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Abstract: 3D shape estimation is an essential capability of hu-
man vision, which several computer vision processes try to emu-
late. The goal of this article is to present some of these processes,
starting with very basic material, but also providing pointers
to more recent and sophisticated approaches. We treat stere-
oscopy, structure from motion, shape from shading and photo-
metric stereo – a choice of topics that does not evidently exhaust
the subject, but which should give the novice a fair introduction
to this thriving area of research.

1 INTRODUCTION

The goal of computer vision research can be easily stated as that
of creating machines which are able to see. A little less easy
would be to define what such seeing ability exactly means. For
our purposes here, it suffices to state that it entails the capacity
of extracting, from images, the information that would allow the
correct interpretation of the depicted scene. In the most general
case of three-dimensional vision, such interpretation necessitates
the recovery of the 3D scene structure, that is to say, of the at-
tributes of shape, location, pose, and perhaps movement, of all
the imaged entities. There are a host of computer vision tech-
niques which aim at the estimation of these intrinsically recorded
attributes. The purpose of this paper is to present some of them
in a tutorial fashion, giving emphasis to the question of 3D shape
estimation. We start by considering stereoscopy, in the following
section. Next, we present some basic material on optical flow
and structure from motion. Finally, we treat in greater length
the monocular processes of shape from shading and photometric
stereo.

2 STEREOSCOPY

Stereoscopy is a process which allows the determination of the
position of a point in 3D space, from its projections in two dis-
tinct image planes. It is thus a binocular vision process, founded
on geometric transformations that can be easily described. Given
two cameras, to which we associate the reference systemsr1 and
r2, with z�directions pointing along the respective optical axes,
the goal is to obtain, from its projections in the two image planes,
the position of a 3D point,P = (X;Y; Z), relative to a reference
systemr fixed on the scene. IfP has coordinates(Xi; Yi; Zi),
i = 1; 2, relative to the camera systems, such projections, as-

suming perspective transformations, are given by (Shirai, 1987)

xi =
fiXi

Zi

and yi =
fiYi
Zi

; i = 1; 2 (1)

wherefi is the focal length of thei�th camera.

Now, through the geometric transformations relating the camera
frames,r1 andr2, to the scene reference system,r, we can ex-
pressXi; Yi andZi, in (1), in terms of the scene coordinates of
P , thus obtaining four equations which give these coordinates as
functions of the observed projections:

xi = xi(X;Y; Z) and yi = yi(X;Y; Z); i = 1; 2 (2)

Since there are four equations and only three unknowns, namely,
X;Y andZ, a relation can be found between the projection co-
ordinates ofP in the two image planes. Such relation, which
can be written, for instance, asy2 = y2(x1; y1; x2), is the equa-
tion of the so-calledepipolar line(Shirai, 1987). Its meaning is
that, given the projection of a 3D point in the first image plane,
the corresponding projection in the second image must be found
along a line whose orientation is determined by the 3D point po-
sition and by the centers of projection of the two cameras.

A particular case of interest is that of two cameras with parallel
optical axes. The transformations between the reference sys-
temsr; r1 and r2 are then just translations, the epipolar lines
are horizontal, and the depth coordinate of the observed point
P is a function only of the difference in projection along the
X�direction, the so-calleddisparity. For instance, when the
camera focal lengths are equal, we find

Z =
fd

D
(3)

whereD � x1�x2 is the disparity, andd is the distance between
the centers of projection of the two cameras.

2.1 Stereo Matching

Although the formulation of stereoscopy is thus simple, its
proper implementation is a hard issue, object of ongoing re-
search. The foregoing discussion assumed that the pairs of cor-
responding projections of each point on the scene were known,
in order for its 3D position to be determined. But the problem of
stereoscopic correspondence, or stereo matching, is not a trivial
one. Ways must be devised for finding pairs of points, one in
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each image, which are projections of the same point in space.
The epipolar geometry constrains the search of matching pairs
to be performed along straight lines, but, for reasonably sized
images, there would still be many possible candidate matches.

There are essentially two distinct approaches for performing
the stereo matching: the intensity-correlation approach and the
feature-based approach. The intensity-based matching relies on
the assumption that the scene points project with approximately
the same intensities in the two stereo images. Thus, the search
for corresponding points is guided by the similarity between the
intensities found in regions of the two images. An appropriate
measure must be introduced to quantify the similarity. It can be
based, for instance, on the intensity differences across windows
centered on the points being checked in the two images, compen-
sated, if required, for brightness and contrast variations between
the cameras, as the measureM , below, illustrates (Shirai, 1987):

M =
nX

j=1

mX
i=1

[(I1(i; j)� �1)� (I2(i; j)� �2)]
2=�1�2 (4)

Here, theIi’s denote the image intensities, the summation is
taken acrossn�m windows, and the�i’s and�i’s are the stan-
dard deviations and mean values of the intensities found therein.

Given a point inI1, the corresponding point inI2 can be found
as that for which the measureM is minimized. A basic question
in the process is, of course, the choice of window size, which
affects not only its computational overhead, but also its accu-
racy. Smaller windows allow more precision, but are sensitive
to noise, while larger windows provide a more robust, though
only global, matching. Also, since there are points for which the
matching is ambiguous, and since the cost of determining the
correspondence for the whole image is very high, one usually
restricts the matching to a subset of points, employing interpo-
lation techniques to recover the whole three-dimensional scene.
The candidate points for correspondence search are chosen as
those around which the image intensities vary appreciably, such
as in regions of high intensity gradient.

In order to avoid the problems associated with the choice of win-
dow size and with the sparse matching, one can resort to a multi-
scale process, whereby low-resolution versions of the input im-
ages, obtained by taking block-averages of their intensities, are
employed for a dense, point-by-point correspondence, whose re-
sult is then used to guide the matching of the higher-resolution
pairs. Since the search, at each resolution, is restricted to a small
window around the matching position found at the previous step,
the computational cost can be drastically reduced (Shirai, 1987).

The alternative approach to stereo correspondence employs, as
matching tokens, not the intensity values, but certain features
previously extracted from the images. This necessarily yields
sparse matches and requires interpolation, but also represents a
faster approach, and one less sensitive to photometric variations.
The most common implementations seek the correspondence of
edge elements, such as the ones based on the zero-crossings of
the signal obtained by taking the laplacian of the image function
convolved with a gaussian kernel (Grimson, 1981). By employ-
ing gaussians with different variances, contours arising from in-
tensity gradients at different spatial scales can be found, which
serve as basis for a multiscale stereo matching strategy. The idea
is, at each resolution, to match contours in the two images which
have approximately the same orientation, and across which the
intensity changes have the same sign, with the search region be-

ing defined around the matching position found at the previous
scale.

3 STRUCTURE FROM MOTION

Structure from motion (SFM) is the process of recovery of 3D
information from the displacement of features registered in a dy-
namic image sequence (Horn, 1986). The dynamic aspect here
arises from the movement of the camera relative to the scene,
and is the distinctive feature of SFM, which, like stereoscopy,
relies on geometric information – feature displacements – for its
implementation.

The input to SFM is the optical flow, which is the observed ve-
locity of the intensity pattern over the image plane, due to the
camera/scene relative movement. Such velocity is subject to
photometric influences, since a point’s recorded intensity usually
changes as it moves. The common approach is, nevertheless, to
disregard such variations, and to obtain the optical flow through
an intensity conservation relation,

I(x+ u�t; y + v�t; t+ �t) = I(x; y; t) (5)

wheret denotes an instant in time,�t is a short time interval, and
u andv are thex� andy� components of the optical flow.

Employing a Taylor-series expansion on the right-hand side, and
assuming that the interval�t is infinitesimal, we easily find the
optical flow equation (the subscripts denote differentiation)

Ixu+ Iyv + It = 0 (6)

which represents a constraint on the values ofu andv: at each
image point, the projection of the optical flow along the local
direction of the image gradient is given by the rate of change
of the intensity pattern there (rI � (u; v) = �It). The flow
component perpendicular to the gradient is not fixed, leaving
the determination ofu andv still an underscontrained problem.
Algorithms for optical flow estimation must therefore consider,
together with relation (6), additional constraining information,
such as a smoothness requirement. This is illustrated by Horn
& Schunck’s algorithm (Horn and Schunk, 1981), which obtains
the flow field as the minimizer of a two-term functional, or error
measure, of the form
Z Z

dxdy[(u2x + u2y + v2x + v2y) + �(Ixu+ Iyv + It)
2] (7)

where� is an empirical weighting factor. The second term in
(7) comes from the optical flow constraint, while the first one
expresses the smoothness condition.

The minimization of (7) yields a converging iterative scheme for
the estimation ofu andv (Horn and Schunk, 1981). Once such
estimates have been found, they can be used for the recovery of
relevant 3D information, as, for instance, the position and ve-
locity of the scene objects. Let us consider here a global least-
squares approach to this structure from motion problem. Such
approach is also based on the minimization of a functional, now
of the type

e =

Z Z
dxdy[(u� umod)

2 + (v � vmod)
2] (8)

whereu andv represent the observed flow, whileumod andvmod

are functions of the 3D parameters, obtained by appropriately
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modeling the movement in the scene (Horn, 1986). As an ex-
ample, let us assume the case of rigid-body movement with uni-
form velocity. A 3D point,P , at positionR = (X;Y; Z), mov-
ing with angular velocity
 = (A;B;C) and linear velocity
V

t = (U; V;W ), has total velocity given by

dR

dt
= V

t +
�R (9)

Such velocity gives rise to an optical flow which can be ob-
tained from (9), by using the perspective projection equations
(1). Taking the time derivatives of such equations, we get,
umod = ut + ur andvmod = vt + vr, where

ut = (U � xW )=Z and vt = (V � yW )=Z (10)

are the translational components of the flow, and

ur = �Axy +B(1 + x2)� Cy and

vr = �A(1 + y2) +Bxy � Cx (11)

are the corresponding rotational components.

With suchumod andvmod substituted into equation (8), we can
proceed with a traditional least-squares estimation. Let us illus-
trate this with the example of translational movement only, for
simplicity. The integrand in (9) becomes a function ofZ, in this
case, allowing us to look for an estimate of depth at each im-
age point, besides trying to findU , V andW . Differentiating
with respect toZ(x; y), and equating to zero, we get, from this
integrand,

Z(x; y) =
�2 + �2

�u+ �v
(12)

where� = U � xW and� = V � yW . Plugging suchZ back
into (8), we next proceed to look for the velocity components, by
minimizing the resulting integral with respect toU , V andW .
There result only two independent non-linear equations, which
can be numerically solved to yield the translational velocity up to
a multiplicative constant. Accordingly, when employed back in
equation (12), this velocity estimate allows recovery ofZ(x; y)
up to a scaling factor.

4 PHOTOMETRIC STEREO AND SHAPE
FROM SHADING

Differently from stereoscopy (also known as geometric stereo)
and from structure from motion, whereby the scene attributes are
recovered from geometric information – the stereoscopic dispar-
ities in one case and the optical flow in the other –, shape from
shading (SFS) and photometric stereo (PS) are two computer vi-
sion shape estimation processes which rely essentially on pho-
tometric data, and on the physics of image formation. Both are
monocular processes, but while SFS is a single-image technique,
PS employs two or more images acquired under different illumi-
nations. Their formulation requires the introduction of the con-
cept of the reflectance map function (Horn, 1977).

The reflectance map is a function which embodies the physics of
image formation, relating the intensity value at each point in the
image plane (theimage irradiance, measured as incident power
per unit area) to the light radiated by the corresponding point on
the scene (thescene radiance, measured as power emitted per
unit area per unit solid angle) (Horn and Sjoberg, 1979). The
intensity observed at a given image point is, to a reasonable ap-
proximation, directly proportional to the light emitted by the cor-
responding point on the scene, and this, in turn, depends on the

direction in which this point is illuminated, on the direction in
which it is observed, on the local orientation of the surface of
which it is part, and on the reflective properties of this surface.

The reflectance map is the function that models such depen-
dences, allowing the expression of the image formation process
through the so-calledimage irradiance equation, as below

I(x; y) = R(n̂; ŝ; v̂) (13)

whereR is the reflectance map,n̂ is the unit vector normal to the
imaged surface at each point – which represents the local orien-
tation –, and̂s and v̂ are unit vectors denoting the illumination
and observation directions, respectively. It is usual to assume
that both the light source and the observer are far away from the
scene, so that̂s andv̂ can be taken as constants, and the relevant
dependence ofR thus reduces to the orientation vector,n̂. This
vector can be expressed, in terms of the gradient components of
the imaged surface, as

n̂ =
1p

1 + p2 + q2
(�p;�q; 1) (14)

where (using lower-casez to denote relative depth)

(p; q) =

�
@z

@x
;
@z

@y

�
(15)

The reflectance map is therefore also commonly given as
R(p; q).

The simplest example of a reflectance map is that of a perfectly
diffusing surface, which reflects light equally well in all direc-
tions. This so-calledlambertiansurface is characterized by a
reflectance function of the form

Rl = n̂ � ŝ =
1 + pps + qqsp

1 + p2 + q2
p
1 + p2s + q2s

(16)

for n̂�ŝ � 0. On the right-hand side of (16), the vectorŝ has been
expressed in a form similar tôn in (14), for a gradient(ps; qs)
corresponding to the surface orientation which points directly
towards the light source.

The reflectance of glossy surfaces is usually modelled by com-
bining a term like (16) with one corresponding to a quasi-
specular reflectance component, to give (Shirai, 1987)

Rg = �ln̂ � ŝ+ �sf[2(n̂ � ŝ)n̂� ŝ] � v̂gm (17)

The expression under the square brackets denotes the direction
of perfect specular reflection,̂vs, for given surface orientation
and illumination directions. The quasi-specular component in
Rg thus decreases aŝv moves away from̂vs, in a rate that de-
pends on the parameterm. The factors�l and�s represent the
lambertian and the quasi-specular reflectivities – oralbedos– of
the surface, that is, the fractions of the incident light which are
diffusely and specularly reflected by it.

4.1 Shape from Shading

The goal, here, is to recover the shape of a surface, given a single
image of it. One must thus solve an image irradiance equation,
like (13), for the orientation map,̂n, or, equivalently, the surface
gradient,(p; q), at each image point. It is assumed that the un-
derlying surface has uniform or slowly varying reflecting prop-
erties, so that the produced irradiance corresponds to a pattern of
shading, and not to a textured image.
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The most common approach to this problem is to try to minimize
an error measure, introduced so as to quantify the departure of
a given solution from the ideal one, similarly to what was done
for optical flow in equation (7). For instance, one of the earliest
proposed functionals had the form (Horn and Brooks, 1986)
Z Z

dxdy[(I(x; y)�R(p; q))2+�(p2x+ p2y+ q2x+ q2y)] (18)

The first term in the integrand clearly derives from the image
irradiance equation, and should ideally be made to vanish by
the correct orientation map. The second one, multiplied by the
weighting factor�, corresponds to a regularization factor (Pog-
gio et al., 1985), and tends to favor smooth solutions.

From the variational calculus (Courant and Hilbert, 1987), one
finds that the functionsp andq which minimize the measure (18)
must satisfy Euler-Lagrange equations of the form

�r2f = �(I �R)Rf (19)

wheref here stands forp or q, and the subscript denotes differ-
entiation, as usual.

Using a discrete approximation for the laplacian,

(r2f)kl �
�

�2
(fkl � fkl) (20)

where the overline indicates local average,fklg denotes a posi-
tion in the discretized image,� is the interpixel distance and�
is a constant depending on the size of the neighborhood consid-
ered, one finds the iterative scheme

f
(n+1)
kl = f

(n)

kl +
1

��0
(I �R(n))R

(n)
f (21)

wheren denotes the iteration step and�0 = �=�2.

Oncep andq have been obtained as above, one may look for the
depth map of the recovered surface. This may be given by the
minimization of a second functional (Horn and Brooks, 1986),

Z Z
dxdy[(zx � p)2 + (zy � q)2] (22)

which corresponds to the Euler-Lagrange equation

r2z = px + qy (23)

whose solution can be iteratively found as

z
(n+1)
kl = z

(n)
kl �

�2

�
(fpxg

(n)
kl + fqyg

(n)
kl ) (24)

Recently, iterative approaches based on functionals which cou-
ple gradient and depth reconstruction have been proposed (Horn,
1990; Szeliski 1991). Converging schemes have been found,
for instance, for the Euler-Lagrange equations obtained from the
measureZ Z

dxdy[(I(x; y) �R(p; q))2 + �(p2x + p2y + q2x + q2y)+

+�((zx � p)2 + (zy � q)2)] (25)

when linear approximations to the reflectance map were used. In
this case, one expresses

R(p; q) � k0 + k1p+ k2q (26)

wherek0 = R(p0; q0) � k1p0 � k2q0, k1 = Rp(p0; q0) and
k2 = Rq(p0; q0). For a lambertian reflectance map, and for
p0 = q0 = 0, one findsk0 = cos�, k1 = sin� cos � and
k2 = sin� cos � , where� and� are the slant and tilt, respec-
tively of the illumination vector.k0 is thus the component of̂s
along the optical axis (z-component), and(k1; k2) is the illumi-
nation component along the image plane.

Alternative approaches to SFS have been proposed which are
also based on the linearization of the reflectance map. The linear
shape from shading by Pentland (Pentland, 1990), for instance,
is a frequency-domain technique which allows direct depth esti-
mation from the Fourier transform of the input image. Starting
with the linearized image irradiance equation

I(x; y) = k1p+ k2q (27)

where the DC term,k0, has been neglected, and taking the
Fourier transform of both sides, one easily finds

z(x; y) = F�1

�
FI (!; �)

2� expfi�=2g(k1 cos � + k2 sin �)

�
(28)

whereFI(!; �) = FfI(x; y)g, andF�1 denotes the inverse
Fourier transform.

From (28), one sees that those Fourier components ofz(x; y) for
which k1 cos � + k2 sin � = 0 can not be recovered, and must
be obtained by other means. For a lambertian reflectance map,
these correspond to the frequency components perpendicular to
the projection of the illumination vector on the image plane.

Pentland later extended this linear shape from shading by
proposing the photometric motion process, in which motion-
induced photometric variations are used for the estimation of
shape from image sequences of dynamic scenes (Pentland,
1991).

In a somewhat different vein, Tsai and Shah (Tsai and Shah,
1994) have introduced another linearized shape from shading,
now performing the linear expansion directly in terms of the
depth function,z(x; y). They usep � z(x; y) � z(x � 1; y)
andq � z(x; y)� z(x; y� 1), and express the image irradiance
equation as

I(x; y) = R(z(x; y)� z(x� 1; y); z(x; y)� z(x; y� 1)) (29)

which can be written as

f(I(x; y); z(x; y); z(x� 1; y); z(x; y � 1)) = 0 (30)

Now, taking the linear expansion of the functionf around an ap-
proximationzn�1 of the surface function, they arrive at a sparse
system of linear equations in thez values at the image-lattice
sites, whose iterative solution, by Jacobi’s method (Press et al.,
1986), can be easily found as

zn(x; y) = zn�1(x; y)�

�
1�

@f
@z

�
(n�1)

f(I(x; y); zn�1(x; y); zn�1(x� 1; y);

zn�1(x; y � 1)) (31)

This method, too, has been extended, now to deal with a kind
of continuous form of photometric stereo, called photomotion
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(Zhang et al., 1996), whereby monocular images obtained under
continuously varying illumination are taken as input to a Kalman
filter estimator. The basic image irradiance equations are there
treated similarly to what was done in the linear shape from shad-
ing case above described.

A third linear approach to shape from shading is the one intro-
duced by Lee and Kuo (Lee and Kuo, 1992), where the sur-
face function is approximated as a combination of triangular ele-
ments,�i(x; y), over a uniform lattice in the image. Expressing
z(x; y) =

P
i zi�(x; y), we get

p =
X
i

zi
@�i
@x

and q =
X
i

zi
@�i
@y

(32)

For a linearized reflectance map, there results

R(p; q) = k0 + k1p+ k2q =
X
i

zi�i(x; y) + k0 (33)

where

�i(x; y) = k1
@�i
@x

+ k2
@�i
@y

(34)

Since the functions�i are known, the surface estimation process
reduces to obtaining the node values,zi. These can be found by
minimizing the error functional

Q =

Z Z
dxdy[(I(x; y) �R(p; q))2+

+
�

2
(z2xx + 2z2xy + z2yy)] (35)

With R(p; q) and the derivatives ofz expressed in terms of the
triangular functions, this leads to a quadratic form on thezi’s,
which can be solved, for instance, by gradient descent (Press et
al., 1986).

This approach bears some resemblance to the one by Jones and
Taylor (Jones and Taylor, 1994), where a kind ofscale-space
tracking (Shirai, 1987) is performed. At each scale, the surface
function is expressed asz(x; y;�k) =

PN
i=1	(x; y;�i), with

	(x; y;�k) = z(x; y;�k) � z(x; y;�k+1), where the	’s are
given by a sum of gaussian basis functions positioned on a regu-
lar grid:

	(x; y;�k) =
X
ij

aij expf�[(x� i)2 + (y � j)2]=2�2kg (36)

The procedure here is to obtain the coefficientsaij at each scale,
and employ the recurrence relation

z(x; y;�k) = z(x; y;�k+1) + 	(x; y;�k) (37)

from z(x; y;�N ) = 0 up to z(x; y;�0), which is the surface
estimate.

The desired coefficients,aij , must be such that the solution
at each scale,z(x; y;�k), explains the image irradiance at that
scale,Ik(x; y), whereIk is an appropriately blurred version of
the input image. The proposed blurring algorithm is the one of
(Peleg and Ron, 1990), which is adequate for approximately cir-
cularly symmetric reflectance maps. In order to produce the im-
age that would result from the surface approximation at a certain
scale, one blurs the field

p
p2 + q2 = R(�1)(I(x; y)).

Given the blurred image at scale�k, Jones and Taylor try to min-
imize the simple error functional

Q =

Z Z
dxdy[R(p; q)� Ik(x; y)]

2 (38)

where

p =
@(zk+1 +	k)

@x
and q =

@(zk+1 +	k)

@y
(39)

This, too, leads to a quadratic form, which can be solved via
gradient descent techniques.

4.2 Photometric Stereo

Photometric stereo was introduced by Woodham as a practical
means of solving the shape from shading problem in controlled
situations (Woodham, 1980). It uses two or more monocular im-
ages, acquired under different illuminations, to produce an ori-
entation map of the scene. Under certain conditions, the set of
image irradiance equations thus obtained may allow a closed-
form solution for the gradient function at each image point.

An academic example of interest is the reconstruction of a lam-
bertian surface of unkown albedo, from three photometric stereo
inputs (Shirai, 1987). The corresponding image irradiance equa-
tions are given by

Ik = �(ŝk � n̂) (40)

for k = 1; 2; 3, where the albedo,�, and the orientation map,̂n,
are the unknowns. In matrix form, (40) can be recast as

I = �Sn (41)

whereI = [I1; I2; I3]
T , n = [n1; n2; n3]

T , and the matrixS has
entries of the formsij , meaning thej�th component of thei�th
illumination vector.

From (42), one thus easily gets� = jS�1Ij andn = S
�1
I=�, as

long asS is non-singular, which requires the vectorsŝ1, ŝ2 and
ŝ3 not to be simultaneously coplanar.

The main advantage of PS is the possibility of its implementa-
tion as a simple look-up process, in controlled environments. For
instance, in a manufacturing plant dealing with parts made up of
a specific material, a calibration procedure may yield the asso-
ciated reflectance map in tabular form, avoiding the need for its
analytical determination. A sphere of the same material as the
manufactured parts may be produced, which, illuminated from
different directions (usually three or more illuminations are re-
quired), generate a set of irradiance values easily associated, at
each point, to the known local orientation. The table thus con-
structed, whose entries are the surface gradient components and
their corresponding irradiances, constitute a reflectance map rep-
resentation which may be used for the inverse process of surface
reconstruction, when the parts are imaged under the same set of
illuminations as the calibration sphere was.

Of course, photometric stereo can also be employed when fewer
than three images are available, and also without resorting to
calibration schemes, in situations where knowledge of the re-
flectance map function is incomplete (e.g., when only a linear
approximation toR is known). Some of the previously discussed
approaches to shape from shading can, for instance, be extended
to PS. Lee and Kuo have done so with their iterative SFS (Lee
and Kuo, 1992), based on triangular basis functions (see Section
4.1). They have also considered the question of choosing the
most appropriate illuminations to be employed, showing that,
for a two-image process, the accuracy of the surface reconstruc-
tion is optimized when the tilt angles of the illumination vectors
differ by 90o.
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Another two-image approach to PS has also been proposed
recently, which is based on a parallel between this process
and the geometric stereo depth reconstruction. In this so-
called disparity-based photometric stereo (Fernandes and Tor-
reão, 1998), the input images are matched as if they were a
stereoscopic pair, to yield a disparity map,(Dx; Dy), which
encodes shape information. For a matching performed along
the direction given byDy=Dx = k2=k1 � 
, with k1 and
k2 obtained from the linear expansion of the difference image,
�I � I1 � I2 = k0 + k1p + k2q, the resulting disparity field
allows the direct recovery of an approximation to the surface
function, under the form

z(x; y) =
DxI2
k1

�
k0(x+ 
y)

k1(1 + 
2)
(42)

The accuracy of such reconstruction improves, the closer to cen-
tral the two illuminations are, and the smaller the angle between
them (Torreão and Fernandes, 1998).
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