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Abstract: The development of an attention strategy for
multiple target tracking and its integration with a binocular
vision head is presented. Monocular motion-based
segmentation yields image regions that are further clustered
into targets. The emulation of a fovea significantly reduces the
computational workload of target segmentation. Attentional
management is based on assigning an interest value to each
target. Its evaluation weighs binocular disparity, the number of
detected moving pixels in a target, its pixel density, velocity
and duration along the image sequence. The vision head
performs saccades, ballistic motions and smooth pursuit around
its tilt and vergence axes with characteristics similar to those of
the anthropomorphic visual apparatus. System performance is
evaluated on a 166 Mhz PC host with unexpensive off-the-
shelf hardware in two situations. In the first case, small targets
translate independently over a textured background. In the
second, a moving human subject yields multiple targets
undergoing rotation, non-rigid motion and scale changes. A
processing rate about 0.8 stereo pair per second is attained. The
first case shows the tracking and image stabilization
capabilities for small translating targets only. The second case
reveals the impact of hardware limitations on the system
sensitivity to distortions in gray level patterns. It is induced by
interframe rotation and changes in the illumination and scale
factor as the tracked human subject moves around in the scene.
As a consequence, undesired attentional reorientations occur.
However, the system succeeds in keeping the subject within the
field of view in such conditions though not always stabilized
within the image region of fixation.

Keywords: Active vision, visual attention, binocular tracking,
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1 INTRODUCTION

Since immemorial times the sense of vision supports human
beings in their search for food, shelter, evasion from predators
and overall survival. Everyday, humans engage countless times
in complex visual tasks such as detecting and tracking objects
that somehow draw their attention. Detection is here
considered as the confirmation that an object is present on the

image whereas tracking concerns maintaining a given object
within the field of view. The latter is often accomplished by
controlling eye position and velocity. The connection between
tracking and attention, which is a critical assumption in this
work, is made explicit here. It is hypothesized that the visual
tracking behavior in humans is driven by a sort of attentional
management. It seems reasonable to claim that some sort of
decision is required whether an object raises the system
attention for tracking purposes and whether another object
entering its field of view becomes more interesting, thus
producing an attentional reorientation.

The literature describes robotic vision systems that reproduce
some of the features found in biological vision systems that
successfully evolved in nature. The motivation behind such
efforts can be traced to the need for automated industrial and
information processes based on visual feedback. An effective
visual tracking system can be useful in a wide range of
applications such as automatic surveillance (Batista et allii,
1998), traffic monitoring (Dagless et allii, 1993) vision-aided
autonomous vehicles (Balkenius and Kopp, 1996; Huber and
Kortenkamp, 1995), multiple target detection, selection and
tracking by an aircraft or missile (Bar-Shalom and Li, 1993)
and novel man-machine interfaces such as guidance support to
the visually impaired (Crisman et allii, 1998; Molton et allii,
1998). Research efforts aligned with the work presented here
exist on the areas of visual tracking (Andersen, 1996; Murray
and Basu, 1994; Uhlin, 1996), visual attention (Bandera et allii,
1996; Culhane and Tsotsos, 1992) and the development of
anthropomorphic-inspired robotic heads for active vision
(Andersen, 1996; Weiman and Vincze, 1996).

1.1 Visual Tracking

Model-driven tracking is based on high level information to
describe objects on the image (Andersen, 1996). Object
features are sought which are robust to scale changes,
translation and rotation of the object projection on the image.
Image analysis resorts often to object-centered representations.
However, unknown objects can be incorrectly processed with
detrimental effects on system performance. Therefore, model-
driven tracking may not be suitable in an unstructured
environment as the completeness of the model database and the
robustness of the representation scheme become critical.
Moreover, it seems reasonable to assume that the model-driven
approach imposes a heavy computational workload when
dealing with day-to-day situations as expected in this work.
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Hence, the data-driven approach is selected to circumvent the
complexity inherent to the model matching problem when
dealing with unstructured environments and to keep the
computational burden bearable to unexpensive PC-based
hardware. The latter approach utilizes pixel-based information
such as brightness, motion, texture and contrast and sets of
image points result as possible targets (Culhane and Tsotsos,
1992).

Binocular tracking requires control of both fields of view to
project the image of any object raising the system interest on
the region of fixation of both cameras. The human eye carries
out this task by means of saccades and smooth pursuit (Araújo
et allii, 1996; Batista et allii, 1997; Cowie and Taylor, 1997;
Rotstein and Rivlin, 1996; Uhlin, 1996). Saccades are fast and
usually have a large amplitude. They are associated with the
allocation of attention to another region of the 3D space. Rapid
minute corrections of the eyes' positions during the fixation of
a static object occur and are called microsaccades. The high
speed of a saccade precludes the processing of visual
information due to motion blur. Smooth pursuit consists of a
slow eye motion during tracking. It aims at maintaining the
viewed object projection on the fovea where the retina
resolution peaks. A mismatch between sensor velocity and
object retinal velocity causes the object projection to slip away
from the fovea. It is usually remedied by means of a
microsaccade and smooth pursuit then resumes. Whenever
attention is shifted to a different portion of the scene a saccade
to that region occurs followed by smooth pursuit and
microsaccades. In the present work, the binocular vision head
is controlled according to the following guidelines:

1- Ballistic motions. These correspond to what is described as
saccades in the literature. They employ high speed
movements to control the camera position. It is employed to
coarsely aim at an object that has just attracted the system
attention. The rapid motion prevents the processing of
visual information. The camera must halt to resume image
processing. Otherwise, overshoot and oscillations result in
blurred images.

2 - Saccades. Here differently from the literature, these are
corrections to the camera angular velocity. They are
engaged whenever a velocity mismatch between the camera
and the object projection occurs causing significant slip
error relative to the region of fixation. The camera velocity
is then updated to reduce this error. Image processing
continues during this type of motion.

3- Smooth pursuit occurs when the slip error is within
acceptable bounds and the tracked object projects on the
region of fixation thus obviating any corrections in camera
velocity. Ideally, image processing benefits from sharper
images as the target projection is stabilized on the region of
fixation.

1.2 Visual Attention

Early visual processing in humans is often characterized as
having two functionally distinct modes. The first, preattentive,
in which information is processed in a spatially parallel manner
that circumvents the need for attentional resources, and the
second, which involves the allocation of attentional resources
to specific locations or objects for more complex analysis. The
latter mode, also known as the "where to look next" problem, is
a key issue when dealing with various objects which compete
for the system attention. Research concerning the allocation of

attentional resources in human beings has yielded evidence for
another functional dichotomy: attentional orienting can be
voluntary, controlled by strategic goals (endogenous attentional
control), or involuntary, driven by particular stimulus events
(exogenous attentional control), as in Folk et allii, 1992. They
claimed the existence of psychophysical evidence supporting
the "contingent involuntary orienting hypothesis", according to
which involuntary shifts of attention to a stimulus event
depended on whether the event shared a feature property that
was critical to the performance of the desired task. Involuntary
shifts of attention were systematically dependent on the
relationship between the stimulus properties of the distractor
cue and the properties required to locate and process the target.
Inspired in such observations, it is proposed here that the
design of a machine capable of visually tracking multiple
targets should result in a system behavior consistent with the
desired goal while reducing undesired attentional
reorientations. On the other hand, the management of
surroundings awareness by the system should provide
flexibility to consider changing environment conditions and
their impact on system goals in order to adequately modify the
attentional control settings according to the need for adaptation
and autonomous behavior.

Real-time visual tracking, either in biological systems or in
their machine counterparts, requires dedicated hardware with a
high processing capacity. Even with the evolution of dedicated
hardware to meet the needs of parallel computing along with
improved actuators and controllers for machine vision systems,
often one is limited by the available computational resources.
Inspired in nature's solution to this question, an attentional
management strategy should attempt to carry out an efficient
usage of limited system resources. Spatial compression of
visual data occurs at the retina with a varying resolution that
peaks at the fovea. The eyes scan the surroundings and position
the projection of an area of interest onto the fovea to acquire
high resolution data. Peripheral vision also plays a role at the
level of shifting the system attention to other interesting objects
within the field of view. Overall, the computational burden is
kept bearable.

It is assumed that tracking is neither activated nor terminated
without a purpose. Such purpose induces the attention of the
visual system to focus on a specific region or to shift focus to
another one. Interest on a given object may cease as the system
goal is attained such as the completion of its recognition or the
estimation of its trajectory parameters, for instance. A
quantitative determination of the interest raised by multiple
moving objects in a scene is considered here in order to
establish priorities for tracking. An attention function based on
image features is proposed to evaluate which part of the image
contents should raise the system interest. The selection of task-
relevant reliable image features, called here attentional
features, and of an adequate structure for the attention function
is critical since they directly influence the system behavior
(Andersen, 1996; Araújo et allii, 1996a,1996b; Batista et allii,
1997; Culhane and Tsotsos, 1992; Hager and Belhumeur, 1996;
Huber and Kortenkamp, 1995; Murray and Basu, 1994; Shi and
Tomasi, 1994; Uhlin, 1996). Among the features that could
raise the attention of the system are object brightness, shape,
velocity, distance to the observer and the duration of its
occurrence within the field of view. In yet another direction
which involves the application of estimation theory, Kalman
filtering and α-β-γ filters have been utilized to predict the
positions of simultaneous objects in consecutive images but
without addressing the aspect of establishing priorities for
tracking (Andersen, 1996; Bar-Shalom and Li, 1993).
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This paper presents and evaluates a binocular tracking system
with its computational resources allocated according to an
attentional management capability. It is expected to select and
track a target that raises the system attention among other
independently moving objects. System behavior is analyzed in
terms of target competition for the system attention, target
selection, attentional reorientation and the system ability to
maintain the selected target within the field of view by
controlling camera position and velocity. The term "target" is
here employed to indicate a moving region on the image that
raises attention. The analysis encompasses the effect upon the
overall system behavior of a variety of issues such as motion
detection and target segmentation with moving cameras in an
unstructured environment, the real-time processing
requirements for adequate operation and the adequacy of the
attention function, i.e., its structure, composing attentional
features and weight selection.

2 SYSTEM DESCRIPTION

Visual processing of images acquired by the vision head is
depicted in figure 1. The dominant camera is the left one of the
stereo assembly. It is assumed that anything that moves in a
scene is a potential target. Motion detection employs image
subtraction (Bispo and Waldmann, 1998; Murray and Basu,
1994). A search for moving regions proceeds with the head in
static mode (static search). Monocular localization and
clustering of moving regions into targets on the dominant
image follow. Target matching, either across stereo images or
along a sequence, employs the estimated centroid position and
its surrounding gray-level pattern yielding estimates of target
velocity on the dominant image and of depth-related stereo
disparity. These features enter the attention function along with
the number of moving pixels within the target area, its density
and a time measurement which indicates for how long each
target has been within the field of view. The evaluation of the
attention function for each target is stored in a dynamic list
which records the relative interest raised by the targets and thus
supports the selection of the target to track. Position and
velocity estimates of its centroid are used to compute angular
increments which are the command signals for controlling the
motion of the dominant camera. Additionally, the estimated
disparity is the error signal for controlling the asymmetric
vergence of the stereo assembly which leads to binocular
fixation. This process continues as targets evolve within the
field of view. Static search for target motion resumes whenever
no motion is detected in the scene after eight images.

In the following, the various vision algorithms and their
integration in a vision machine are described in more detail.
Images are monochromatic with a resolution of 160 pixels x
120 pixels and 256 gray levels unless otherwise stated. It has
been so selected as a compromise between sufficiently accurate
information and keeping the computational workload at a
bearable level for a PC equipped with relatively unexpensive
off-the-shelf image acquisition, A-D/D-A conversion and data
communication hardware.

2.1 Processing the dominant images

Motion detection, localization of moving regions, target
segmentation and centroid estimation result from the
processing of images acquired by the dominant camera during
tracking. Motion detection is done by thresholding the
subtraction of a pair of consecutive images. Typically, image
subtraction indicates the relative differences in both

consecutive images. Differences arising from the previous
image are discarded by means of a logical "AND" between the
thresholded subtraction image and the gradient of the present
image. The underlying assumption is that a moving target
possesses a much richer texture than its surrounding
background. In this case, the motion detector outputs sets of
pixels, called here "moving pixels", that belong to moving
image regions. Prewitt masks and a convenient threshold are
used for the gradient operation (Fairhurst, 1988).
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Figure 1 - System implementation with information flow

(dashed lines).

As the camera tracks a selected target, adequate motion
detection calls for image stabilization as seen in figure 2 (Bispo
and Waldmann, 1998; Murray and Basu, 1994). It is
accomplished by reading measurements from encoders that are
fixed to the tilt and vergence axes. Measurement errors, delays
between image acquisition and encoder reading, uncertainties
in the optical parameters and undesired camera translation due
to the distance from the rotating axes to the optical center cause
inaccurate stabilization and thus noisy motion detection. It is
almost completely remedied by the morphological gray-level
opening operator defined in the following sequence of
operations (Murray and Basu, 1994):

:j)(i,on  centered                                                

Relement  structure )l,k( andarray  image )j,i( ∈∈∀

))l,k(I)l,k(I(min)j,i(I stabilized,1kk
l,k

eroded −−=

)l,k(Imax)j,i(I eroded
l,k

opened =  (1)

The result of equation (1) is thresholded and a binary image
with the moving pixels result. Many tiny regions falsely
detected as moving because of incorrect image stabilization are
thus removed. The remaining regions are assumed to be parts
of the actual targets. The clustering of moving pixels into
classes and subsequently into superclasses employs a distance
criterion which is defined on the image plane. Each superclass
centroid represents a target location on the dominant image. It
is regarded as a candidate for selection and tracking according
to its interest value relative to those of the other targets.

2.2 Target segmentation

Often independently moving targets exist in the scene. In
general, moving regions on the image plane might result from
either the same target or from different ones. The clustering of
such regions into classes employs a distance-based criterion.
The clustering algorithm operates on the binary image that
results from thresholding the output of equation (1). There is
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no sort of motion analysis. It reflects the hypothesis that nearby
moving regions belong to the same target and it fails if
neighboring regions move very differently because they
actually belong to distinct nearby targets.

     
    (a)  (b)

     
   (c) (d)

Figure 2 - Image subtraction with compensation of camera
motion. a) Previous image. b) Image after motion

compensation. c) Present image. d) Subtraction result.

Clustering is a computationally heavy task. It is divided in two
phases. Initially, classes are derived from sets of nearby pixels
which belong to moving regions. The same target may spread
over a number of classes if its projection on the image plane
covers a large area. Afterwards, the derived classes are grouped
into superclasses which are analogous to classes but at a
macroscopic level. Therefore, as nearby pixels are clustered
into classes, likewise are nearby classes into superclasses. The
latter is the adopted representation for the multiple targets on
the image.

Since the purpose of visual tracking in primates seems to be the
stabilization of the projection of the selected target on the high-
resolution fovea, it seems reasonable to expect that for machine
vision systems a corresponding area on the image should have
a higher resolution and receive a larger share of attention. A
region of fixation is then defined on each stereo image. Targets
that raise attention should be maintained within such a region
with the highest resolution available for processing. The
resulting foveated images are employed to alleviate the
computational burden, as in Bandera et allii (1996) and Scott
and Bandera (1990). The region of fixation employs the
original image resolution and subsampling generates a
periphery with a coarser resolution.

2.2.1 Foveated images by subsampling

Some topologies for multiple resolution images are shown in
Andersen (1996). In general, it consists of a central fovea with
its maximum resolution surrounded by rings of decreasing
resolution. To alleviate the computational workload of
clustering the moving regions, the partition of the image in a
fovea and a single-ring periphery is considered satisfactory.
The central 80x60 fovea is selected to coincide with the region
of fixation. Subsampling is done by averaging within 4x4
windows and then thresholding. Only the binary output of
equation (1) which corresponds to moving regions on the
image periphery is subsampled, thus further reducing the
computional workload. An instance of the fovea-aided motion

detector operating on images acquired with full resolution is
shown in figure 3.

 
(a) (b)

      (c)

Figure 3 - Fovea-aided motion detector. a) Previous image.
b) Present image. c) Binary result.

2.2.2 Clustering moving pixels into classes

The clustering algorithm employed here is a modified version
of that described by Fairhurst (1988). Basically, it scans the
output of the motion detector for pixels labeled as moving and
attempts to assign them to classes according to a distance
metric. Class attributes are the number of moving pixels in a
class, #pix(class), the size of the smallest rectangle enclosing
such pixels, its corresponding area and the density of moving
pixels, dens(class), in this rectangle. Three cases may occur:

1 - None among the n already existing classes c1,...,cn is found

sufficiently close to the moving pixel )y,x(=c  under

consideration. In this case, it becomes the seed of a new
class cn+1 with its centroid )y,x( 1n1n1n +++ =c . Its

coordinates are described in the high-resolution coordinate
frame regardless of whether it is on the fovea or on the
periphery. The quantity of pixels in this new class is 1 if it
is on the fovea or 16 on the periphery, the latter
corresponding to a 4x4 window of high-resolution pixels.
Likewise, its area is defined as 1 if on the fovea or 16 on
the periphery. The density is one corresponding to the ratio
between the quantity of pixels in the class and its area. The
smallest enclosing rectangle is a square with dimensions
1x1 on the fovea or 4x4 on the periphery.

2 - n classes have been already initiated, each one with its
respective moving pixels given by

n,...,1k);c(pix#,...,2,1p),y,x( kpp ==  and at least one of

them is sufficiently close to the moving pixel )y,x(=c

under consideration. Proximity to the k-th class centroid kc

is defined according to Euclidean distance on the maximum
resolution image and independent of whether the fovea or
the periphery are involved:

n,...,2,1k,Lmind d2k
=≤−= kcc (2)

If the above criterion is true, then the k-th class that
minimizes the above equation and does not violate the
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inequality accepts )y,x(=c  and the class attributes are

updated, i.e., its number of moving pixels #pix(ck) is

incremented, the size of the smallest enclosing rectangle, its
area and density, each of them as required and according to
whether the location of )y,x(=c  is on the fovea or on the

periphery. Class centroid is not updated in this case.

3 - Classes have been initiated but none satisfies dLd ≤ . In

this case, all class centroids are recomputed to reflect the
most recent state of clustering and a new attempt at
minimizing equation (2) is made. If successful, the
procedure is analogous to case 2. If not, the procedure
continues according to case 1. The purpose of case 3 is to
reduce the amount of required computations.

The threshold dL  is chosen to bias the clustering results

towards generating many small classes from one large target in
opposition to a number of targets ending up within one large
class. The clustering algorithm is applied to the output of the
fovea-aided motion detector - the moving pixels - and yields
classes - moving regions formed by concatenating such pixels.
Figure 4 shows an example.

    (a) (b)

    (c) (d)

    (e) (f)

    (g) (h)
Figure 4 - Clustering moving pixels into classes. a) Fovea-
aided detected moving regions. b-g) Resulting classes. h)

Superclass resulting from class concatenation.

2.2.3 Clustering of classes into superclasses and
target formation

The previous section showed how moving pixels are clustered
into classes according to distance. However, such classes
cannot be regarded as distinct targets yet because one target
can be spatially spread over a number of classes. It is assumed
that nearby classes are likely to belong to the same target. Once
more a distance metric is the basis of a criterion for accepting
or not the merger of classes into a superclass. Additionally, the
resulting density is also considered before accepting a merger.
Each i-th superclass Sci i=1,...,n is a subset of the n existing

classes. Each class is to be contained by only one superclass.
Each superclass is initialized as an empty set and each non-
empty one that results by the end of all mergers becomes a
target. Let ),(d ji cc  represent the Euclidean distance on the

image plane between the centroids of classes ci and cj and

dens(ci) the i-th class density. The logical-valued criterion

C(ci,cj) for accepting a merger of ci with cj into the k-th

superclass is as follows (see Appendix A):

))c(dens).3/2(
)cc(pix#

)c(pix).#c(dens)c(pix).#c(dens

)cc(dens(

 AND)L5,2),(d()c,c(C

i
ji

jjii

ji

d2jijiji

≥
∪

+

=∪

≤−== cccc

(3)

The density attribute enters the accceptance criterion to reduce
the detrimental effect of image noise. In general, stabilization
errors cause image artifacts that, when not eliminated by the
gray-level opening operation, contain a few sparsely distributed
pixels incorrectly detected as moving. A merger with such a
region erroneously accepted as a class would not significantly
alter the resulting number of pixels. The same reasoning may
however be incorrect for the density attribute, since there could
be a significant increase in target area. If such a merger were
accepted into a superclass, the resulting target would be large
and composed of sparse pixels within some of its parts. Targets
with low density should not raise the attention of the vision
system.

No sort of motion analysis is used to decide whether a merger
should be accepted or not. Figure 5 shows that adequate
segmentation is achieved for a pair of targets. As they approach
one another the previous result blends into one target though.
Target attributes and data available for further processing are
the number of targets, the density and number of moving pixels
in each target, the estimated centroid and the corresponding
gray-level patterns around the centroid of each target.

2.3 Monocular velocity estimation

Target velocity on the image plane is a feature that enters the
computation of the target interest value. Rapidly moving
objects are more likely to leave the visual field before the
system has an opportunity to track. In terms of a machine
vision system, fast objects may bring about the danger of
collision and in terms of biological vision systems, they may
represent an agile prey or predator. Hence, one should expect
that fast objects should raise more interest than slow ones.

Image velocity estimation is based on target displacement
between consecutive images. As a number of targets may exist
within the field of view at a certain time, the establishment of
target correspondence in consecutive images is required. The
correspondence criterion employs a variation of the sum-of-
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squared-differences (SSD) method: the sum-of-squared-pixels
(SSP) is used for normalization. Let It and It-1 represent

consecutive images acquired by the dominant camera, R2 an

MxN window in It containing a gray-level pattern around a

target centroid and R1 likewise in It-1 .

 
(a) (b)

(c)
Figure 5 - Clustering classes into superclasses and

generation of targets. a-b) Consecutive images. c) Resulting
targets.

Consider further a search area of size PxQ around a target
centroid in It-1 , P>M and Q>N. The need for a search area

originates in the displacement of the estimated centroid within
the target borders from image to image due to changes in
illumination, object pose and fluctuations in the motion
detector output. Then, for each combination of R2 and R1:

∑∑∑∑
−

=

−

=

−

=
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The criterion for establishing a corresponding pair of gray-level
patterns is:

ac21
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*
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2211
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∈∈

 (5)

where S1(S2) is the set of remaining R1(R2) windows left for

correspondence. Whenever a correspondence is established the

corresponding )R(R *
2

*
1  is removed from S1(S2). The

inequality refers to a threshold set to 0.15 for accepting a
correspondence as valid. Targets in the most recent image that
could not find an acceptable correspondence are labeled as new
and their velocities are set to null. A list of corresponding
targets is built and the associated velocity estimates are stored
for later use by the attentional management module.
Empirically tuned window dimensions are M=N=5 and
P=Q=21. It is a compromise between the preservation of the
information content and the desired robustness to unexpected
image variations and to changing background texture around
the target. The former precludes too small windows whereas
the latter too large ones.

Figure 6 displays an instance of target correspondence between
images. Target 2 is properly corresponded along the image
sequence until its occlusion. Segmentation produces only one
target as both approach one another. Minute motion causes
target 1 to be missing in figure 6b. Minute motion, though
detected by image subtraction, is further deleted by the gray-

level opening operation described in Section 2.1. Target 1
reappears as new target 3 in figure 6c because the
correspondence process does not store a gray level pattern for
more than one image.

 
(a) (b)

 
(c) (d)

Figure 6 - Monocular SSD-based correspondence along an
image sequence.

Targets with similar textures may yield false correspondences
and the SSD criterion is known to be susceptible to rotations,
geometric deformations and illumination changes (Hager and
Belhumeur,1996). Moreover, ambiguities arise due to the
aperture problem. The function to minimize in equation (4)
generates a surface whose principal curvatures are useful to
determine the directions of the largest and the smallest
uncertainties when establishing a correspondence between
targets. A small curvature indicates large uncertainty and vice
versa. Once a correspondence is produced, the target
displacement has more uncertainty in its component along the
direction of smallest curvature. This effect is often due to a
rather homogeneous target texture along this direction. The
uncertainty analysis regarding target correspondence will be
further elaborated in Section 4 which discusses the results.

2.4 Binocular Registration

Image disparity originates in the image acquisition from
distinct points of view of a stereoscopic assembly as shown in
figure 7. It depict the baseline b, the 3D point P and its
perspective projection Pl (Pr) on the left (right) image plane
according to the projection center Ol(Or) and the change on the
epipolar constraint caused by verging cameras. Disparity is
related to object depth. Depth estimation requires knowledge of
parameters such as focal length, baseline and vergence angle.
For the purpose of managing the system attention, disparity
estimation suffices and normalized correlation-based
registration operating on a pyramidal data structure is used.
The vergence angle of the non-dominant camera is controlled
aiming at nulling the estimated disparity. Ideally, the cameras
are oriented in such a way that the projection of the tracked
object should fall upon their respective regions of fixation. This
control employs correlation which requires a rich texture
around the target centroid. Normalization reduces the
sensitivity of the correlation method to illumination changes,
but the method suffers performance limitations due to rotation
and scale factor changes. The use of a pyramidal data structure
allows a coarse-to-fine solution to the registration problem
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which further helps to reduce the computational workload. A
pyramidal data structure is built for each of the stereo images.
It consists of three levels of resolution: the original 160x120
(level 0), 40x30 (level 1) and 20x15 (level 2). Levels 1 and 2
are generated by partitioning level 0 into 4x4 and 8x8
windows, respectively, and computing the average gray level at
each window.

Figure 7 - Effect of camera vergence on the location of the
epipolar constraint.

The registration of a target previously detected on the dominant
image is made by correlating the gray-level pattern around its
computed centroid with patterns within a search area. This area
is positioned around the epipolar constraint on the non-
dominant image, as seen in figure 8. Due to the vergence angle
control for binocular fixation, the epipolar constraint moves
and does not coincide with a row of pixels. This particular case
only occurs when the cameras are aligned with parallel optical
axes. To cope with the varying position of the epipolar
constraint on the non-dominant image, a 3-pixel-wide search
area in level 2 is defined. The corresponding search area on the
non-dominant image in level 0 is 13 pixels wide about the row
of pixels which, on the dominant image, contains the target
centroid. Thus, the required computational effort is reduced
and the rate of correctly estimated disparities is improved.

Figure 8 - Search area encompassing the epipolar
constraint.

Normalized correlation is as follows:

))ej,di(g())j,i(f(
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where f(.,.) and g(.,.) are the dominant and non-dominant
images, respectively, cov(.,.) indicates covariance and s(.) the
standard deviation. The position of a target centroid on the

dominant image array is given by indices i,j and the candidate
disparity components on the non-dominant image by d,e. The
following statistics estimators circumvent redundant
computations and yield the correct result when used in
equation (6) (Sun, 1997):
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with f  and g  as the average gray level of each pattern. Pattern

sizes at each resolution level of the pyramid are 7x7 (K=L=3)
at level 0, 5x5 (K=L=2) at level 1 and 3x3 (K=L=1) at level 2.
Candidate disparities in level 2 are ordered from the largest to
the smallest correlation value computed from equation (6). A
coarse-to-fine procedure follows as the best candidate disparity
in level 2 is refined at level 1 and subsequently at level 0 by
using as initial guess the best disparity found at the previous
level with a coarser resolution. The best candidate at level 0 is

accepted as the best registration ( ** e,d ) according to the
following criterion, which removes the average gray level in
order to reduce the sensitivity to illumination changes:
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If the inequality in equation (10) is violated then the second
best candidate disparity of the ordered list at level 2 undergoes
the coarse-to-fine procedure and is tested against the above
criterion. The process continues until a candidate disparity is
accepted. If none passes the inequality then the disparity is
labeled void. This label is also employed when a small
standard deviation in equation (6) indicates a rather
homogeneous texture which does not suffice for the purpose of
binocular registration.

2.5 Attentional Management

The presence of multiple targets within the field of view raises
the need for an adequate allocation of attentional resources.
Some criteria for such allocation are found in the literature.
Balkenius and Kopp (1996) employed edge motion intensity to
evaluate an attentional field over the image. Culhane and
Tsotsos (1992) proposed an attentional model which Andersen
(1996) combined with a scale-space representation similar to
the image pyramid employed here. A combination of 42
normalized feature maps - contrast, color and edge orientation
among them - yielded a saliency map whose peaks were
selected via a winner-take-all neural net in the work by Itti et
allii (1998). Ahuja and Abbott (1993) presented some
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experimental results on the psychophysics of human vision
which support proximity to the fovea, close fixation points and
close range to objects as attentional attractors.

The attentional features available for the i-th target, i=1,...,n,
are its velocity magnitude |veloc(i)| on the image plane, number
of moving pixels #pix(i), density dens(i) and binocular
disparity disp(i) if the latter is not void. They are linearly
combined in the attention function I(i) along with a time
measurement of how long a target occurs in consecutive
images:

)i( disp))i( timer1(                                 

)i( dens)i( veloc)i( pix#)i(I
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where the weights were tuned during the experiments to the
following values:
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Tuning was carried out according to the following
considerations:

a) The maximum possible value for #pix(.) is the total number
of pixels on the image. The factor 8 in the numerator of α1
provided an adequate balance between the influence of the
#pix term and that of the other terms in the attention
function. The normalization by max_veloc and the factors
1/3 in α2 and 0.3 in α3 follow a comparable justification;

b) The timer term has the purpose of gradually decrementing
the interest on old targets. New targets should raise the
system attention because they might bring new important
information about the evolving scene contents within the
field of view;

c) The normalization of α5 uses the maximum value which can

be attained by the horizontal component of a disparity. A
target depth smaller (larger) than that of the fixation point
in the 3D space yields a negative (positive) disparity. The
fixation point is here the 3D point with null disparity
because it is, ideally, located at the intersection of the
optical axes. The negative sign of α5 results in a higher

attentional value for a near object than that of an object
beyond the fixation point. Therefore, the control of the
vergence angle for binocular fixation, in spite of altering
the disparity magnitudes, still preserves their relative effect
on the attention function.

A dynamic list is built with entries being created or deleted as
targets on the images appear and disappear. Only the
attentional features of the most recent pair of consecutive
images are stored in the list to limit its complexity. If a target
on the most recent image is not in registration with any target
on the previous image then it is labeled a new target. If no
motion at all is detected then the attentional features are kept in
the list for a maximum of eight consecutive images during
which the vision head continues with its smooth pursuit in an
attempt to find the target again. Such caution derives from the
possibility of target minute motion being filtered out by the

grey-level opening operation or by target occlusion. If no
motion is detected after that then the system halts its motion
and static search resumes.

The target selected for tracking is the one that maximizes
equation (11). However, incorrectly detected tiny targets that
arise due to errors in background motion compensation and
unsuccessful filtering by the opening operation often possess a
high density. Such is the case of a 1-pixel false target.
Moreover, when such a case occurs, the respective timer term
in equation (11) attains its maximum value. To cope with such
an artifact it is required that the selected target occurs three
times, not necessarily on consecutive images, before the vision
head performs a ballistic motion to reorient and resume
tracking. If no target is in agreement with this constraint it is
reduced to two occurrences and, if necessary, to only one
occurrence. This means that the restriction is temporarily either
softened or disabled. In either situation, the target maximizing
equation (11) is selected but not tracked. Selection in spite of a
no-track status is required to update the state of a centroid
position filter which smooths the head motions during
monocular tracking and binocular fixation.

2.6 Binocular Fixation

Binocular fixation aims at correctly orienting the cameras in tilt
and vergence in such a way that the selected target stays within
a 10x10 region of fixation about the center of the stereo
images. Control of either the camera angular position or its
velocity depends on the type of motion which is engaged.

Ballistic motion occurs when the camera attitude should
rapidly change as the attentional management selects a new
target for tracking. It consists of a very fast angular
displacement with a strong acceleration at the motion onset and
offset. It is activated only after a newly selected target occurs
three times. As mentioned in the previous Section, it helps to
reduce the impact of image noise and of background
compensation errors. Overshoot and oscillations at motion
onset and offset result in image blur and erroneous encoder
reading which prevents image processing during ballistic
motion. Image processing is resumed at motion completion.
Figure 9 shows the tilt and vergence angles θ and γ,
respectively, the error components ex and ey, the focal distance

fu in pixels and the projection center O, all of which enter the

computation of the angular increment to be attained by a
ballistic motion.

Required angular increments in tilt and vergence in encoder
units are given by:

);4.44/(180tilt_pos_inc 

);67.166/(180verg_pos_inc

πθ=
πγ=

)f/e(tg    );f/e(tg uy
1

ux
1 −− =θ=γ (12)

Saccades are corrections to the camera angular velocity so that
the selected target is ideally kept within the region of fixation.
A strong acceleration occurs at the motion onset and offset but
image processing is not interrupted. Required increments to
angular velocities in tilt and vergence are computed as:

);t.q/(verg_pos_incverg_vel_inc ∆=
)t.q/(tilt_pos_inctilt_velinc_ ∆= (13)

where q is the specified number of frames ahead and Dt the
average time interval between frames. The computation of the
increments to angular velocity requires the specification of the
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number of frames ahead in time to fulfill the required angular
increments.

Figure 9 - Tracking error on the image plane and required
angular increments.

Smooth pursuit maintains the camera's angular velocity as long
as the selected target stays within the region of fixation.
Ideally, this target stabilization should produce a sharper image
of the tracked target. The size of the region of fixation cannot
be too large because large image displacements would result
during tracking. The justification for that is that a large target
motion would be allowed before the engagement of a
correcting saccade. The non-dominant camera does not
perform smooth pursuit. A saccade correcting its angular
velocity is performed after each image acquisition. Whenever
the disparity of the tracked target is void, binocular fixation
assumes the last valid disparity in spite of changing vergence
angles.

Fluctuations in the output of the target segmentation process
due to illumination changes and background texture cause the
computed centroid of a target to suffer displacements which are
not related to its motion. However, attentional management
copes with it as a target slipping away of the region of fixation.
To reduced this undesired effect, the centroid coordinates of
each target on the dominant image is filtered by:

)2k(cg1.0)1k(cg3.0)k(cg6.0)k(f_cg −+−+= (14)

where k indexes an image in a sequence. If the last three
occurrences of the selected target are not consecutive or less
than three occurrences are observed then the system resorts to
the unfiltered computed centroid for tracking purposes.

3 SYSTEM IMPLEMENTATION

The binocular tracking system was evaluated with the
Helpmate Robotics Bisight vision head, nicknamed Otelo, at
the ITA/INPE Active Computer Vision and Perception Lab -
LVCAP-ITA/INPE - (http:\\www.ele.ita.cta.br/~labvisao/)
described in Viana et allii (1999). Image processing and the
computation and transmission of command signals to Otelo
were carried out by a 166Mhz Pentium MMX PC equipped
with 64 MB RAM, 2 GB SCSI hard-disk, a DataTranslation
DT3152 monochrome video acquisition board and two AD-DA
conversion boards. The latter exchanges data with the drives
that control the Fujinon KPM1 servoactuated lenses. Off-line
calibration produced the estimate fu=221.8 pixels (Viana et

allii, 1999). Targets were made with paper and black tape to
provide texture. The targets underwent translation by means of
a setup of wires and pulleys. The physical dimensions of the
lab precluded experiments with significant motion along the

depth direction and thus a more effective evaluation of the
disparity term in the attention function. Eventually, moving
people were included in the experiments.

The system was developed on the Windows for Workgroups
3.11 platform and coded in three distinct programming
languages: the graphic user interface in Visual Basic 3.0, the
tracking routines in the Visual C++ 1.51 16 bit environment
and the most computationally intensive image processing
routines in 80486 Assembly and compiled with Turbo
Assembler 5.0. For comparison purposes, image subtraction for
motion detection took about 11 ms when coded in C and 1 ms
in Assembly. The application of the gradient operator on a
160x120 image consumed about 38 ms when coded in C and
11 ms in Assembly. Routines coded in Assembly are: image
subtraction, gray-level opening, thresholding, logical ANDing
of binary images, the generation of foveated images and
normalized correlation. Image capture consumed 130 ms as the
only acquisition board first selects a camera and then acquires
the image for each camera of the stereo assembly.

Table 1 depicts typical time intervals elapsed when the main
processing tasks are performed. Binocular fixation shows
significant variations that depend on the performed motion.
Ballistic motion requires a full stop by the vision head before
resuming image processing. It is followed by a saccade which
issues an angular velocity update command to the head drive.
The host computer awaits a confirmation that the command
was successful to resume the image processing. Finally,
smooth pursuit by the dominant camera includes a saccade by
the non-dominant camera.

Static search (ms) 553
Monocular motion localization
 and target segmentation (ms)

721

Monocular estimation of target
velocity (ms)

195

Binocular registration (ms) 215
Attentional management < 1
Binocular fixation (ms) ballistic motion: 709

saccade: 177
smooth pursuit: 65

Table 1 - Typical computational workload of the main
processing tasks.

Static search for motion and monocular target segmentation, in
spite of mostly implemented in Assembly, are in a listed entry
which includes the acquisition of stereo images and encoder
reading. The latter required issuing a command to the head
drive and await until the measurement became available. The
frame rate attained during operation was about 0.8 stereo frame
pair/second due to limitations of both off-the-shelf hardware
and the software platform. This rate severely limited interframe
target motion during the experiments but did not invalidate the
assessment of the overall system potential.

4 RESULTS AND ANALYSIS

Performance analysis is presented both quantitatively and
qualitatively. A qualitatively successful performance is
characterized by keeping the selected target within the field of
view of both cameras. A proposal for a quantitative
performance assessment requires the definition of a metric
which should be independent of a particular system
implementation. The proposed metric is the lock-on rate P
within a 30x30 test window about the center of the stereo
images which is given by:
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where Nc represents the number of frames in which the tracked

target centroid is within the test window and Nt the number of

frames in which this target is selected for tracking. The latter
does not include the three occurrences before which a ballistic
motion is not engaged for attentional reorientation.

Four experiments were devised. They consisted of stereo
sequences lasting 120s. Experiment A consisted of a rigid
target under mainly horizontal translation. Experiment B
consisted of two translating rigid targets aiming at an
evaluation of the attentional management process. Experiment
C consisted of a moving person which led to various targets
undergoing non-rigid motion. Finally, experiment D added a
rigid target to the latter experiment. Excerpts of the stereo
images acquired in the experiments are found in Appendix B.
Each detected target received an identification tag for as long
as it was tracked. The numerical tag on the selected target is
white over a black blackground whereas other targets have
their tags with inverted gray levels. Image pairs corresponding
to dominant and non-dominant cameras are displayed right and
left, respectively. The 10x10 region of fixation and the 30x30
test window are delimited in the display by a black trace and a
white one, respectively, about the dominant camera image
center. Since the non-dominant camera does not undergo
smooth pursuit, no region of fixation is displayed on its image.

Frame rate is affected mainly by the elapsed time required to
complete a ballistic motion, saccade or smooth pursuit and by
the number of moving pixels which form the targets.
Generally, good results were obtained in sequence A. Sequence
B presented less accurate tracking mainly due to occasional
failures of the SSD-based target correspondence along the
sequence.The occurrence of numerous targets - caused by
rotation and non-rigid motion - in sequences C and D caused
disputes for the system attention which resulted in a rather
erratic behavior. Such performance degradation was caused by
significant interframe displacements as moving people went in
front of the cameras with their gait. Dealing with this condition
pushed the system to the limits of its implementation. The
subjects were maintained within the field of view during most
of the sequences though. The workload of sequentially
processing the images and the sluggish vision head control
cycle are the main reasons for the present bottleneck. The
control cycle initiates with the issuing of commands from the
host computer to the vision head drives and ends with the
emission by the drive to the host computer of a message that
the requested command was accomplished. Table 2 presents
the number of stereo pairs in each experiment and the
equivalent stereo pair rate. Uhlin (1996) and Andersen (1996)
reported image processing and head control with special-
purpose hardware at a rate of 25 and 10 frames per second,
respectively.

Stereo pairs Rate (stereo pairs per
second)

Experiment A 97 0.8
Experiment B 106 0.9
Experiment C 78 0.6
Experiment D 78 0.6

Table 2 - Average operating rate during each experiment.
(120s-long stereo sequences)

In experiment A, the SSD-based method for corresponding
targets along the sequence of dominant images presented

incorrect results. The only target on the image was in two
occasions labeled as new and three targets were produced.
Correlation-based binocular registration was more susceptible:
13 stereo pairs yielded void disparities and other three stereo
pairs produced incorrect disparities due to similarities between
the target texture and that of the background. As Ldisp in

equation (10) allowed for an average mismatch magnitude of
25 gray levels per pixel, it is claimed that correlation-based
registration seems to be quite sensitive to the experiment
conditions in spite of its normalization. It could have been
caused by the combination of the changing vergence angles
and a low frame rate, which could translate into illumination
differences, changes in texture projection onto each camera and
a varying scale factor.

Experiment B resulted in 23 detected targets. One reason for
that is that the system has no memory of the targets: whenever
one leaves and later reenters the visual field it is labeled as
new. Another factor was erratic operation of the SSD-based
method when a target had its computed centroid near its
boundary with the background. In such a case, some of the
background texture entered the gray-level pattern window R1
or R2. The target motion affected the appearance of the

surrounding background texture as occluded background
became uncovered. The experiment showed that the SSD-based
method is effective when a target with a rich texture moves
over a background with poor texture.

Experiment C resulted in 49 detected targets. The SSD
criterion showed good results in spite of some targets
undergoing a motion other than translation, such as target 3 in
C.5-C.14. Human subjects moving in the visual field often
produced a large number of targets. For instance, three targets
were detected in C.8-C.10 because the subject projection on the
image was large and its more distant portions moved non-
rigidly. Were the target small and its motion would yield a
unique target in spite of being non-rigid.

Artifacts in experiment D were caused by background
compensation error. They were observed as targets 8 and 9 in
D.17. Sensitivity to occlusion in subtraction-based motion
detection produced targets 47 and 48 in D.75.

Vergence control of the non-dominant camera successfully
maintained the selected target within the field of view in spite
of inaccurate correlation-based binocular registration. The
quantitative analysis in Tables 3-6 is based on the metric
described in equation (15). The intermediate results are
expressed for those targets in each experiment that raised the
system attention the most and were thus tracked for more
frames.

Target 1 Target 2 Target 3
Target detection (frames) 63 7 22
Correct binocular
registration (stereo pairs)

54 6 18

Target selected and
tracked, Nt (frames)

60 4 19

Centroid within the test
window (dominant / non-
dominant),
 Nc (frames)

47/42 4/3 17/13

Lock-on rate
(dominant/non-dominant),
P (%)

78/70 100/75 89/68

Table 3 - Quantitative analysis. Experiment A.
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Target
6

Target
8

Target
22

Target detection (frames) 10 22 19
Correct binocular registration
(stereo pairs)

7 18 17

Target selected and tracked, Nt
(frames)

6 19 16

Centroid within the test window
(dominant / non-dominant), Nc
(frames)

5/4 19/5 9/8

Lock-on rate (dominant/non-
dominant), P (%)

83/67 100/26 56/50

Table 4 - Quantitative analysis. Experiment B.

Target 3 Target 19 Target 28
Target detection
(frames)

16 12 15

Correct binocular
registration (stereo
pairs)

7 2 5

Target selected
and tracked, Nt
(frames)

8 4 10

Centroid within
the test window
(dominant / non-
dominant), Nc
(frames)

0/0 0/0 0/0

Lock-on rate
(dominant/non-
dominant), P (%)

0/0 0/0 0/0

Table 5 - Quantitative analysis. Experiment C.

P was often smaller for the non-dominant image because of
void disparities and the acceptance of incorrect ones. Large
oscillations in the attentional feature estimates produced
frequent attentional shifts as can be seen in C.6-C.12.
Fluctuations in the estimated location of a target centroid and
the incorrect correspondence by SSD-based method - caused
by a similar texture - are seen in target 20 in D.29-D.30. Such
occurrences negatively impact on the tracking accuracy of
targets undergoing non-rigid motion. The above support the
claim that, as it is implemented, the system is not able to
consistently maintain within the test window a nearby human
subject with its characteristic gait which is a highly non-rigid
motion. In experiment D an additional small target undergoing
translation was tracked in a much smoother way than those
targets that originated in the non-rigid motion of the human
subject. To overcome this limitation, a higher image processing
rate and a faster control cycle - encompassing command
issuing, head motion control and sensor reading tasks which
ultimately integrate the host computer and the vision head
drive - are required. The former encourages a biologically-
inspired parallellization of the vision algorithms whereas the
latter depends on major changes being made to the drive
hardware that presently controls the vision head. After such
modifications, a target slipping away of the region of fixation
would be expected to be detected before reaching a significant
displacement. Furthermore, it would keep the correcting
saccade amplitude small as well as improve the accuracy and
robustness of both correlation and SSD-based methods.

Target 20 Target 21
Target detection
(frames)

8 14

Correct binocular
registration (stereo pairs)

4 7

Target selected and
tracked, Nt (frames)

5 9

Centroid within the test
window (dominant/non-
dominant), Nc (frames)

1/1 6/5

Lock-on rate, P (%) 20/20 67/56
Table 6 - Quantitative analysis. Experiment D.

The performance of the attentional management was impacted
by the quantity and quality of the information extracted by the
vision algorithms. Figure 10 shows an instance of two targets
competing for the system attention. Frequent attentional
reorientation as observed in C.6-C.11 are shown in figure 11
along with the contribution of each term to the attention
function in equation (11). Undesired reorientation occurred
because of large variations in the estimates of attentional
features caused by a low frame rate. The latter can be traced
back to the emphasis put on the use of off-the-shelf
unexpensive hardware, on the current sequential
implementation of the system and on the vision head control
cycle. Attentional management is expected to become more
accurate as image processing rate increases.

Figure 10 - Targets 21 and 22 in stereo pairs B.87-B.90 in a
dispute for system attention.

Section 2 briefly mentioned the uncertainties that arise in target
correspondence due to the aperture problem. The computation
of either the SSD/SSP or the normalized-correlation criteria
generates a surface of which the search area is its domain of
minimization. The aperture problem is characterized by a lack
of information which translates into a small surface curvature
along a direction which is significantly aligned with the texture
pattern. The analysis of the surface curvature is then useful to
locate the directions along which uncertainty is either at its
maximum or its minimum. Assuming that the surface
generated by either criterion can be approximated by a
quadratic f(x,y) in the neighborhood of the computed minimum
at coordinates xc,yc , the principal directions along which the

curvature is at a maximum or a minimum are given by the
eigenvectors of the Hessian:
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Figure 11 - Targets 3 and 4 in stereo pairs C.6-C.11 in a dispute for the system attention. From top to bottom: a) Interest
value. b) Density. c) Number of moving pixels. d) Velocity magnitude. e) Timer term. f) Binocular disparity.
98 SBA Controle & Automação Vol. 11 no. 03 / Set., Out., Nov, Dezembro de 2000

cc

2

22

2

2

2

cc y,xat  evaluated 

y

)y,x(f

xy

)y,x(f

yx

)y,x(f

x

)y,x(f

)y,x(



















∂
∂

∂∂
∂

∂∂
∂

∂
∂

=H (16)

he largest eigenvalue l1 indicates the maximum curvature

smallest uncertainty) along the direction of its associated
igenvector u and likewise for the smallest eigenvalue l2 , the

inimum curvature (largest uncertainty) and associated
igenvector v. Hence:
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where the dot represents the inner product operator. Because of
the assumption of the quadratic approximation, f(.,.) is
continuous and smooth and thus:
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and because H(.,.) is symmetric, from equation (17) the
following holds:
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Assuming further, without any loss of generality in the
situations usually encountered, that λ1≠0, λ2≠0 and λ1≠λ2, the

subtraction of equations (17) and (19) yields:
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and thus the directions of maximum and minimum uncertainty
are orthogonal under the above assumptions. The partial
derivatives in equation (16) are approximated with discrete
operators. Now consider, for instance, two consecutive
dominant images on which two moving targets are detected as
in figure 12. Target correspondence is required to estimate the
velocity of each one.

Figure 12 - Consecutive images It-1 and It for uncertainty

analysis.

Figure 13 shows the global minimum of SSD/SSP surfaces
generated for each possible correspondence with a '*"-mark.
Table 7 depicts the minima attained for each possibility. The
search for the minimum furnishes the correct result up to
fluctuations which occur in the computation of the centroid
location.

The eigenvectors for the correct correspondences are in figure
14. By describing the interframe displacement according to the
eigenvector base, a curvature-based confidence measure in
each direction can be used to adaptively change the weights
that multiply the velocity and disparity terms in the attention
function (equation (11)) and thus reduce their importance when
the available information is of poor quality. Moreover, the
conjugation of such confidence measure with the minimization
procedure seems encouraging to disambiguate non-unique
correspondence solutions.

Folk and allii (1992) claimed that the exogenous (involuntary)
allocation of attention is not the result of relatively inflexible,
"hard-wired" mechanisms triggered by specific stimulus
properties. Such type of allocation could be configured or set to
respond selectively to a property that signaled the location of
stimuli that were relevant to task performance. Such
configuration was called the "attentional control setting", an
endogenous (voluntary) control factor analogous to the tuning
of the attention function which drives the system behavior
during tracking in the present work. The setting was assumed
to be determined by current behavioral goals. Once this setting
was established, events that exhibited the critical properties
summoned attention involuntarily, whether or not the events
were relevant to task performance. Stimuli not exhibiting such
properties would not summon attention. Involuntary
(undesired) shifts would be thus mediated by tunable
attentional control settings which would vary according to
current behavior goals. In the computational model of attention
Figure 13 - Surfaces generated by equation (2.6.1) with
computed minimum for each possibility of correspondence.
From top to bottom: a) Target 0 in It with target 0 in It-1. b) 0

in It with 1 in It-1. c)1 in It with 0 in It-1. d) 1 in It with 1 in

It-1.
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proposed by Koch & Ullman (1985), attention would be
allocated to the location with the highest activation in a
saliency map. Cave and Wolfe (1990) claimed that the strength
of the local saliency should depend on bottom-up featural
dissimilarity relative to a neighborhood and also on top-down
influence dictated by current behavioral goals. The top-down
influence should increase the salience signals at locations that
contained task-relevant stimulus properties. The interrelation
between endogenous attentional control settings (and its
analogous in this work - the setting of the attention function to
the conditions of the laboratory experiments with the purpose
of producing an acceptable system behavior) and exogenous
involuntary allocation of attention (which, similar to this work,
shows as an apparently inadequate behavior, such as when
attention is allocated to undesired locations which nevertheless
present the expected stimuli) defines a dichotomy that possibly
represents the delicate and yet efficient balance between the
necessary rigidity to ensure that potentially important
environmental events do not go unprocessed and the flexibility
to adapt to changing circumstances and goals.

5 CONCLUSIONS

This paper describes the development and evaluation of a
binocular vision tracking system augmented with an attentional
management capability. It selects one among multiple targets
according to the relative values achieved by an operator-tuned
attention function. The main contribution is the augmentation
of the monocular visual tracking concept as proposed in
Murray and Basu (1994) with an attentional management
capability and binocular fixation. Foveated images are used to
reduce the computational workload inherent to detecting and
segmenting multiple moving targets. The integration and
experimental evaluation, both quantitatively and qualitatively,
of various vision algorithms such as motion detection and
target segmentation, SSD- and correlation-based registration
along a sequence and across stereo pairs, attentional

management and binocular fixation, all aiming at the extraction
of information useful for controlling the head motion, are not
often found in the literature. Recent related work is found in
Uhlin (1996), Andersen (1996), Araújo et allii (1996ab),
Batista et allii (1997), Eklund et allii (1995) and Molton
(1998). Each employs distinct hardware configurations and
experimental setups which make a comparative performance
evaluation rather complicated. For instance, the dedicated
hardware employed in Uhlin (1996) and Andersen (1996) was
essential to attain the reported 25 and 12 frames per second,
respectively, whereas 0.8 stereo pairs per second is reported
here. The sequential implementation described here is a
consequence of the emphasis put on the use of unexpensive
off-the-shelf PC-based equipment. Eventually, such an option
imposed limitations in terms of frame rate and the ensuing
target motion that could be adequately dealt with by the
system.

Target in It Target in It-1 SSD/SSP

0 0 0.0016
0 1 0.1195
1 0 0.2756
1 1 0.0262

Table 7 - Minimum values of the SSD/SSP for each possible
correspondence.

System performance is acceptable when coping with small
targets undergoing translation but suffers degradation when
large objects undergoing non-rigid motion enter the visual field
such as the gait of human subjects moving at close range. The
attentional management as proposed here displays undesired
attentional reorientations due to interframe changes in the
attentional features which are caused by a combination of
varying illumination, scaling factor changes and rotation. Such
changes cause a lock onto a different target whose features
appear more similar to those of the target previously selected.
The compromise between an excessive specialization by fine-
tuning the attention function and an adequate flexibility to
provide for the processing of new events that present a
potential to raise the system interest is discussed. The analysis
of the uncertainties in the estimation of attentional features and
the potential of adaptively learning the attention function-
either of the weights in equation (11), or in an even broader
sense, of its structure - as goals change and perceptions of the
environment are gathered seem to combine in a fertile field of
research on mechanisms that aim at providing a robotic system
with an active vision capability with true autonomy to manage
its limited computational resources.
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Appendix A: Algorithm for clustering classes into
superclasses and target formation

For all i,j; i=1,...,n and j > i:

{ if( C(ci,cj) )then

if( ∃  k < i | ci ⊂  Sck)then

{Sck=Sck∪ cj ; /* merges cj with superclass which ci belongs to */

if(∃  n < i; n ≠ k | cj ∪  Scn)then

{Sck=Sck∪ Scn;Scn={∅ };}/*merges superclasses containing classes*/

}
else if(∃ k < i | cj ⊂  Sck)then

Sck=Sck∪ ci ; /* merges ci with superclass which cj belongs to */

else if (Sci={∅ })then Sci=ci∪ cj ;/* initiates superclass */

else Sci = Sci∪ cj ;  /* merger with cj */

else if(j=n and Sci={∅ })then Sci=ci ; /*superclass with isolated

class*/

}
n=0; /* target count */

∀ Sck ≠{∅ }, k=1,...,n

{n=n+1; /*n-th target - moving pixels, density, centroid location*/

∑
⊂

=
ki Scc

i )c(pix#)n(pix# ; 
)n(pix#

))c(pix).#c(dens(

)n(dens ki Scc
ii∑

⊂= ;
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Scc

i

n ki

∑
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c

c ;

}

Appendix B: Excerpts from the experiments.

The following sequences of stereo pairs are displayed as non-
dominant and dominant images (left and right, respectively)
from top to bottom.

B.87 to B.91.
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