, besides considerably reducing
the amount of computation required. This technique is known as
stereovision or multi-view (Marshal and Martin, 1992; Chiouet
alii , 1992).

The greatest problem in stereovision resides in performing a re-
liable and fast matching between corresponding points present
in the scene images captured from different viewpoints. This
correspondence is determined by the geometry of the image ac-
quisition set-up, which has to be known in advance.

Model-based vision systems represent the most used strategy for
object or shape recognition. In this approach, features extracted
from the objects in a scene are matched against features of previ-

ously stored object models. For 3D recognition, a three-dimen-
sional formulation of these features is required. Comprehensive
studies of techniques and methods for model-based vision sys-
tems have been presented by Chin and Dyer (1986), Besl and
Jain (1985), Arman and Aggarwal (1993) and Requicha (1980).
More recently, Borges (1996) developed a solution to the prob-
lem of 3D recognition of complex curved objects with articula-
tions.

This paper presents a new model-based recognition method for
scenes composed of three-dimensional objects, possibly with
partial occlusion. The main guideline of this work has been to
keep computational complexity low, in order to increase speed
of operation, while still achieving good recognition rates. For
that, the method relies on the matching of a few simple geo-
metric attributes extracted from the scene with known geometric
attributes of a set of polyhedral object models. Operation can
be viewed in three stages: 1) construction of a library of ob-
ject models; 2) extraction of attributes of scene objects; and 3)
matching of scene-model attributes (recognition and location).

A block diagram for this operation is shown in Figure 1. The li-
brary consists of three-dimensional models plus a corresponding
set of model surface geometric attributes. Three 2D images of
scene objects are captured during the attribute extraction stage.
After some processing operations are performed on the images,
2D features are obtained. From these features a set of 3D geo-
metric attributes for all visible surfaces of the objects is built.

The “Object Identification” block in Figure 1 searches the li-
brary, looking for models with attributes that match those ex-
tracted from the scene. Besides selecting the matching models,
the system also defines which model surfaces correspond to the
visible surfaces in the scene. Finally, model and scene informa-
tion are used to determine the spatial location of the identified
model in the scene frame of reference.

Section 2 of this paper presents the object modeling technique
utilized in the work. Image acquisition and feature extraction
are discussed in Section 3, while Section 4 presents the proposed
method for object recognition. Section 5 analyzes test results, for
which both synthetic and real scene images were used. Conclu-
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Figure 1: Block Diagram of Recognition System

sions are taken and discussed in Section 5.

2 3D OBJECT MODELING

The models composing the library were constructed using a
commercial CAD system (AutoCAD R12), instead of built from
real images of the objects they represent. This choice of model-
ing technique is due to the the facilities offered by those systems,
which considerably ease the task (especially that of feature ex-
traction) and make it very straightforward to expand and update
the library.

Each model in the library is composed by two basic parts: 1)a
3D shapeand 2)the 3D geometric attributes. The exact method-
ology used to elaborate these models has been presented by the
authors in a previous work (Farias and Carvalho, 1997). For the
tests reported here ten polyhedral models, representing shapes
commonly found in industrial environments, were developed.
They are assumed to be in a stable position on a table, whose
lower left-hand corner represents the origin of the 3D coordinate
system. Figure 2 shows 3D views of the complete set of models.

Figure 2: 3D View of Models

The 3D attributes extracted are related to the models’ surfaces:
area, normal vector, perimeter, number of edgesand vertices.
From these, some other attributes related to the solid can be cal-
culated:minimum and maximum areaandnumber of edgesfor
all surfaces.

3 IMAGE ACQUISITION AND DATA EXTRAC-
TION

A methodology for image acquisition and 3D data extraction for
use in trinocular stereo vision systems is presented in this sec-
tion. A possible object/camera set-up for such a system is ilus-
trated in Figure 3. The object is assumed to be in a stable position
on top of a flat table. Three images from different viewpoints are
taken, so that data corresponding to the width, height and depth
of the object can be obtained. The lower left corner of the table
is taken as the origin of a 3D coordinate system, theX�Y plane
corresponding to the table top. The cameras should be placed on
orthogonal planes, at the same distance from the table center and
should have the same focal length.

Y

O
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Figure 3: Image Acquisition Set-up

As shown in Figure 3, one camera views the scene from a plane
parallel to the table top (X � Y plane), originating the top view
image of the scene. Another camera views the scene from a
plane parallel to theX � Z plane, producing the side view of
the objects on the table. Finally, the third camera is placed on a
plane parallel to theY � Z, generating a front view image.

Figure 4 shows a block diagram for the proposed methodol-
ogy. The three camera images are digitized and sent to the pre-
processing and segmentation stage. Vertex extraction from the
2D views of the scene surfaces is performed at this stage. The
collected data is used to create a 2D database, from which the
regions forming each view can be analyzed. A data crossing
technique is applied on the coordinates of the extracted 2D sur-
face vertices in order to identify the 3D vertices characterizing
the scene objects in the three-dimensional space. The set of 3D
data thus obtained allows calculation of surface attributes for the
recognition process. The surfaces which can not be described in
3D are discarded. A final analysis is needed to detect and elim-
inate redundancy, caused by surfaces which are visible in more
than one view. A report is then produced by the system, listing
the vertices and the attributes of the visible surfaces.

In order to have meaningful image processing and analysis,
some aspects concerning image acquisition and camera calibra-
tion must be considered, as examined next (Marshall and Martin,
1992).

3.1 Camera Geometrical Transformations

Camera geometrical transformations are procedures used to de-
termine real physical parameters from object images. These op-
erations involve the characteristics of the camera utilized for
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image acquisition and digitizing. Their choice depends on the
specific application intended for the vision system (Marshal and
Martin, 1992; Liu and Tsai, 1990; Chen and Kak, 1989; Dhond
and Aggarwal, 1989; Chiouet alii, 1992).

In general, camera characteristics concern internal parameters,
like focal length and lens distortion. The relationship between
real object and image coordinates is considered an external pa-
rameter. Digitizing consists in sampling image light intensity (or
brightness) over a uniform retangular grid.

The regular procedure for digitizing pictures taken by ordinary
photographic cameras is to use a scanner. The relationship be-
tween real lenght in the scene and the lenght correponding to a
certain number of pixels in the digitized image, is given by:

Xr =

�
d� f

fAt

�
np (1)

with parameters:Xr - real object length;d - camera/object dis-
tance;f - camera focal length;A - negative/positive amplifica-
tion factor;t - scanner sampling rate; andnp - number of pixels.

Therefore, once the number of pixels in the processed image is
known, the real object length can be obtained. The geometrical

transformation is the factorTg =
�
d�f
fAt

�
.

3.2 Image Pre-processing and Segmenta-
tion

Image processing and segmentation techniques are applied to the
images representing the three views of the scene. The objective
is to reduce each of those images to line drawings, where only
the contours of the surfaces are visible. These contours should
be continuous and well defined, in order to guarantee good sur-
face extraction during the segmentation stage. As a result of seg-
mentation, a list of 2D vertices is obtained, defining the visible
surfaces in each view image.

The pre-processing and segmentation algorithms used in this

work were developed by Melcher for VLSI implementation of
real-time contour and vertex extraction in sequences of images
(Melcheret alii, 1996; Melcheret alii, 1996a; Melcheret alii,
1997). These methods are briefly reviewed now.

The contour extraction algorithm, consists of three stages: 1)
gradient image calculation; 2) calculation of local maximum and
extraction of first contour; and 3) extraction of second and final
contour.

A 2D spline gradient function, defined by four5 � 5 masks, is
used to generate the gradient images (Melcheret alii, 1996). The
masks parameters correspond to the coefficients of the derivative
of the cubic spline function which interpolates the central pixel
in a 5 � 5 window along the four possible directions: horizon-
tal, vertical and the two diagonals. The values output by the
four masks are averaged to produce the approximation to the im-
age gradient at the central pixel coordinates. This averaging of
the gradient along four different directions, makes the algorithm
very robust against the presence of random noise in the image.
Spline functions produce the smoothest interpolation in a mean-
square sense, with null error at the original sample points, being
therefore extremely adequate to this type of application (de Car-
valho and Hanson, 1984).

The surfaces contours are extracted by sweeping the gradient
images with windows. Initially a5 � 5 window is applied, for
which the relative weight of the central pixel gray level with re-
spect to its neighbours is calculated. Only neighbours with gray
level smaller than or equal to the central pixel are considered
in this calculation. If the calculated value is higher than a given
threshold, the central pixel is hypothesized as belonging to a con-
tour. The contour thus obtained is further verified by comparison
against a set of3 � 3 masks, representing all possible contour
paths passing by the central pixel of a3 � 3 window. Contours
extracted at this stage may be more than one pixel wide.

Further refinement is attained in a second stage of contour ex-
traction, which produces contour lines with one pixel width. For
each image window being tested, a value is calculated for the
central pixel, to determine whether it should be eliminated or
preserved as a countour point. This value corresponds to an
weighted sum of gray levels, for the window contour pixels de-
fined in the previous stage (Melcheret alii, 1997).

The segmentation algorithm performs detection of the vertices
defining the surfaces (polygonal regions) in the 2D images
(Melcheret alii, 1996a). This method is based on the work by
Cortez and de Carvalho (1995) and Villar (1997), testing local
curvature for the contour pixels extracted in the two previous
stages. A set of predefined vertex patterns for the central pixel
of a 5 � 5 window provides precalculated comparative curva-
ture values. This procedure allows for significative reduction of
on-line computation.

This set of methods has been successfully applied to the images
in this work. Small weight adjustments were needed to sharpen
the edges of internal surfaces. Some extra patterns also had to be
generated to account for the case of internal vertices defined by
three or more edges.
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3.3 Data Crossing for 3D Vertex Determina-
tion

The first step towards 3D vertex determination is to build a data
base with the 2D data extracted from the three scene views. For
that, consider the following definition:

Definition 3.1 Let ks; kl and kf be the number of surfaces
present at the top, side, and front views of the scene, respectiv-
elly. Further, letWk; Wm; Wn be the total number of vertices
belonging to the k-th surface of the top view, the m-th surface of
the side view, and the n-th surface of the front view, respectively.

For each view the vertices are given by;

Vkp = (xkp; ykp) (2)

Vmq = (xmq ; zmq) (3)

Vnr = (ynr; znr) (4)

where
Vkp = p-th vertex of the top view k-th surface;Vmq = q-th vertex
of the side view m-th surface;Vnr = r-th vertex of the front view
n-th surface; and

1 < p �Wk; 1 <q �Wm; 1 < r �Wn

1 < k � ks; 1 <m � kl; 1 < n � kf

As an example, consider the situation where a vertex is visible in
the three views, as ilustrated in Figure 5. In the top view image
one has vertexVkp given by coordinates(xkp; ykp) e wants to
find thezkp coordinate of that vertex at the two remaining views,
Vmq eVnr . For that, a search is done on the side and front views,
attempting to matchxkp with xmq andykp with ykr. The objec-
tive is to find a vertex which is visible at the top and at one of
the other, side or front, views. The match between coordinates
is said to occur when the following criteria are satisfied, for the
side and front views, respectivelly:

jxkp � xmq j � Error (5)

jykp � ynrj � Error (6)

For each match thus determined, the correspondingz value,zmq

and/orznr is stored. Whenever more than onez is found, the
largest value is selected, since the top view registers the highest
points of the object. Therefore,

zkp = Largest < zmq ; znr >

If the search of the side view fails, there is still the possibility of
a sucessfully search in the front view. In case both searches fail,
the corresponding surface is declared incomplete and discarded.

When analysing the side view, only the the top view is searched.
Vertex Vmq with coordinates (xmq ; zmq) is known and one
wants to determine theymq coordinate. By searching the top
view a match is attempted betweenxmq andxkp, according to
the criterion:

jxmq � xkpj � Error (7)

For each match detected the corresponding value ofykp is
stored. If more than one correspondence is found the smallest
value is selected, corresponding to the point which is nearest to

the camera and therefore with highest probability of being seen.
Thus,

ymq = Smallest < ykp > :

As before, those surfaces with incomplete vertices are discarded.

For the front view analysis, again only the top view is searched.
In this case, one knows vertexVnr with coordinates (ynr; znr)
and wishes to determinexnr. A search of the top view is per-
formed, looking for matches betweenynr andykp, in order to
satisfy the criterion:

jynr � ympj � Error (8)

For each match the corresponding value ofxnr is stored. If more
than one correspondence is established the largest value ofxnr
is selected, yielding:

xnr = Largest < xkp >

As before, surfaces with incomplete vertices are rejected.

The procedures described above are repeated until all vertices of
each visible surface have been examined.

An empirical error thresholding,Error, has been determined for
use in equations 5,6, 7 e 8. This error value, measured in length
units, allows for a safety margin against errors and deviations
that may occur during image alignment and vertex extraction. It
is based on the smallest distance between two edges on an object
or between two objects.

Once the visible surfaces in the scene are completely specified
by the 3D vertices, their geometric attributes can be calculated
to be used in the recognition process. The surface attributes used
in the present work are:area, perimeter, normal vector, number
of vertices and centroid, all directly calculated from the vertices
extracted in the previous phase.

In multi-view vision systems redundancy may occur due to sur-
faces which are visible by more than one camera. In this case
identification and elimination of duplicate surfaces is required,
in order to avoid ambiguities. In this work, elimination of du-
plicate surfaces has been achieved through the matching of at-
tributes among surfaces of different views. A priority is estab-
lished, with the top view being analyzed first, followed by the
side and the front views, in that order. Those surfaces of the side
view which have already been described in the top view are elim-
inated. The same occurs with surfaces of the front view which
have been described either by the top or the side view. The top
view, therefore, has the highest priority and its surfaces are never
eliminated.

Lemma 3.1 proposes error criteria to avoid duplicity of surfaces,
according with the geometric model and scene attributes given
by definitions 3.2 and 3.3.

Definition 3.2 LetM be a set of models, such that:

M = fM1;M2; � � � ;Mmg:

The attributes of modelMj 2M, are:

� Global attributes: number of surfaces (NFj), minimum
(AMINj) and maximum (AMAXj) surface area, mini-
mum (NLMINj) and maximum (NLMAXj) number of
edges by surface.
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� SurfaceS attributes: area (AjS), perimeter (PjS), normal
vector (~NjS), centroid (CjS), number of edges (NLjS) and
vertex set (VjS).

Definition 3.3 The surface attributes for a scene with nf visible
surfaces are:

� surface s: area (as), perimeter (ps), normal vector (~ns),
centroid (~cs), number of edges (nls) and the set containing
all vertices (V Cs).

Lemma 3.1 Consider that thek-th surface of a view is to be
analyzed for detection of duplicity. Lett be a surface already
described by a higher priority view. The analyzedk-th surface
is eliminated if the following conditions are simultaneously sat-
isfied:

jak � atj � 0:20ak (9)

jpk � ptj � 0:20pk (10)

jnlk � nltj � 0:20nlk (11)

j~nk � ~ntj � 0:20~nk (12)

j~ck � ~ctj � 0:20~ck (13)

The threshold factor0:20 allows for a20% relative attribute dif-
ference between the surfaces, before detecting duplicity. This
factor has been empirically determined.

4 OBJECT IDENTIFICATION AND POSI-
TIONING

As in most model-based vision systems, recognition or identifi-
cation of the objects take place in two steps. Initially the match-
ing of surface attributes is used to generate hypotheses about the
presence of models in the scene. In a second step the spatial rela-
tionships among matched surfaces are used to verify hypotheses,
eliminating the false ones and identifying the objects.

4.1 Object Identification

Lemma 4.1 Model k is examined for hypothesis generation if
the areaai and the number of edgesnli of thei-th scene surface
are within the range of variation of these parameters for that
model, i.e,

AMINk �ai � AMAXk (14)

NLMINk �nli � NLMAXk (15)

The purpose of this lemma is to avoid those models which are
clearly distinct from the objects in the scene, therefore reduc-
ing search time in the library. Whenever the lemma is satisfied,
every surface of modelk is tested against the scene. TheI-th
surface of thek-th model is selected for hypothesis generation if
the following matches are simultaneously verified:

1. between the areas of thei-th scene surface (ai) and theI-th
surface of thek-th model (AkI), where1 � i � nf and
1 � I � NFk:

ea =
jai �AkI j

AkI

� 0:20; (16)

2. between the perimeters of thei-th scene surface (pi) and the
I-th surface of thek-th model (PkI):

ep =
jpi � PkI j

PkI
� 0:20; (17)

3. between the number of edges of thei-th scene surface (nli)
and that of theI-th surface of thek-th model (NLkI):

enl =
jnli �NLkI j

NLkI

� 0:20; (18)

4. between the length of one edge of thei-th scene surface
(lengthi) and the length of any edge of theI-th surface of
thek-th model (LENGTHkI):

el =
jlengthi � LENGTHkI j

LENGTHkI

� 0:20: (19)

The above restrictions, plus those of equations 14 and 15, gener-
ate all possible identification hypotheses. Equations 16-19 mean
that a maximum difference of 20%, relative to the model, is al-
lowed between scene and model attributes in order to have a
match detected. This error threshold has been empirically de-
termined. The search space resulting from the application of
equations 14 and 15 is significantly reduced, compared to the to-
tal library space, and very reliable, in the sense that it has always
produced the correct hypotheses, for the tests performed.

At the end of this stage a set of hypotheses is produced for each
scene surfaceiwhich found a match among the searched models.
This set is:

Vi = f(kq ; IkqS1 ; IkqS2 ; :::)g; q = 1; 2; ::: (20)

wherekq represents the model andIkq the respective matched
surfaces.

The hypotheses generation process, just described, does not con-
sider any relationship among the surfaces being tested. Only lo-
cal and global surface attributes are taken into account to detect
possible matches. The next phase of operation is hypotheses ver-
ification, which is based on the matching of relational attributes.
Those are the attributes that define the position of surfaces in the
object/model, as well as the spatial relationship between them.
The objective is to verify if the spatial relations among surfaces
in the scene are the same as those among the respective matched
surfaces in the model.

The most appropriate attributes for expressing the spatial rela-
tionship of the surfaces of a solid are thenormal vectoror nor-
mal (Grimson and L.-Pérez, 1984; Murray, 1987; Klemt and In-
fantosi, 1995) and thecentroid(Oshima and Shirai, 1983), as-
sociated to each surface. Since different coordinate systems are
used for the scene and the models, the angle between the normal
vectors and the distance between centroids have been used as
relational attributes to the objects surfaces. The angle between
two normal vectors represents the solid angle between the two
corresponding surfaces and the distance between two centroids
represents the average distance between the surfaces.

Hypotheses verification happens in two steps. Initially the
surfaces of the hypothesized models (those in the setVi) are
grouped by pairs, such that the angle between normal vectors
and the distance between centroids for each pair thus created
match the same parameters for some pair in the scene. All possi-
ble combinations of distinct surface pairs are considered in this
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analysis, to account for the possibility of more than one object
being present in the scene. The error (matching) criteria for se-
lecting pairs of scene surfaces are defined in lemmas 4.2 and 4.3.

Lemma 4.2 Let �i be the angle between the normal vectors
(~ni; ~ni+1) for a pair of scene surfaces and�I be the angle be-
tween the normal vectors (~NkI ; ~NkI+1) for a pair of model sur-
faces. Lete� be the angular error given by the absolute differ-
ence between the scalar products (cosines) of these angles. The
matching error criteria to be satisfied is:

e� = j cos �i � cos �I j � 0:28 (21)

where:

cos �i = ~ni � ~ni+1

cos �I = ~NkI � ~NkI+1

Lemma 4.3 Let disti and distI be the distances between the
centroids1 of two scene surfaces (ci; ci+1) and two model sur-
faces (CkI ; CkI+1), respectively. Leted be the absolute distance
error relative todistI . The matching error criteria is given by:

ed =
jdisti � distI j

distI
� 0:10 (22)

where:

disti =
p
(�xi � �xi+1)2 + (�yi � �yi+1)2 + (�zi � �zi+1)2

distI =
p
(�xI � �xI+1)2 + (�yI � �yI+1)2 + (�zI � �zI+1)2

The error threshold value (0:28) in equation 21 was empirically
determined, corresponding to an approximate angular tolerance
of 15o near �

2
. The 0:10 error threshold in equation 22, also

empirically found, was set lower than the threshold value used
to generate hypotheses, in order to allow for a further refinement.

Once the correspondence between scene/model surface pairs has
been established, the next objective is to find sequences of sur-
face pairs in the scene that match sequences of surface pairs in a
model. As an example, suppose that the pair(a; b) of scene sur-
faces has found a correspondence with the pair(v; w) of surfaces
in some model. The next step is to search for a correspondence
between some pair in the scene that starts with surfaceb and one
of the matched model pairs that start with surfacew, and so on,
until all surface pairs are examined. Therefore, this procedure
allows identification of a sequence of model surfaces with the
same spatial relation (angles) among them as a given set of scene
surfaces. It is possible that more than one model are selected as
a result.

In the final verification step the sequences of surfaces are an-
alyzed for each model, using a search tree which contains all
the previously selected surface pairs. The best pairs combina-
tion corresponds to a path through the tree where no surface is
crossed twice and the second element of the final pair is the same
as the first element of the initial pair. The surfaces in this path
are the ones identified as being present in the scene. A priority
list is then elaborated containing all the selected models, ordered
by decreasing number of identified surfaces. The list is further
simplified by eliminating models with surfaces already identified
at a higher priority.

1the centroid coordinates are the averages of the corresponding coordi-
nates of the vertices defining the surface, i.e.,cs = (�xs; �ys; �zs) andCks =
(�xks; �yks; �zks).

4.2 Positioning

Locating the position of the identified model in the scene is
equivalent to reconstructing that model in the scene. This is
achieved by a sequence of geometric operations, translations and
rotations operated in 3D on the model surfaces, which transform
from the model to the scene coordinate system. This sequence
of operations is described next.

1. Draw a matched model surface in the scene coordinate sys-
tem.

2. Translate the scene and model surfaces such that both their
centroids coincide with the origin of the system.

3. Rotate the model surface such that its normal coincides with
the normal of the scene surface.

4. Rotate the model surface until one of its edges coincides
with one edge of the scene surface.

5. Translate both scene and model surfaces to the original po-
sition of the scene surface.

This positioning algorithm can be implemented by two transfor-
mation matrices,MT1 andMT2. MT1 expresses the translation
of item 2 and the rotation of item 3. The rotation angle�1 and
axis~vr for this matrix are calculated from the normal vectors of
the matched scene and model surfaces,nc andnm, respectively,
that is,

cos �1 = ~nc � ~nm~vr = ~nm � ~nc (23)

MatrixMT2 formulates the rotation of item 4 and the translation
of item 5, of the positioning algorithm. For that, the normalized
vectors pointing to the middle point of the two matched edges,
pmc for the scene andpmm for the model, are calculated to yield
the rotation angle�2:

cos �2 =
�!pmc

jj�!pmcjj
�
�!pmm

jj�!pmmjj
(24)

The rotation axis forMT2 coincides with the normal vector of
the scene surface.

5 EXPERIMENTAL RESULTS

The tests conducted can be divided in two groups, one for simu-
lated scene images and another for real scene images. Simulated
scenes were constructed using a CAD tool to generate the three
2D views. Real scenes were captured by digitizing camera im-
ages and also by using a digital photographic camera.

For the simulated scenes the pre-processing phase is not needed,
since the CAD generated views are already wire-frame images of
the objects in the scene. Segmentation and 2D vertex extraction
were implemented in the CAD tool environment, using LISP.
All the subsequent phases, including 2D data crossing for the
definition of the 3D vertices, 3D attribute calculation as well as
object identification and positioning have been implemented in
C, compiled and executed on a 200MHz PENTIUM processor.

For each group of tests, the present work shows results obtained
considering both, scenes with isolated and with superimposed
objects (partial occlusion). Performance parameters analyzed
are the processing time and the recognition rates for objects and
surfaces in the scene.
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5.1 Simulated Scenes

Figure 6 shows a scene with an isolated object and Figure 7
shows another scene with two superimposed objects. Table 1
gives, for each scene, the surfaces completely described in 3D,
obtained from data crossing of the 2D vertices. Those are the
surfaces analyzed in the remaining phases of the process.

Identification consists of the hypotheses generation and hypothe-
ses verification phases. Verification of hypotheses is done in two
steps, one for model identification by matching surface pairs and
another to identify surfaces by analysis of the search tree con-
taining the pairs. Table 2 shows the results of hypothesis gen-
eration for the two scenes considered. Tables 3 and 4 show the
hypothesis verification results, with the “x" indicating the set of
surfaces for which a match was found in the model.

For Scene 1, Table 3 shows that the set formed by surfaces s1
(top 1), l1 (side 1), l2 (side 2) and f2 (front 2) is present in at
least one group of surfaces of model 8. Those groups are an-
alyzed next to identify the coincident scene/model surfaces. In
this example, model surfaces4, 5, 3 and8, respectively, were
found to coincide with s1, l1, l2 and f2. Therefore, the cor-
rect model (model 8) has been identified and so have its surfaces
which match the visible scene surfaces.

Sixteen single-object scenes, such as Scene 1, have been ana-
lyzed in the tests. In all cases the objects were correctly identi-
fied, which means that an efficiency of 100% in the identification
of isolated objects has been achieved. A total of thirty-six sur-
faces are visible in these scenes, twenty-four of which managed
to be described in 3D by the data crossing algorithm, duplicates
excluded. Out of those, twenty-two have been correctly identi-
fied, yielding a 91% surface recognition rate. The two remaining
surfaces were rejected. No surface has been wrongly identified.

Positioning of the identified model surfaces in Scene 1 produced
an average error of less than0:5 cm, as shown in Table 6. The
error is calculated as the distance between corresponding scene
and model vertices. Object dimensions vary from 5 to 10 cm,
which means that an average error less than 10% of the sallest
dimension was obtained. In practice, this means a quite accurate
positioning.

Table 6 also shows the processing time required for identification
and positioning of the objects in the analyzed scenes. This time
is always less than one second, which would be acceptable for
most real time industrial applications.

For Scene 2 four surfaces have not been recognized (s1, l3, f3
and f4), out of nine surfaces described in 3D (Table 4). False
vertex identification, due to vertices which are not visible or are
mistaken by another due to superposition in the top view are the
cause of this problem. However, the recognizable surfaces (s2,
l1, l2, l4 and f2) allow correct identification of the models in the
scene (models 7 and 8). These results are shown in Table 4.

Seven multiple-object scenes with varying degree of occlusion
have been analyzed, containing a total of fifteen objects. Out of
these, ten have been correctly identified and only one has been
wrongly identified. Therefore total (raw) rates of 66% for recog-
nition and 6,6% for error have been achieved. The remaining ob-
jects have not been identified. Considering only the cases where
an identification has been performed, the correct recognition rate
is 91%. As expected, a decrease in the recognition rate, com-
pared to the isolated objects images, is observed. This is due to

the fact that now the objects are partially occluded in some of
the views, therefore reducing the number of visible surfaces and
making data-crossing more difficult. Objects with a high degree
of occlusion are not recognizable.

The effects of partial occlusion are particularly serious for scenes
with superimposed objects, since the top view is used as refer-
ence for the others. In this case, surface identification is possible
as long as it is visible in one of the two other views. When the
objects are spreaded apart on the table, the view from the top is
free of obstacles, making it easier to cross data at the top view.

Surface identification rates are also lower for multiple-object
scenes. Thirty-five surfaces have been described in 3D (dupli-
cates off) out of forty-eight closed regions extracted from the
scenes. Some of these regions correspond to fragments of par-
tially occluded surfaces. A total of seventeen of the described
surfaces have been correctly identified, which means a 48.5%
recognition rate. The remaining eighteen surfaces were not rec-
ognizable by the system. No wrong identification of surfaces,
which could lead to object recognition error, occurred. There-
fore, considering only the cases where an identification was
performed by the system, a positive surface recognition rate of
100% has been achieved.

5.2 Real Scenes

Figures 8 and 9 show the views for scenes 3 and 4, two scenes
composed with real objects, acquired by digitizing three camera
images. The images are of size450� 300 pixels, with 256 gray
levels and a sampling rate of 75 pixels/inch. The average cam-
era/object distance was60 cm, the lens focal length was100 mm
and the amplification factor4:16.

The digitized images, converted to ASCII format files, are ini-
tially submitted to the pre-processing operations described in
Section 3: gradient calculation, first contour extraction, sec-
ond contour extraction (one pixel wide) and surface (closed re-
gions) vertices identification. Next the camera geometric trans-
formation is applied in order to obtain the vertices coordinates in
real world length units, followed by the data crossing operation
which produces the desired 3D vertices. Finally, object recogni-
tion and positioning is performed.

Figures 10 to 12 show the pre-processed images for scene 4.
Tables 1 and 5 give the segmented surfaces for each scene and
the final recognition results, respectively.

For the scenes with real objects used in the tests, raw recognition
rates of83:3% for models (5 out of 6) and 71.8% for surfaces (23
out of 32 described surfaces) have been obtained. There was no
case of wrong object/model identification, which means that the
system was completely reliable: 100% of the decisions taken
(recognitions performed) were correct.

6 CONCLUSION

A new method for recognition of 3D objects has been presented,
which performs hypotheses generation by matching geometric
attributes of scene surfaces with attributes of objects polyhe-
dral models. Spatial relations between sequences of matched
scene/model surfaces are used for hypotheses verification. Posi-
tioning of the identified model in the scene is performed by two
geometric transformations. The main features of the proposed
method are:
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� fast convergence- the analysis technique employed, which
groups by models the matched pairs of surfaces, yields very
fast convergence, as can be seen by the low processing
times obtained;

� accuracy and reliability- both for isolated objects and for
scenes with partial occlusion, high recognition and low er-
ror rates were obtained, attesting to the accuracy and relia-
bility of the system;

� light computational effort- a very straightforward attribute
matching technique, the use of few geometric features and
the initial restrictions placed on hypotheses generation, all
lead to a low computational load and, consequently, high
speed of operation;

� surface identification- as an original feature, this method
identifies all scene surfaces that can be described in 3D,
used in the object recognition process.

Valid performance comparison with other existing techniques
would require the use of a common implementation plataform
and tests to be realized with the same set of objects and images.
However, most of the work reported in the literature utilizes very
specific sets of test objects, and very often no objective perfor-
mance evaluation is provided (Oshima and Shirai, 1983; Boles
and Horaud, 1986; Salari and Balaj, 1991). Additionally, the di-
versity and fast evolution of computers renders almost meaning-
less the comparison of processing times for different methods.

Nevertheless, if the amount and complexity of the operations in-
volved is considered, it can be concluded that the present method
is less complex, and therefore can be expected to perform better,
as far as speed of operation is concerned, than other well known
model-based 3D recognition techniques (Grimson and L.-Pérez,
1984; Faugeras and Herbert, 1986; Liu and Tsai, 1990; Chiou
et alli, 1992), as long as dealing with objects that can be at least
partially represented by polyhedral models. Since recognition
of only a few surfaces is enough to guarantee object recogni-
tion, this restriction in practice does not significantly reduces the
applicability of the method, while allowing for low algorithm
complexity.

Dedicated parallel hardware has been designed to implement the
pre-processing and segmentation stages, up to the 2D vertex ex-
traction from the view images. This assures maximum speed,
since the corresponding operations will be performed in real-
time (during image acquisition). Software implementation starts
with 3D vertex extraction by data-crossing and goes up to recog-
nition and positioning, according to the algorithms described in
this work. Compared to other conventional implementations,
this hardware/software codesign approach will result in a faster
and more reliable system, adequate for a large range of industrial
inspection applications.
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Table 1: Visible 3D surfaces
view scene 1 scene 2 scene 3 scene 4

top 1 1 2 1 1 2 3
side 1 2 1 2 3 4 1 2 2 3
front 2 2 3 4 2 3 4 5 6 7 8

Table 2: Hipothesis generation
Scene view scene surf. Vi=(model; matched surf.)

1 top 1 (8; 4 7)
side 1 (6; 7 10) (7; 2 3 4 6) (8; 1 2 5 6)

2 (1; 2 5) (8; 3 8)
front 2 (8; 3 8)

2 top 1 (1; 3 6) (6; 7 10) (7; 3 6) (10; 7 10)
2 (7; 3 6)

side 1 (8; 1 2 5 6)
2 (1; 2 5) (8; 3 8)
3 (7; 1 2 3 4 6) (8; 1 2 5 6)
4 (6; 7 10) (7; 2 3 4 6) (8; 1 2 5 6)

front 2 (8; 3 8)
3 (7; 1 2 3 4 6)
4 (4; 10 11 12 13 15)

Table 3: Verification Scene 1
s1 l1 l2 f2 Mod

x x x x 8

4 5 3 8 8

Table 4: Verification - Scene 2
s1 s2 l1 l2 l3 l4 f2 f3 f4 Mod

- - x x - - x - - 8
- x - - - x - - - 7

- - 5 3 - - 8 - - 8
- 3 - - - 2 - - - 7

Table 5: Recognition of real objects
scene 3 scene 4

model 1 5 7
surfaces 2 3 1 6 (5; 6 11 1 3) (7; 1 3 5 6)

Table 6: Positioning and processing time
SCENE 1 2 3 4
�d (cm) 0.45 0.96 0.42 0.62

t (seg) 0.51 0.6 0.28 0.82
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Figure 5: Point Correspondency for Data Crossing

Figure 6: Scene 1 - top, side and front views

Figure 7: Scene 2 - top, side and front views
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Figure 8: Scene 3 - top, side and front views

Figure 9: Scene 4 - top, side and front views

Figure 10: Scene 4: (a) top view, (b) gradient and (c) final con-
tour

Figure 11: Scene 4: (a) front view, (b) gradient and (c) final
contour
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Figure 12: Scene 4: (a) side view, (b) gradient and (c) final con-
tour
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