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ABSTRACT – The application of Self-Tuning controllers as
Power System Stabilizers in multimachine power systems is con-
sidered. The choices of the control and identification strate-
gies are based on the analysis of the properties of multimachine
power systems. Such analysis points to the use of the Extended
Least-Squares algorithm for the identification and a partial Pole
Assignment control strategy. The resulting adaptive control al-
gorithm is applied to the New England test system. The simu-
lation results show the good performance achieved with the pro-
posed control scheme and its tracking capability.

1 INTRODUCTION
Power System Stabilizers ( PSS’s ) are the most usual way to
enhance the dynamic stability of Power Systems ( PS’s ). A PSS
design is usually carried out by means of classical control meth-
ods such as frequency response and root-locus techniques ap-
plied to a linearized model of the system around some selected
operating point. However, the system may be demanded to op-
erate under conditions very dissimilar to those the PSS was de-
signed for, thus degrading its performance. Although PSS’s de-
signed in this fashion have been successfully applied by the elec-
trical industry since the early 1970’s, the increasingly stressed
conditions in which current PS’s are required to operate demand
increasing performance from PS’s controllers. The application
of methods to guarantee PSS’s performance in a wider variety of
conditions, thus enlarging the PS stability margins, is therefore
much in order. The ability of an adaptive controller to automat-
ically and continuously tune itself makes it attractive for appli-
cation to PSS’s units. On the other hand, the recent application
of digital PSS’s has opened new avenues for applying innovative
control strategies for PSS’s design(Bollingeret alii 1993).

The application of the adaptive control theory to PSS’s design
has been given a great deal of attention in the literature since
the late 70’s(Irvinget alii 1979, Pierre 1987). Most publica-
tions explore the use of explicitSelf-Tuning ( ST ) regulators in
PSS applications(Barreiros 1989, Chandraet alii 1988, Chenet
alii 1993, Fanet alii 1990, Bazanella e Silva 1995, Bazanella
e Silva 1995a). A Self-Tuning PSS (STPSS) tunes its param-
eters in real-time as the system operating condition drifts with
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daily load variations, generating rescheduling and topological
changes due to contingencies. Such explicit ST controllers are
the combination of a recursive identification method and the on-
line tuning of the controller parameters according to some con-
trol strategy(Aström and Wittenmark. 1989). The least-squares
estimator has been used as the identification algorithm in most
applications, due to its simplicity and fast convergence. As for
the control strategy, a variety of methods has been proposed,
including Linear Quadratic Regulators, Generalized Minimum
Variance Control andPole Assignment. Simulation results pro-
vided in the aformentioned papers show the effectiveness of the
STPSS’s in a variety of conditions, in contrast to the conven-
tional PSS design whose performance is degraded by changes
in the PS operating condition. Numerous results for single ma-
chine against infinite busbar systems have been presented. A
few multimachine systems applications have been provided as
well, although the problems raised by the multimachine con-
dition have not always been taken into account in a system-
atic fashion. Later publications describe the implementation of
STPSS’s in real systems(Norum and Bollinger 1993, Malik and
Mao. 1993).

In this paper the use of Pole Assignment in STPSS’s is discussed
first on an analytical ground and then based on a case study. A
new Self-Tuning Pole Assignment PSS is presented. The pro-
posed controller presents novel ideas both in the control and the
identification methods. These novelties are motivated by spe-
cific multimachine considerations. Besides that, the interaction
between identification and control in the Self-Tuning algorithm
is explicitly taken into account in the design and discussed on an
analytical ground, which is an issue that does not seem to appear
in previous papers.

The paper is organized as follows. In Section2, the identifica-
tion method is described and discussed. The use of the Extended
Least Squares method is proposed to improve the identification
in multimachine systems. The Pole Assignment control method
is presented in Section3. A particular policy for choosing the
closed-loop poles in the Pole Assignment design is proposed in
Section4. This policy aims at obtaining a good trade-off be-
tween regulation performance on one side and tracking capabil-
ity and control effort on the other, which is done by exploring
the peculiarities of power systems dynamic behavior. Simula-
tion results of a benchmark multimachine Power System with
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the application of the proposed Self-Tuning, Pole Assignment
based PSS are presented in Section5. These results show the
good performance of the control scheme and support the claims
of the preceding sections. Finally, in Section6, the conclusions
are given.

2 IDENTIFICATION

2.1 System model
The system is modeled by a stochastic sampled-data model
whose exogenous input is the supplementary signal to the Au-
tomatic Voltage Regulator. The output is the signal to be fed
back by the PSS, which can be the shaft speed or the acceler-
ating power, for instance. LetT be the sampling period,y(n)
andu(n) be respectively the values of the output and the input
at timet = nT . The model can be written as

A0(q�1)y(n) = q�1B0(q�1)u(n) + C(q�1)e(n) (1)

where q�1 is the backward difference operator defined by
q�1y(n) = y(n� 1),

A0(q�1) = 1 + a1q
�1 + : : : anaq

�na

B0(q�1) = b0 + b1q
�1 + : : :+ bnbq

�nb

C(q�1) = 1 + c1q
�1 + : : :+ cncq

�nc

ande(n) is a zero mean uncorrelated random sequence.

2.2 Extended recursive least-squares
Let the process be described by (1). Then the output att = nT

is given by

y(n) = �a1y(n� 1)� : : :� anay(n� na) +

b0u(n� 1) + : : :+ bnbu(n� 1� nb) +

e(n) + : : :+ cnce(n� nc) (2)

The model (2) can be approximated by a pseudo linear regressor
model

y(n) = �0'(n)

where the parameter vector� and the regressor vector' are de-
fined as

�
�
=
�
a1 : : : an b0 : : : bnb c0 : : : cnc

�
0

'(n)
�
=

�
'01(n) '02(n) '03(n)

�
0

'1(n)
�
=

�
�y(n� 1) : : : �y(n� na)

�
0

'2(n)
�
=

�
u(n� 1) : : : u(n� nb � 1)

�
0

'3(n)
�
=

�
ê(n) : : : ê(n� nc)

�
0

with

ê(n)
�
= y(n)� �̂0(n)'(n)

where�̂(n) is the estimate of the parameter vector� at timet =
nT . These estimates are obtained recursively from

�̂(n) = �̂(n� 1) +K(n)(y(n)� '0(n)�̂(n� 1))

P (n) = (I �K(n)'(n))
P (n� 1)

�
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Figure 1: Block diagram of the control structure

whereI is the identity matrix,� is a real number belonging to
the interval[0; 1] and the following definitions have been used:

�(n)
�
=

2
64

'0(0)
...

'0(n)

3
75

P (n)
�
= �0(n)�(n)

K(n)
�
= P (n� 1)'0(n)

By settingnc = 0 in the identification model (1) the ordinary
Least-Squares (OLS) method is obtained. It is known that the
estimates obtained with the ordinary Least-Squares method are
biased when the noisee(n) entering the system is not white. Al-
though this method has been used in most PSS applications with
good results, this biasing is expected to be larger in multima-
chine systems. Indeed, the effect of the noise should be more sig-
nificant in a multimachine system than in single-machine, since
there are more sources of noise. Moreover, there is the ”under-
modeling noise”, which is not a major concern in sigle machine
systems because in this case the order of the actual system is
close to that of the model. Indeed, the use of Extended Least-
Squares (ELS) instead of OLS has provided better identification
for theA andB polynomials in (1) for the application presented
in this paper. Since in practice the noise is a much bigger con-
cern than it is in simulation experiments, this effect is expected
to be even stronger in practice.

3 SELF-TUNING POLE ASSIGNMENT

3.1 Self-Tuning Control
A Self-Tuning controller identifies a stochastic model like (1)
and uses the deterministic part of the identified model for the
purpose of design.

The design model can therefore be written as a sampled transfer
function model:

y(z) =
B(z)

zA(z)
u(z) (3)

where:

A(z) = zna A0(z�1)

B(z) = znb B0(z�1)

The controller is given by

u(z) =
�F (z)

G(z)
y(z) + ue(z) (4)
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where

F (z) = f0z
nf + f1z

nf�1 + : : : fnf

G(z) = zng + g1z
ng�1 + : : :+ gng

andue is an external signal. The control scheme is shown in
Figure 1

Self-tuning controllers rely on thecertainty equivalence princi-
ple, according to which the estimates are used as if they were
the true parameters for the purpose of design. A wide spectrum
of algorithms can be conceived, depending on which parame-
ter estimation scheme is chosen and which control law is used.
Some combinations will work better than others and some will
not work at all. This fact reveals the interaction between the
processes of identification and control in self-tuning regulators,
which is not taken into account when using the certainty equiva-
lence principle.

Because of the inevitable undermodeling of the system, the iden-
tified parameters depend on the spectrum of the input signalu to
the plant. It is known that the ideal situation from the point of
view of identification is to have an input signal with a spectrum
which is flat in the modeled band and zero in the remaining fre-
quency range(Bitmeadet alii 1990). To guarantee persistency
of excitation while maintaining the best possible identification
conditions a Pseudo Random Binary Signal ( PRBS ) is usually
added to the system input. The amplitude of this PRBS must be
small enough not to disturb the system output but large enough
to guarantee an adequate level of excitation(Barreiros 1989).

3.2 Pole Assignment
Pole Assignment ( PA ) is a well established and widely applied
control strategy. It consists in choosing the controller param-
eters such that the closed-loop poles lie in pre-specified posi-
tions in thez-plane. The mathematical formulation is presented
in the following lines. In this presentation some of the speci-
fied positions for the closed-loop poles coincide with the open-
loop poles, that is, some of the open-loop poles (sayr of them)
are moved by the controller and the remaining are not. This is
referred to as Partial Pole Assignment. In the usual Pole As-
signment all the open-loop poles are moved from their positions.
This is referred to as Full Pole Assignment and can be seen as a
particular case of Partial Pole Assignment, namely whenr = na.

Let the polynomials in the model (3) be decomposed as

A = AsAu (5)

B = BsBu (6)

where thez argument has been omitted in the interest of clarity.
In (5) As andAu are monic polynomials, where the roots of
Au are the open-loop poles to be moved ( denominatedunstable
poles, even when they may be stable ) and the roots ofA s the
remaining open-loop poles ( denominatedstable poles ). In (6)
Bs is a monic polynomial whose roots are those zeros that can
be canceled by the compensator ( denominatedstable zeros )
andBu is a polynomial whose roots are the open-loop zeros that
can not be canceled by the compensator ( denominatedunstable
zeros ). Note that this decomposition is determined both by the
system’s nature and by a designer’s choice.

Let deg(�) represent the degree of a polynomial,r
�
= deg(Au)

andq
�
= deg(Bu). In order to maintain the location of thena�r

stable poles and move the remainingr, the following controller
can be used:

F

G
=

As

Bs

F1

G1

(7)

whereF1 andG1 are the polynomials to be designed. By apply-
ing this controller the closed-loop transfer functionR below is
obtained:

R
�
=

y

ue
=

BG1

As[AuG1 +BuF1]
(8)

and R indeed has the roots ofAs as its poles. The poly-
nomials F1 and G1 are obtained by solving a diophantine
equation(Bazanella e Silva 1995a)

AuG1 +BuF1 = AdAo (9)

whereAd is the monic polynomial whose roots are the specified
positions in the complex plane for the closed-loop poles andA o

is the observer polynomial(Aström and Wittenmark. 1989).

In order to obtain a causal controller, the orders of the polyno-
mials must satisfy

na � r + deg(F1) � nb � q + deg(G1) (10)

Minimizing the order of the compensator under (9) and the above
causality constraint (10) yields

deg(F1) = r � 1

deg(G1) = na � nb + q � 1

Solving the diophantine equation (9) requires the solution of the
following linear system, whose order equalsna � nb + r + q �

1(Aström and Wittenmark. 1989).

Mx = p (11)

where:

x
�
=
�
fnf : : : f0 gng : : : g1

�T

p
�
=
�
pnp : : : p1 0 : : : 0

�T

M =

2
666666664

bu
q

0 : : : au
r

0 : : :

bu
q�1 bq : : : au

r�1 au
r

: : :
...

...
...

...
bu0 bu1 : : : au

r�q
au
r�q+1 : : :

...
...

...
...

0 0 : : : 0 : : : au
r�q

3
777777775

Theau
i
’s andbu

i
’s are respectively the coefficients of the polyno-

mialsAu andBu, thep0
i
s are the coefficients of the closed-loop

characteristic polynomialAdAo, andnp = deg(Au) + deg(G1)

is the order of this polynomial. Note thatdeg(Ao) = q.

Several publications have provided applications of PA in Self-
Tuning PSS’s (Malik and Mao. 1993, Barreiros 1989), always
using Full Pole Assignment, that is,r = na. The best choice for
the positions of the closed-loop poles in thez-plane is usually
not obvious and strongly depends on the particular application.
In Self-Tuning PSS applications a pole shifting is usually carried
out, that is, the open-loop poles are shifted towards the origin of
thez-plane, reducing their modules by a factor� < 1 to deter-
mine the positions of the closed-loop poles(Barreiros 1989).
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4 CONTROL DESIGN
The conflict between the identification and control objectives is
expected to be stronger in multimachine power systems than it
is in single machine systems. We should explicitly take this con-
flict into account in our analysis in order to obtain design guide-
lines that will provide a good trade-off in multimachine systems.
To this end we analyze the effect of the controller on the identi-
fication conditions from a frequency domain perspective.

In order to provide better identification conditions, noise is in-
jected into the inputue. From the identification point of view,
we would like the inputu to the system to have a flat spectrum
in the low frequency range, with a bandwidth equal to that of
the system. For that purpose, we inject a noise the spectrum of
which has these characteristics. However, the control signal is
added to this point, and the resulting system input will have its
spectrum determined by the transfer function from the external
inputue to the plant inputu, which is given by

T
�
=

u

ue
=

1

1 + B

A

AsF1

BsG1

=
AuG1

AuG1 +BuF1
=

AuG1

AdA0

(12)

The zeros ofT are those open-loop poles that are to be moved by
the controller and its poles are the positions to where they will
be moved. Hence, the input signal to the plantu can be seen as
generated by the input signalue to the system when filtered so
that the frequencies corresponding to the open-loop poles are su-
pressed and those corresponding to the desired closed-loop poles
are reinforced.

A third or fifth order model is usually adequate to describe Power
Systems’ behavior. Due to the oscillatory nature of power sys-
tem’s dynamics, the identified model will have a pair of complex
poles in a third-order model, and usually two pairs in a fifth-
order model. The PSS is aimed at the damping of these complex
poles, and it is not necessary to move also the real pole, which
is not responsible for the poor dynamic performance of the sys-
tem. Moreover, many times in a fifth-order model only one of
the two pairs of complex poles is poorly damped and therefore
responsible for the poor dynamic behavior of the system. In this
case, it is only necessary to move the troublesome pair, leaving
the three remaining poles in their original places. Moreover, we
claim that the smaller the dislocation of the poles the better will
be the identification.

This claim is based on the analysis of the transfer functionT

in (12). Consider a situation typical for PSS applications: let
in (12) deg(Au) = 2, q = 0, and suppose that a pole shifting
is performed by the controller. Then the transfer function (12)
becomes

T (z) =
z2 � 2�z + (�2 + !2)

z2 � 2��z + �2(�2 + !2)
(13)

A Bode plot of the transfer function (13) for� = 1, ! = 0:3 and
� = 0:7 is shown in Figure 2. These values are also typical in
STPSS applications. We note the following points:

� The gain is low exactly around those frequencies that corre-
spond to the open-loop poles that have been moved, so that
the identification of the system response in these frequen-
cies will be poor.

� The high-frequency gain is larger than the low-frequency
gain.

Figure 2: Bode plot of the transfer function (13)

� The smaller is�, the larger will be this high-frequencygain;
hence, as the poles are moved farther away from their orig-
inal positions, the input spectrum tends to be wider, thus
worsening the identification.

The conflict between identification and control roles is thus seen
in a frequency response plot. The transfer function (12) hasr=2

”valleys” in its Bode plot, one for each pair of complex poles in
Au. Moreover, its high-frequency gain grows when the distance
between the roots ofAu andAd grows. Therefore, it is interest-
ing from the point of view of the identification in a Self-Tuning
PSS to move only the poles that are really troublesome, and not
to move them too far away from their original positions. Hence,
partial Pole Assignment, moving only those poles directly as-
sociated to poorly damped electromechanical oscillations, is ex-
pected to provide better identification conditions than full Pole
Assignment. Furthermore, by moving these poles just inside a
region of enough stability the high-frequency gain is kept close
to the low-frequency gain, so that the high-frequency compo-
nents of the signalue are not amplified and the spectrum ofu is
adequate for the identification. This approach is also expected to
reduce the control effort.

The choice of the closed-loop positions for the poles (the roots
of Ad) can be made in several ways. Radial pole shifting is
the usual choice in previously proposed PASTPSS’s. Another
choice, which is adopted in this paper, is to make the closed-loop
poles to have a predetermined damping factor, while maintaining
the original open-loop natural oscillating frequency. The desired
closed-loop polynomial is then given by

Ad(z) = z2 + ad1z + ad2

ad1 = �2e��!nT cos(!n
p
1� �2T )

ad2 = e�2�!nT

whereT is the sampling period,!n is the natural undamped os-
cillating frequency of the pole (in the continuous time domain)
and� is the desired damping in closed-loop.

Therefore the proposed algorithm consists of the the following
steps at each sampling time:

1. sample the system to obtainu(nT ) andy(nT );
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Figure 3: New England Test System

2. identify the parameters of the system model (1) by the ELS
method;

3. calculate the singularities of the system identified in the pre-
vious step;

4. choose which pair(s) of complex poles to move according
to some stability criterion and which zeros can be canceled;

5. determine the polynomialsAs, Au, Bs andBu from (5)
based on the choice above;

6. obtain the polynomialsF1 andG1 by solving equation (9);

7. obtain the controller transfer function using the polynomi-
alsAs, Bs, F1 andG1 just obtained from (7);

8. calculate the control from the recursion equation associated
with the transfer function just obtained and apply it to the
system.

5 APPLICATION TO A BENCHMARK

5.1 The test system
The test system is the New England Power System. The one-line
diagram is given in Figure 3.

The system consists of nine generators, an infinite busbar and
thirty-nine buses. The modeling and load data are the same
as in reference (Byerlyet alii, R.T., D.E. Sherman, and R.J.
Bennon. 1978), except for the AVR data, which have been mod-
ified: all the synchronous machines are supposed to be equipped
with AVR described by a first-order transfer function:

AV R(s) =
K

1 + sT

The AVR parameters are presented in Table 1

The system exhibits poor dynamic performance for typical op-
erating conditions. For the operating condition considered, dy-
namic instability is observed. The eigenvalues associated to the
unstable electromechanical modes of the system are presented
in Table 2. The behavior of the load angles of the nine gener-
ators in response to a solid short-circuit at bus 22 is shown in

Table 1: AVR data
Gen. bus K T

30 5:0 0:06

31 6:2 0:05

32 5:0 0:06

33 5:0 0:06

34 40:0 0:02

35 5:0 0:02

36 40:0 0:02

37 5:0 0:02

38 40:0 0:02

Figure 4: Open–loop generator angles

Figure 4. It is shown in (Bazanellaet alii 1995) that conven-
tional PSS’s designed for this operating condition are not able to
provide enough damping for other operating conditions.

Table 2: Unstable electromechanical eigenvalues of the test sys-
tem.

+0.0024� | 7.0606
+0.1261� | 6.0564
+0.0355� | 6.2696
+0.0683� | 4.0736

5.2 The controller design
Participation factors are used to determine which generator is
more strongly associated to each unstable electromechanical
mode. One PSS is attached to each one of these four generators.
One more PSS is installed at a generator strongly associated to
some of the electromechanical modes. Hence, five PSS’s are
used overall. All the PSS’s use electric power as the feedback
signal.

Several design choices must be made for the STPSS’s. The sam-
pling period (T ) is chosen first, based on usual sampled data
control systems considerations (Aström and Wittenmark. 1989).
The parameters of the controller are not updated at each sample,
but only at intervals of� samples. The orders for the polyno-
mials in the model (na, nb andnc) are selected based on the
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Table 3. Main features of the STPSS’s.

na 3
nb 4
nc 2
r 2
T 100 ms
� 0.7
� 10

Nfrozen 50

Figure 5: Generator angles with partial pole placement

previous knowledge of the system behavior and a trial and error
procedure. They are such that the identification does not im-
prove by making them bigger. The number of poles to be moved
r = 2 is the one recommended by the previous discussion and
is indeed the one that has yielded the best results. The pair of
complex poles is moved so that its natural frequency is main-
tained while improving its damping factor up to a prespecified
value�. Identification freezing imediately after a fault is also
applied;Nfrozen is the number of samples the identification is
frozen after a fault. Table 3 presents the design choices made for
the STPSS’s in this paper.

5.3 Simulation results
The Self-Tuning, Pole Assignment based, Power System Stabi-
lizers ( STPAPSS’s ) described above were implemented using
numerically robust routines and applied to the New England test
system at the simulation level. The behavior of the load angles of
the nine generators in response to a solid short-circuit at bus 22
is shown in Figure 5.

The simulation starts with all the parameters in the PSS’s iden-
tification model set to zero, exceptb0, which is set to one. The
model parameters are identified within a few seconds, so that
the PSS’s tune themselves to the given operating condition to
provide the system with good damping of the electromechani-
cal oscillations. The parameter tracking of the PSS installed at
generator1 is presented in Figure 6.

Let us compare these results with those obtained with full Pole

Figure 6: Identified parameters (partial pole placement)

Figure 7: Generator angles with full pole placement

Assignment. To this end we change the control strategy of
the five PSS’s to full Pole Assignment with radial pole shift-
ing, keeping the other control and identification parameters un-
altered. The best results are obtained for� = 0:85. The load an-
gle of the generators in this case for the same fault as before are
shown in Figure 7; the parameter tracking of the PSS installed at
generator1 is presented in Figure 9.

The PSS’s outputs for the partial and full Pole Assignment are
presented in Figures 8 and 10, respectively. It is seen that the
partial Pole Assignment demands less control effort, although
better damping has been obtained.

Finally, we compare the results obtained with the application of
the partial Pole Assignment strategy along with ordinary Least-
Squares identification. The load angles are given (again for the
same fault) in Figure 11, where we notice that the performance
is not as good as obtained using the extended Least-Squares.

74 Revista Controle & Automação /Vol.11 no.2/Mai., Jun., Jul. e Agosto 2000



Figure 8: PSS outputs (partial pole placement)

Although the convergence of the parameters, shown in Fig-
ure 12, is very fast, the estimates obtained are biased, which
deteriorates the system performance.

6 CONCLUSIONS

Self-Tuning control is a promising alternative to deal with oper-
ating point variations in power systems stabilizers and as such
has been extensively explored in the literature. Yet, results for
multimachine systems are scarce to date. The unpleasant effects
of undermodeling, nonlinearities and noise on the performance
of Self-Tuning controllers are more significant in the multima-
chine case. Hence, design choices which explicitly take into ac-
count the conflict between identification and control objectives
are very important. In this paper we discussed this issue and
proposed a new Self-Tuning PSS to deal with it. The perfor-
mance of this controller has been assessed and compared to a
well-established strategy in a benchmark.

The proposed controller applies a Partial Pole Assignment con-
trol strategy along with the Extended Least-Squares method for
identification. The ELS is more suited to noisy applications and
for this reason is expected to provide significant improvement in
identification of multimachine systems when compared to the or-
dinary Least-Squares. Regarding the control strategy, it has been
shown analytically that moving only those open-loop poles re-
sponsible for the system instability provides better identification
conditions than Full Pole Assignment. It has also been argued
that smaller control effort can be expected in this case. Both this
expectation and the analytical results have been confirmed in a
case study presented.

The simulation results obtained for the case study show the good
performance of the proposed control algorithm for a multima-
chine benchmark. The controllers quickly identify the linear
model for the system and tune themselves to the current op-

Figure 9: Identified model parameters (full pole placement)

erating condition. The dynamic performance obtained is quite
satisfactory, achieving good damping for all the electromechan-
ical modes. Significant performance improvement has been ob-
tained when compared to full Pole Assignment: better damping
is achieved with less control effort. Furthermore, the compar-
ison between the two identification methods shows that the re-
duction of the bias in the parameter estimates achieved with the
extended Least-Squares identification also improves the system
performance.
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