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ABSTRACT – Considering linear open-loop systems, the de-
sign of full state feedback and observer-based output feedback
control laws subject to control input saturation are addressed.
The local asymptotic stability of the nonlinear closed-loop sys-
tem is studied through a quadratic approach. In this context, con-
ditions guaranteeing the local asymptotic stability of the nonlin-
ear (saturated) closed-loop system are stated. From these condi-
tions, a framework based on Linear Matrix Inequalities (LMIs) is
proposed to compute control laws in order to ensure the asymp-
totic stability of a given admissible set of initial states and a cer-
tain degree of time-domain performance for the closed-loop sys-
tem in a neighborhood of the origin.

1 INTRODUCTION
In the last years, the problem of the stabilization of linear sys-
tems subject to control saturation has received the attention of
many authors (see for example (Bernstein and Michel, 1995)).
The interest in this problem is mainly motivated by the fact that
the negligence of the control bounds can be source of limit cy-
cles, parasitic equilibrium points and even of the instability of
the closed-loop system. The works found in the literature can be
classified in three contexts of closed-loop stability, namely the
global, the semi-global and the local stability.

It is well-known (Burgat and Tarbouriech, 1996), (Sussmann
et al., 1994) that the global stabilization of linear systems sub-
ject to control saturation can be achieved only when the open-
loop system is not strictly unstable, i.e., in the continuous-time
case, it must have all its poles in the left half complex plane.
However, the physical interest of the global stability is question-
able since, in general, the system is restricted to operate in a
limited zone of the state space. Hence, in our point of view,
the semi-global stabilization (Lin and Saberi, 1993),(Alvarez-
Ramirez et al., 1994) and the local stabilization (Gutman and
Hagander, 1985),(Burgat and Tarbouriech, 1996) represent more
realistic approaches. The objective is to guarantee the asymp-
totic stability not of the whole state space but only of a given set
X0 of admissible initial states, that can be viewed as the zone
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of operation of the system. In this sense, two approaches can
be cited: the linear, where the saturation is avoided, and the
nonlinear, where the effective occurrence of saturation and the
nonlinear behavior of the closed-loop system are taken into ac-
count. The design by the first approach can be accomplished by
computing the control law in order to guarantee the positive in-
variance of a setS � X0 such thatS is contained in the region of
linear behavior of the closed-loop system. Concerning this ap-
proach, straightforward solutions based on LMI conditions and
the determination of quadratic Lyapunov domains contained in
the region of linear behavior and containing the regionX0 can
be found in the literature (see (Boyd et al., 1994), for example).
However, if the setX0 is relatively large and the closed-loop
performance specifications are very stringent, it may not exist
a solution to the problem. On the other hand, we can say that
the proposition of methods that take into account the effective
saturation and that conciliates performance, robustness and the
stabilization of a large set of initial conditions (basin of attrac-
tion) for the closed loop system remains a challenge. Hence, this
paper is concerned with the second approach.

Given a set of admissible initial conditionsX0 to be stabilized,
our objective is to compute a saturating state feedback or an
observer-based output feedback control law that guarantees both
the asymptotic convergence to the origin of all trajectories ema-
nating fromX0 and a certain degree of time-domain performance
for the closed-loop system in a neighborhood of the origin. In
this aim, we use a local representation of the saturated system
deduced from the differential inclusions theory. This represen-
tation consists in a polytopic model valid in a certain polyhedral
set in the state space. Based on this model, some conditions ex-
pressed as linear matrix inequalities (LMIs) and biaffine matrix
inequalities (BMIs) are stated for determining a state feedback
and state-observer matrices in order to verify both stabilization
and performance requirements. Since the numerical solution
of BMIs is a difficult task to accomplish, an LMI-framework,
based on some relaxation schemes combined with an optimiza-
tion problem, is proposed to handle the problem. The results are
presented in two parts: the state feedback case and the observer-
based output feedback. A numerical example is provided to il-
lustrate the application of the proposed algorithms.
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Notations. For any vectorx 2 <n, x � 0 means that all the
components ofx, denotedx(i), are nonnegative. For two vectors
x, y of <n, the notationx � y means thatx(i) � y(i) � 0,
8i = 1; : : : ; n. A(i) denotes theith row of matrixA. For two
symmetric matrices,A andB, A > B means thatA � B is
positive definite.AT denotes the transpose ofA. Co denotes a
convex hull.

2 STATE FEEDBACK SYNTHESIS
Consider a linear continuous-time system defined by

_x(t) = Ax(t) +Bu(t) (1)

wherex(t) 2 <n andu(t) 2 <m are respectively the state vector
and the control vector. MatricesA andB are real constant ma-
trices of appropriate dimensions and the pair(A;B) is supposed
to be stabilizable.

The control vector is subject to linear constraints which define
the polyhedral compact region
 � <m:



4
= fu 2 <m ; �� � u � �g with � � 0:

Consider the following saturated state feedback control law

u(t) = sat(Fx(t)) F 2 <m�n;

where each component is defined,8 i = 1; : : : ;m, by

u(i) = (sat(Fx(t)))(i)

=

8<
:

��(i) if F(i)x(t) < ��(i)
F(i)x(t) if � �(i) � F(i)x(t) � �(i)
�(i) if F(i)x(t) > �(i)

(2)

Thus, the closed-loop system is given by the followingnonlinear
model :

_x(t) = Ax(t) +Bsat(Fx(t)) (3)

It is worth noticing that inside the domainS(F; �) defined as

S(F; �)
4
= fx 2 <n ; �� � Fx � �g (4)

the control inputs do not saturate and therefore the evolution of
the closed-loop system is described by thelinear model

_x(t) = (A+BF )x(t) (5)

Outside ofS(F; �), the control inputs saturate and the stability
of the system must be analyzed by considering equation (3).

Considering a set of admissible initial conditions (that can rep-
resent a safe operation zone for the closed-loop system or a zone
where the state of the system can be driven by the action of non-
persistent disturbances),X0, the problem to be solved in the se-
quel is stated as follows:

Problem 1 Consider system (1). Compute a saturated state
feedback control law defined by (2), such that for all initial states
belonging toX0 the corresponding trajectories converge asymp-
totically to the origin. In addition, this control law should also
guarantee a certain time-domain performance specification in-
side the domain of linearity defined by (4).

This problem can be interpreted as a problem ofLocal Asymp-
totic Stabilization. It can be solved if we can compute a state

feedback that ensures the local stability of system (3) in a region
containing the setX0. In particular, a solution can be found if
we are able to compute a matrixF that makes a setS � X0 pos-
itively invariant and contractive w.r.t the saturated system (3). In
this paper we deal with a quadratic approach for synthesis and
thus we are particularly interested in ellipsoidal domains of in-
variance and contractivity.

2.1 Polytopic Representation
In order to state the main results of the paper, we define an ap-
propriate representation for the saturated system. The basic idea
is to represent the saturated system by a polytopic model. This
kind of representation was first introduced in (Molchanov and
Pyatnitskii, 1989) and has been applied in the specific case of
system (3) in (Burgat and Tarbouriech, 1996), (Gomes da Silva
Jr. et al., 1997) and (Gomes da Silva Jr. and Tarbouriech, 1999c).

Note that theith entry of the saturated control law defined in (2)
can also be written as

(sat(Fx(t)))(i) = �(x(t))(i)F(i)x(t) (6)

with

�(x(t))(i)
4
=

8><
>:

��(i)
F(i)x(t)

if F(i)x(t) < ��(i)

1 if � �(i) � F(i)x(t) � �(i)
�(i)

F(i)x(t)
if F(i)x(t) > �(i)

(7)

The coefficient�(x(t))(i) can be viewed as an indicator of the
degree of saturation of theith entry of the control vector. In fact,
smaller is�(x(t))(i) , farther is the state vector from the region of
linearity (4). Notice that�(x(t))(i) is a function ofx(t). For the
sake of simplicity, in the sequel we denote�(x(t))(i) as�(t)(i).

Define from the vector�(t) 2 <m a diagonal matrixD(�(t))
4
=

diag(�(t)). Thus, system (3) can be rewritten as

_x(t) = (A+BD(�(t))F )x(t) (8)

Now, let0 < �(i) � 1 be a lower bound to�(t)(i) and define the

vector�
4
= [�(1); :::; �(m)]

T . The vector� is associated to the
following region in the state space:

S(F; ��) = fx 2 <n ; ��� � Fx � ��g (9)

where��(i)
4
=

�(i)
�(i)

;8i = 1; : : : ;m.

Consider now all the possiblem-order vectors such that the
ith entry takes the value1 or �(i). Hence, there exists a to-
tal of 2m different vectors. By denoting each one of these
vectors byj , j = 1; : : : ; 2m, define the following matrices:
Dj(�) = D(j) = diag(j) andAj = A + BDj(�)F . Note
that the matricesAj are the vertices of a convex polytope of ma-
trices. Ifx(t) 2 S(F; ��) it follows that(A + BD(�(t))F ) 2
CofA1; A2; : : : ; A2mg. Hence, ifx(t) 2 S(F; ��), _x(t) can
be determined from an appropriate convex linear combination of
matricesAj at timet, that is:

_x(t) =
2mX
j=1

�j(x(t))Ajx(t) (10)

with
P2m

j=1 �j(x(t)) = 1; �j(x(t)) � 0.

It should be pointed out that model (10) represents the saturated
system only inS(F; ��). Actually, if x(t) 2 S(F; ��), the poly-
topic model (10) can be used to determine_x(t).
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2.2 Main Results
In order to solve Problem 1 we should compute a state feed-
back that guarantees the local stability of system (3) in a region
that contains the setX0. Furthermore, when this system op-
erates in the region of linearity, i.e., the closed-loop system is
described by (5), a certain degree of time-domain performance
should be guaranteed. This kind of specification can, in general,
be achieved by placing the poles of(A+BF ) in a suitable region
of the half left complex plane (Chiali and Gahinet, 1996).

We suppose then that the following data is given:

� A vector� of control bounds.

� A set of initial conditionsX0 defined by a polyhedral set de-
scribed by its vertices:

X0
4
= Cofv1; : : : ; vnvg; vs 2 <

n 8s = 1; : : : ; nv (11)

� A regionD, contained in the left half complex plane, defined
as follows (Chiali and Gahinet, 1996):

D
4
= fs 2 C ; (H + sQ+ �sQT ) < 0g (12)

whereH andQ are l � l symmetric real matrices ands is a
complex number with its conjugate�s. We assume that the time-
domain requirements in the region of linear behavior of are sat-
isfied if the poles(A+BF ) are located in a regionD.

Hence, considering the data above and the polytopic representa-
tion of the saturated system, if we are able to find a matrixF , a
vector� and a setE in the state space such that

a) the setE is contractive with respect to the trajectories of he
differential inclusion (10), and

b) X0 � E � S(F; ��),

then we can conclude that all the trajectories of the saturated
system (3) starting inE (and, in consequence, all the trajectories
starting inX0) converge asymptotically to the origin. In this
case, the setE is adomain of asymptotic stabilityfor the system
(3). If, in addition, the poles of(A + BF ) are contained inD,
Problem 1 is solved. These ideas are formalized in the following
proposition.

Proposition 1 If there exist matricesW = W T > 0, W 2
<n�n, andY 2 <m�n and a vector� 2 <m, satisfying the
following matrix inequalities:

(i) WAT +AW +BDj(�)Y + Y TDj(�)
TBT < 0

8j = 1; : : : ; 2m

(ii)

�
W Y T

(i)

Y(i) (�(i)=�(i))
2

�
� 0 ; 8i = 1; : : : ;m

(iii)

�
1 vTs
vs W

�
� 0 ; 8s = 1; : : : ; nv

(iv) 0 < �(i) � 1; i = 1; : : : ;m

(v) [hijW + qij(AW +BY ) + qij(AW +BY )T ] < 0
1 � i; j � l

thenF
4
= Y W�1 solves Problem 1 and the setE

4
= fx 2

<n ; xTPx � 1g, with P = W�1, is a domain of asymptotic
stability for system (3).

Proof : If there exist matricesW = W T > 0 andY , and a
vector� satisfying the matrix inequalities(i) to (v) it follows
that:

� From inequalities(i) one obtains

2mX
j=1

�j(t)(WAT +AW +BDj(�)Y +Y TDj(�)
T ) < 0 (13)

with
P2m

j=1 �j(t) = 1, �j(t) � 0.

� Inequality(ii) ensures that ellipsoidE is contained in the re-
gion S(F; ��) with F = YW�1 (Gomes da Silva Jr. et al.,
1997).

� LMIs (iii) guarantee thatX0 defined by (11) is contained in
the ellipsoidE (Boyd et al., 1994).

� LMI (v) guarantees that all the eigenvalues of(A + BF ) are
contained in regionD (Chiali and Gahinet, 1996).

Suppose now thatx(t) 2 E . SinceE � S(F; ��) and(iv) holds,
_x(t) can be computed from the polytopic model (10) with ap-
propriate�j(t), j = 1; : : : ; 2m and matricesAj defined from
the coefficients of saturation�(i) andF = Y W�1. Pre and post
multiplying (13) byP , it follows that:

xT

2
64
0
@ 2mX

j=1

�j(t)Aj

1
A

T

P + P

0
@ 2mX

j=1

�j(t)Aj

1
A
3
5x < 0

_x(t)TPx(t) + x(t)TP _x(t) < 0

Since this reasoning is valid8x(t) 2 E , x(t) 6= 0, we can con-

clude thatV(x(t))
4
= x(t)TPx(t) is a local strictly decreasing

Lyapunov function for the saturated system (3) inE and thus
the ellipsoidE is a contractive domain w.r.t system (3). Since
X0 � E , the asymptotic convergence to the origin of all trajec-
tories of system (3) emanating fromX0 is guaranteed. The LMI
(i) guarantees the performance in the region of linearityS(F; �).
}

2.3 LMI framework
The variables to be found by applying Proposition 1 areW , Y
and�. However, note that inequalities(i) and(ii) of Proposi-
tion 1 are bilinear (BMI) in decision variablesY and�, whereas
relations(iii); (iv), and(v) are linear (LMI) inW , Y and�.

An easy and straightforward way to overcome the problem of
solving the BMIs is to fix, a priori, the value of the components
of � (Gomes da Silva Jr. et al., 1997). In this case, inequalities
(i) and(ii) become LMIs and, given(�;X0;D), it is possible to
solve constraints(i)� (v) of Proposition 1, as a feasibility prob-
lem, with efficient numeric algorithms (Boyd et al., 1994). Of
course, considering a fixed vector� and the given data, it may
actually be impossible to find a feasible solution. In fact, consid-
ering an scaling factor�, � > 0, the maximum homothetic set
to X0, �X0, that can be stabilized considering the fixed�, can
be obtained solving the following convex optimization problem
with LMI constraints:

Revista Controle & Automação /Vol.12 no.03/Set., Out., Nov. e Dezembro 2001 173



max
�;W;Y

�

subject to8>><
>>:

�
1 �vTi
�vi W

�
> 0 ; 8i = 1; : : : ; nv

LMIs (i); (ii) and(v) of Proposition 1

(14)

Hence, if the optimal value of�, �?, is greater or equal to1, it
means that it is possible to find a solution considering the fixed
� and the given data(�;X0;D). We conjecture that smaller are
the components of vector�, greater should be the optimal value
of the scalar�, that is, it is possible to stabilize larger domains
of admissible initial states (see the numerical example in section
4). Note that the idea is to render the problem less conservative
by allowing more control saturation. Hence, for a given region
D and a regionX0, we can consider an iterative scheme where
we decrease the components of� in each iteration until to find an
optimal solution(W ?; Y ?; �?) for (14) with�? � 1. In this case
two issues arise: how to choose the initial vector� and how ex-
actly to decrease the components of� (if �? < 1). These issues
can be considered as open problems and one simple way of han-
dling them is to apply trial and error procedures. In particular,
for mono-input systems, since� is a scalar, the optimal solu-
tion of problem (14) can be searched over a grid on this scalar.
This strategy can be pursued even in the casem = 2, where a
bidimensional grid must be considered.

On the other hand, we can try to solve (14) directly by consid-
ering the problem with BMI constraints. However, as pointed
in (Goh et al., 1996), the methods proposed in the literature for
solving BMIs present their worst-case complexities exponential
and therefore the required computational effort may be unrea-
sonably large. Moreover, BMI-based problems are not convex
and so we cannot guarantee that the obtained solution is a global
optimum. In order to overcome this computational difficulty,
we can approximate the solution of BMI optimization problems
via polynomial-time algorithms, for example by using schemes
based on LMI relaxations (LMIR). With this aim we propose the
following 2-step iterative algorithm:

Algorithm 1 :

Step 1 :Given�, solve (14) forW , Y and� (LMIR 1).

Step 2 :GivenY , solve (14) forW , � and� (LMIR 2).

The iteration between these two steps stops when a desired pre-
cision for� is achieved. If�? � 1, it is possible to stabilize the
system (3) for all initial conditions inX0 by considering the pole
placement of(A+BF ) insideD. In particular, all intermediate
solutions with� > 1 are solutions to Problem 1. Hence, this
kind of approach solves, in part, the problem of the choice of
vector� by using robust and available packages to solve LMIs
(Gahinet et al., 1995)

Remark 1 It is worth to be noticed that if we start the algorithm
with � = 1m, the convergence to a solution (�?,W ?,Y ?,�?)
is ensured provided that the pair(A;B) is controllable. This
follows from the fact that an optimal solution for LMIR 1 is also
a feasible solution for LMIR 2 and vice-versa. Of course, taking
different initial vectors� the proposed algorithm can converge
to different values of (�?,W ?,Y ?,�?).

Remark 2 The result of Proposition 1 can be applied to stable
or unstable open-loop systems. However, we should take into
account that Proposition 1 furnishes only a sufficient condition
to solve Problem 1 by considering the data(�;X0;D). Note
also that, when the open-loop system is unstable, a necessary
condition for the existence of a solution for the problem is that
the setX0 must be contained in the controllable region of the
system (1) with constrained controls.

3 FULL STATE OBSERVER CASE
Consider a full-order state observer for system (3) given by

_̂x(t) = Ax̂(t) +Bu(t)� LC(x(t)� x̂(t)) (15)

wherex̂(t) 2 <n is the estimate of the state andL 2 <n�q

define the estimation dynamics. The applied control is now given
by:

u(t) = sat(F x̂(t)) (16)

wheresat(F x̂(t)) is defined analogously to (2).

Problem 2 Consider system (1). Compute an observer-based
output feedback control law defined by (15) and (16), such that
for all the initial states belonging toX0 the corresponding tra-
jectories converge asymptotically to the origin. In addition, this
control law should also guarantee a certain time-domain perfor-
mance specification inside the domain of linearity of the system.

In order to state some conditions to solve Problem 2, we shall
consider the representation of the augmented closed-loop system
(system + observer) in a particular basis of the state space. Let
thene = x� x̂ be the estimate error and consider the following
similarity transform:�

x
x̂

�
=

�
In 0n
In �In

��
x
e

�
(17)

In the new basis, the augmented closed-loop system is given by
(for the sake of simplicity we do not consider the time depen-
dence explicitly):�

_x
_e

�
=

�
A 0n
0n A+ LC

� �
x
e

�
+

�
B
0

�
u (18)

u = sat(
�
F �F

� �x
e

�
) (19)

Proposition 2 Consider that the initial state of the observer is
equal to zero (̂x(0) = 0). If there exist matricesP1 = P T

1 > 0,
P1 2 <n�n, P2 = P T

2 > 0,P2 2 <n�n, U 2 <n�q , F 2
<m�n and a vector� 2 <m, satisfying the following matrix
inequalities:

(i)

�
AT
j P1 + P1Aj �P1BjF
�(P1BjF )

T ATP2 + CTUT + P2A+ UC

�
< 0

j = 1; : : : ; 2m

(ii)

2
64

P1 0n �(i)F
T
(i)

0n P2 ��(i)F
T
(i)

�(i)F(i) ��(i)F(i) �2(i)

3
75 � 0 i = 1; : : : ;m

(iii)
�
vTs vTs

� �P1 0n
0n P2

� �
vs
vs

�
� 1 s = 1; : : : ; ns

(iv) 0 < �(i) � 1; i = 1; : : : ;m

(v)

8<
:
hijP1 + qijP1(A+BF ) + qijP1(A+BF )T < 0
hijP2 + qijP2(A+ UL) + qijP2(A+ UL)T < 0

1 � i; j � l
174 Revista Controle & Automação /Vol.12 no.03/Set., Out., Nov. e Dezembro 2001



whereAj = A + BDj(�)F and Bj = BDj(�), then the
observer-based output feedback control law defined by (15)-(16),
withL = P�12 U andF , solves Problem 2.

Proof : Take into account the definition of matricesD(�) given
in section 2.1, the behavior of the closed loop system (18)-(19)

in the setS(F ; ��)
4
= f~x 2 <2n ; ��� � F ~x � ��g, withF

4
=�

F �F
�

and ~x
4
=

�
x
e

�
, can be represented by the following

polytopic differential inclusion:

�
_x
_e

�
=

2mX
j=1

�j

�
A+BDj(�)F �BDj(�)F

0 A+ LC

��
x
e

�
(20)

with
P2m

j=1 �j = 1, �j � 0.

Consider now the following definitions:

P
4
=

�
P1 0
0 P2

�

Aj
4
=

�
A+BDj(�)F �BDj(�)F

0 A+ LC

�

V(~x)
4
= ~xTP~x ; ~E

4
= f~x 2 <2n ; ~xTP~x � 1g

~X0
4
= Cof~vsg; ~vs

4
= [vTs vTs ]

T ; s = 1; : : : ; nv

Then it follows that:

� (i) and(iv) guarantees that

~xT (
2mX
j=1

PAj +
2mX
j=1

AT
j P)~x < 0

for every~x 2 S(F ; ��).

� Considering that̂x(0) = 0, for x(0) = vs it follows that
~x(0) = [vTs vTs ]

T . Hence,(ii) and(iii) ensures that

~X0 � ~E � S(F ; ��)

� (v) ensures that the eigenvalues of the linear closed-loop sys-
tem (not saturated) are located in the regionD, which corre-
sponds to the satisfaction of the time-domain performance re-
quirement.

Suppose now that~x 2 ~E . Since~E � S(F ; ��) it follows that _~x
can be computed by (20) and

~xTP _~x+ _~xTP~x < 0

Since this reasoning is valid8~x(t) 2 ~E , ~x(t) 6= 0, we can con-
clude that~V(x(t)) is a local strictly decreasing Lyapunov func-
tion for the system (18)-(19) in~E and thus this set is a contrac-
tive domain. From the assumption thatx̂(0) = 0, it follows
that x(0) 2 X0 implies that~x(0) 2 ~X0. Since ~X0 � ~E we
can conclude that8x(0) 2 X0 the asymptotic convergence of
the trajectories to the origin is ensured. The LMI(v) guarantees
the performance in the region of linearity, which concludes the
proof.}

3.1 LMI Framework
Matrix inequalities of Proposition 2 are non-linear and non-
convex with respect to variablesP1; P2; U; F and�. However,
for a given matrixF and a given vector� they become LMIs.

Hence, suppose that a solution(F; �) to Problem 1 has been ob-
tained from Algorithm 1. If the states are not available for mea-
surement, the idea is to construct an state observer and apply the
computed matrixF to the estimated state. In this case, the ob-
server should be designed in order to keep the local stabilization
in X0 (this fact can be seen as an analogy to theLoop Transfer
Recovery problemwhen robustness issues are considered). With
this aim, based on the condition established in Proposition 2, we
propose the following algorithm to compute the observer (i.e.
matrixL):

Algorithm 2 :

Step 1:Compute(F; �) by Algorithm 1

Step 2:Solve the optimization problem:

min
�;P1;P2;U

�

subject to�
vTs vTs

� �P1 0n
0n P2

��
vs
vs

�
� � s = 1; : : : ; ns

LMIs (i); (ii) and(v) of Proposition 2

(21)

Note that the minimization of� is equivalent to the maximiza-
tion of scaling coefficient� by considering� = ��2. Hence,
if ��1=2 = � � 1, the Problem 2 has a solution. Otherwise,
it is not possible to find a solution from the proposed method
considering the givenF and�.

Remark 3 In the proposed approach, we consider a particular
class of matrixP under a block diagonal form. Hence, if the
obtained� is such that� � 1, before conclude that there is
no solution with the proposed method, we can try to verify if
there exists another ellipsoidal stability region (associated to a
full matrixP) for system (18)-(19), that contains the set~X0. This
can be accomplished by applying the results proposed in (Gomes
da Silva Jr. and Tarbouriech, 1999c).

4 NUMERICAL EXAMPLE
The numerical results presented in this section were obtained by
using the MATLAB LMI Control Toolbox (Gahinet et al., 1995).

Consider the control of two inverted pendulums in cascade
where the system matrices are given by:

A =

2
664

0 1 0 0
9:8 0 �9:8 0
0 0 0 1

�9:8 0 2:94 0

3
775 ; B =

2
664

0 0
1 �2
0 0

�2 5

3
775

C =

�
1 0 0 0
0 0 1 0

�

Notice that matrixA is unstable (the eigenvalues ofA are:
4:0930,�4:0930,�2:0032i).
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Consider that the control bounds are defined by (1) with� =
[10 10]T . Suppose we want to stabilize the following set of
admissible initial conditions:

X0 = Cof

2
664
0:5
0

0:5
0

3
775

2
664

0:5
0

�0:5
0

3
775

2
664
�0:5

0
0:5
0

3
775

2
664
�0:5

0
�0:5

0

3
775g

The regionD we consider corresponds to aÆ-shift, that is,D =
fs 2 C ; <fsg � �Æ ; Æ > 0g. Hence greater isÆ, greater tends
to be the rate of the convergence of the trajectories to the origin.

Considering the data above, table 1 shows the final values of�
and� obtained from the iterative algorithm proposed in section
2.3 from different initial vectors� and scalarsÆ. �initial and
�final denote the optimal value of� obtained by the iterative
algorithm from respectively�initial and�final.

Regarding table 1 we can notice the following: smaller are the
components of�, greater is the� obtained from (14). This illus-
trates the fact that by allowing saturation we can stabilize the sys-
tem for a larger set of initial conditions. Besides, more stringent
is the performance requirement (largerÆ, in this case) smaller
is the region of admissible initial states for which we can find a
solution.

Æ �initial �initial �final �final
1 [1:00 1:00]T 1:9883 [0:7912 0:8950]T 2:3112
1 [0:50 0:50]T 2:3652 [0:4999 0:5000]T 2:3653
1 [0:25 0:25]T 2:5607 [0:2495 0:2500]T 2:5613
2 [1:00 1:00]T 0:9731 [0:7232 0:8430]T 1:2154
2 [0:50 0:50]T 1:2930 [0:4997 0:5000]T 1:2931
2 [0:25 0:25]T 1:5378 [0:2493 0:2500]T 1:5388
3 [1:00 1:00]T 0:5707 [0:6850 0:8039]T 0:7519
3 [0:50 0:50]T 0:8302 [0:5000 0:5000]T 0:8316
3 [0:25 0:25]T 1:0737 [0:2485 0:2500]T 1:0747

Table 1: Algorithm performance

Comparing the solution obtained by avoiding saturation (i.e.
� = [1 1]) with the solution take into account the nonlinear
behavior of the system, we can observe that:

� for Æ = 1, it is possible to obtain a solution for a set of
admissible initial states28% larger.

� for Æ = 2, it is possible to obtain a solution for a set of
admissible initial states58% larger.

� for Æ = 3, it is possible to obtain a solution for a set of
admissible initial states88% larger.

Now, in order to illustrate the determination of an observer-based
control law, consider the following matrixF = Y W�1 that ver-
ifies the conditions of Proposition 1 considering the setX0 given
above,� = [0:7912 0:8950]T andÆ = 1:

F =

�
�5:5317 �1:8986 4:3732 0:2973
3:8029 1:1964 �3:3488 �0:4414

�

A matrix L that solves Problem 2 is computed by applying the
step 2 of the algorithm 2. To prevent high estimation gains, an
additional constraint was used in order to bound the closed-loop
observer poles to a strip defined by�1 and�50. We obtained

L =

2
664
�47:0332 5:0541
�62:6793 13:0173

0:2415 �45:4971
15:7545 �51:9716

3
775

with � = 1:0363.

5 CONCLUDING REMARKS
The main contribution of this paper resides in the use of a local
polytopic representation of the saturation nonlinearity for study-
ing the multiobjective problem of both local stabilization and
performance requirements satisfaction with respect to a linear
system with saturating controls. Thanks to this representation
and the use of relaxation schemes, numerical efficient techniques
based on an LMI-framework are proposed in order to compute a
effectively saturating state feedback and output observer-based
control laws that solves the problem.

The conservativity of the proposed approach is mainly due to
the modeling of the closed-loop system by a differential in-
clusion and the use of a quadratic framework. However, it
should be pointed out that this allows to consider the nonlin-
ear behavior of the closed loop system and it is much less con-
servative than solutions that considers saturation avoidance, as
shown in the numerical example. The attempt to find less con-
servative representations allowing to handle the problem an-
alytical or numerically remains a challenge for future works.
It is worth to remark that the closed loop system is in fact
piecewise linear. The use of this kind of modeling (Gomes
da Silva Jr. and Tarbouriech, 1999b)(Gomes da Silva Jr. and
Tarbouriech, 1999a)(Johansson, 1999) has been successfully ap-
plied in the analysis context, i.e., for determining estimates for
the region of attraction of the origin. However, the design based
on this approach is almost impossible to be handled numerically.
This comes from the fact that the boundary of the regions that
define the piecewise linear models are defined from the gain ma-
trix to be computed.

Since efficient algorithms and software to solve LMI-based
problems are available, we can conclude that the proposed ap-
proach represents an interesting and easy implementable way to
compute saturating control laws. Moreover, the proposed LMI-
framework can be easily extended

� to treat uncertain systems, which is not in general possible
considering semiglobal approach (Lin and Saberi, 1993);

� to incorporate state and actuator rate constraints;

� to design or specify actuators (considering a given control
law satisfying some control requirements, this can be ac-
complished, by formulating optimization problems having
the bound� as a variable);

� to generate piecewise linear control laws considering
switching surfaces that ensures the asymptotically stability
(see (Gomes da Silva Jr and Tarbouriech, 2001)).

Finally, we can say that the discrete-time counterpart of the
presented results can be found in (Gomes da Silva Jr and Tar-
bouriech, 2001).
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