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ABSTRACT

This paper investigates the properties of the perfor-
mance surface for the problem of nonlinear mean-square
estimation of a random sequence. The problem stud-
ied has direct application to the study of active noise
control (ANC) systems when the transducers are driven
into a nonlinear behavior. A deterministic expression
is derived for the mean-square error (MSE) surface as a
function of the system’s degree of nonlinearity for Gaus-
sian correlated input signals. It is shown how the pres-
ence of the nonlinearity deforms the MSE surface. It is
demonstrated that the surface is unimodal, and the ex-
pression for the optimum weight vector is determined.
The new results are then used to quantify the behav-
ior of ANC systems employing the LMS adaptive algo-
rithm. Important algorithm properties are derived from
this study. Examples are presented which verify the an-
alytical models derived.
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RESUMO

Este artigo investiga as propriedades da superf́ıcie de
desempenho para o problema de estimação média qua-
drática não-linear de uma seqüência aleatória. Os re-
sultados obtidos possuem aplicação direta no estudo de
sistemas de controle ativo de rúıdo (CAR) quando os
transdutores possuem um comportamento não-linear. É
desenvolvida uma expressão determińıstica para a su-
perf́ıcie do erro médio quadrático em função do grau de
não-linearidade, supondo-se sinais de entrada gaussia-
nos correlacionados. Através deste resultado é determi-
nado o vetor de coeficientes ótimo, demonstrada a uni-
modalidade da superf́ıcie de erro e a maneira pela qual a
presença da não-linearidade a deforma. A partir disto,
os resultados obtidos são utilizados para quantificar o
comportamento de sistemas CAR que empregam o al-
goritmo adaptativo LMS. Como resultado, importantes
propriedades do algoritmo são verificadas. Finalizando,
simulações comprovam a validade dos modelos anaĺıticos
desenvolvidos.

PALAVRAS-CHAVE: controle ativo de rúıdo, filtros adap-
tativos, sistemas não-lineares, teoria de estimação.
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1 INTRODUCTION

Mean square estimation plays a crucial role in many
problems of adaptive control (Ren and Kumar, 1992)
and adaptive signal processing (Haykin, 1996). There-
fore, the question of how to design adaptive estima-
tion systems for optimized behavior has met consider-
able interest. Optimal system designs require detailed
knowledge about the theoretical problem and about the
adaptive algorithm performance in solving that prob-
lem. Such knowledge is obtained through analysis of
the system behavior and derivation of analytical models
that can accurately predict this behavior.

Analyses of practical systems’ behavior always rely on
restrictive assumptions to make the mathematical task
feasible. The resulting analytical model is applicable to
situations in which the effects of the neglected nonide-
alities are not significant.

Active noise and vibration control (ANC) is a technique
extensively used by the control (Angevine, 1995; Füller
and Flotow, 1995) and signal processing (Kuo and Mor-
gan, 1996; Hansen, 1997) communities. It consists of
cancelling sound or vibrational waves through destruc-
tive interference. A practical example is the noise reduc-
tion in ventilation ducts (Massarani et alii, 1990; Osório
and Nóbrega, 1995).

Adaptive linear control techniques have been largely ap-
plied in ANC (Kuo and Morgan, 1996). However, con-
siderable nonlinear effects from overdriven loudspeakers,
piezoelectric transducers or power amplifiers in the sec-
ondary path (the path leading from the adaptive filter
output to the cancellation point) have been reported in
actual ANC systems. In addition, correlated input sig-
nals are very common in ANC applications (Kuo and
Morgan, 1996; Hansen, 1997).

Fig. 1 shows the block diagram of an ANC system in-
fluenced by a nonlinearity in the secondary path. The
block g (·) is a saturation nonlinearity. It represents
the composed nonlinear effects in that path (Costa et
alii, 1999). The design problem usually consists of de-
termining the optimum control weight vector W that
minimizes the mean square error (MSE) at the system
output (Osório and Nóbrega, 1995). In this case, min-
imization of the MSE defines a nonlinear mean square
estimation problem. The random signal d (n) is esti-
mated by a nonlinear function of the reference signal
x (n) (Papoulis, 1991 – section 7-5).

Although ANC system nonlinearities are quite common,
very little has been reported in the literature on their ef-
fects on the MSE surface. Therefore, very little is known

Figure 1: Block diagram of the system analyzed.

about the behavior of adaptive algorithms used to can-
cel undesirable noise under this constraint. A recent
paper (Costa et alii, 1999) has studied the statistical
behavior of the system in Fig. 1 when the filter coeffi-
cient vector W is adjusted using the Least Mean Square
(LMS) adaptive algorithm. The analysis presented in
Costa et alii (1999) determined analytical models for the
mean weight and the MSE behaviors for slow adaptation
and white input signals. Very accurate estimates of the
transient and steady-state algorithm behavior were ob-
tained. However, this analysis does not provide all the
necessary design information if the MSE performance
surface properties are unknown. The knowledge of such
properties allows the designer to determine the algo-
rithm behavior for a given degree of nonlinearity, as
compared to the optimum. In addition, the MSE surface
properties are necessary for a meaningful performance
comparison among different adaptive algorithms.

An initial investigation by Costa et alii (2000) has de-
termined the MSE surface properties for white Gaus-
sian inputs. Though these results lead to important in-
sights on the characteristics of the nonlinear estimation
problem, they do not provide accurate information for
the important case of correlated input signals (Kuo and
Morgan, 1996; Hansen, 1997).

This paper extends the analysis of (Costa et alii, 2000)
to determine the MSE surface property for systems with
correlated input signals. A deterministic expression is
derived for the MSE surface as a function of the system’s
degree of nonlinearity. It is shown how the presence of
the nonlinearity deforms the MSE surface. The surface
is shown to remain unimodal for any degree of nonlin-
earity. The optimum weight vector and the minimum
MSE are determined.

These results can be directly applied to several ANC
systems (designed through different control techniques).
They permit the evaluation of the canceller performance
in the presence of nonlinearities. Thus, minimizing the
cost of the transducers and associated hardware with a
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predictable loss in performance becomes feasible.

Next, the particular but important case of the LMS
algorithm is studied. The MSE surface properties are
used to provide new insights on the behavior of the al-
gorithm when applied to ANC systems. New results are
presented for the LMS algorithm behavior with corre-
lated input signals. The MSE misadjustment and the
converged weight misalignment are determined as func-
tions of the system’s degree of nonlinearity. It is verified
that the converged mean weight vector for the LMS is a
scaled version of the optimum weight vector.

2 ANALYSIS OF THE MSE SURFACE

The block diagram in Fig. 1 shows the nonlinear mean
square estimation problem studied. This diagram is
representative of an ANC system with loudspeakers or
piezoelectric transducers driven into nonlinear operation
(Bernhard et alii, 1997).

Wo =
[

wo
0 wo

1 . . . wo
N−1

]T is the vector of the im-
pulse response samples of a linear system (plant).

W =
[

w0 w1 . . . wN−1

]T is the transversal FIR
linear controller weight vector. d (n) is the signal to be
estimated (primary signal). x (n) is the reference signal
which is assumed stationary, zero-mean and Gaussian.

X (n) =
[

x (n) x (n − 1) . . . x (n − N + 1)
]T is

the observed data vector and RXX = E
{
X (n)XT (n)

}
is the reference input correlation matrix. z (n) is the
measurement noise, assumed stationary, white, gaus-
sian, zero-mean, with variance σ2

z and uncorrelated with
any other signal. y (n) is the control signal, and e (n) is
the error signal to be minimized in the MSE sense. The
nonlinearity is modeled by the scaled error function:

g (y) =

y∫
0

e−
z2

2 σ2 dz (1)

Note that lim
σ→∞ g (y) = y and lim

σ→0
g (y) = σ

√
π
2 sgn (y).

Hence, g (y) properly scaled can range between a linear
device and a hard limiter by varying σ.

2.1 MSE Performance Surface

The error signal in Fig. 1 is given by:

e (n) =d (n) + z (n) − g
[
WTX (n)

]
=WoTX (n) + z (n) − g

[
WTX (n)

]
(2)

Squaring (2) and taking the expected value yields:

E
{
e2 (n)

}
=WoT E

{
X (n)XT (n)

}
Wo

+ E
{
z2 (n)

}
+ 2WoT E {z (n)X (n)}

− 2E
{
g

[
WTX (n)

]
z (n)

}
− 2WoT E

{
g

[
WTX (n)

]
X (n)

}
+ E

{
g2

[
WTX (n)

]}
(3)

The first four expectations are easily evaluated us-
ing the statistical properties of x (n) and z (n):
E

{
X (n)XT (n)

}
= RXX; E

{
z2 (n)

}
= σ2

z ;
E {z (n)X (n)} = 0 and E

{
g

[
WT X (n)

]
z (n)

}
= 0.

Since x (n) is zero-mean Gaussian and W is constant,
the last two terms in (3) include expectations of non-
linear functions of zero-mean Gaussian variables. The
fifth expectation can be obtained from Shynk and Ber-
shad (1991) for b1 = 0, σq = σ, c = 1/σ and σ2

y =
WTRXXW. Thus,



For the linear case, σ → ∞ and η2 → 0.

Fig. 5 presents examples of the MSE surface for differ-
ent degrees of nonlinearity η2. Notice that the surface
deforms as η2 increases. Regions of slower convergence
(small gradient) appear as η2 increases. However, it
remains unimodal for any degree of nonlinearity. This
important result will be demonstrated in the next sub-
section. Note that the MSE (6) is not minimized by
W = Wo unless η2 = 0 (linear case).

2.2 Stationary Points

Differentiating (6) with respect to the weight vector and
equating it to zero yields an expression for the minima
W̃ of the MSE surface. Thus,

∂

∂W


 2√

1
σ2 WTRXXW + 1

WoTRXXW




∣∣∣∣∣∣
W=W̃

=

= σ2 ∂

∂W

[
arcsin

(
WTRXXW

WTRXXW + σ2

)] ∣∣∣∣
W=W̃

(9)

Evaluating the derivatives in (9) and setting W = W̃
yields:

Wo + 1
σ2

[
WoW̃T − W̃W

oT
]
RXXW̃(

1
σ2 W̃TRXXW̃ + 1

)1/2
=

=
W̃(

2
σ2 W̃TRXXW̃ + 1

)1/2
(10)

Equation (10) can be written as:

W̃ =

(
1 + 1

σ2 W̃T RXXW̃
)

1
σ2 WoTRXXW̃ + ( 1

σ2 W̃T RXXW̃+1)1/2

( 2
σ2 W̃T RXXW̃+1)1/2

Wo (11)

Note that all terms in the fraction multiplying Wo in
(11) are real nonegative scalars. Thus, the optimum
weight vector W̃ is a scaled version cWo of Wo, c ∈ R

+.

Substituting cWo for W̃ and using (8) in (11) yields:

Wo

(c2η2 + 1)1/2
=

cWo

(2c2η2 + 1)1/2
(12)

Note that c ∈ R
+. For given Wo and η2, the constant

c must be a solution of:

c4 +
(

1
η2

− 2
)

c2 − 1
η2

= 0 (13)

Equation (13) yields four solutions:

c1,2,3,4 = ±
√

1 − 1
2η2

±
√

1
4η4

+ 1 (14)

Because c must be real and positive, only the positive
sign is acceptable outside the square roots. In addition,
it is well known that c = 1 is the only optimal solution
(the Wiener solution) for η2 → 0 (g (y) = y, linear case).
This eliminates the possibility of the minus sign within
the square root (the minus sign would lead to a complex
value for c as η2 → 0). Thus, the only allowable solution
for (13) is:

c =

√
1 − 1

2η2
+

√
1

4η4
+ 1 (15)

The minimum of the MSE surface is then:

W̃ =

√
1 − 1

2η2
+

√
1

4η4
+ 1 · Wo (16)

Fig. 2 shows the effect of the nonlinearity on the posi-
tioning of the optimum weight vector in the direction of
Wo.

Using (16) in (6) yields an expression for the minimum
of the MSE performance surface:

ξMIN = σ2
z +

[
1 − 2c√

c2η2+1

+ 1
η2 arcsin

(
c2η2

c2η2+1

)]
WoTRXXWo

(17)

Fig. 3 shows the excess MSE (ξex = ξMIN −σ2
z) caused

by the nonlinearity, relative to the linear case, for the
normalized case WoTRxxWo = 1. Eq. (17) determines
the best performance that can possibly be expected from
any adaptive algorithm used to solve the nonlinear esti-
mation problem depicted in Fig. 1.

3 APPLICATION TO ANC SYSTEMS

Several control techniques can be used to optimize the
weight vector in the system of Fig. 1. One of them is the
adaptive system depicted in Fig. 4. Thus, the results of
Section 2 can be used to quantify the performance of the
LMS algorithm in a nonlinear ANC system. A similar
approach can be used with other solutions to the ANC
problem (Massarani et alii,1990; Osório and Nóbrega,
1995).

Analytical expressions have been derived in Costa et alii
(1999) for the converged mean weight and MSE for the
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LMS algorithm with white Gaussian inputs and slow
adaptation. These expressions can be expanded to the
correlated input signal case as:

W∞ = lim
n→∞E {W (n)} =

1√
1 - η2

Wo (18)

ξ∞ = lim
n→∞ ξ (n) =

WoTRXXWo

(
1
η2

arcsin
(
η2

) − 1
)

+ σ2
z (19)

Note that the converged mean LMS weight vector W∞
is also a scaled version of the optimum solution Wo for
the linear case. Using (16) and (18) it is easy to show
that:

W∞ =

[
2η2

(1 − η2)
√

1 + 4η4 − 2η4 + 3η2 − 1

]1/2

· W̃

= β W̃ (20)
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Degree of nonlinearity

c

Figure 2: Effect of the nonlinearity on the positioning
of the optimum weight vector versus the degree of non-
linearity.

Equation (20) shows that the LMS algorithm produces
a biased estimate of the optimum weight vector W̃. The
multiplicative bias β in (20) is a function of the system’s
degree of nonlinearity.

Using (17) and (19), the LMS excess MSE can be deter-
mined:

ξ =ξ∞ − ξMIN

=
{

1
η2

[
arcsin

(
η2

) − arcsin
(

c2η2

c2η2 + 1

)]

+
2c√

c2η2 + 1
− 2

}
WoTRXXWo (21)
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Figure 3: Excess MSE versus the degree of nonlinearity.

The misadjustment can be obtained normalizing (21):

M =
ξexLMS

ξMIN
(22)

Note that (20), (21) and (22) hold only for η2 < 1. The
mean weight of the LMS algorithm does not converge
for η2 � 1 (Costa et alii, 1999).

Figure 4: Block diagram of the adaptive system.

3.1 Numerical Example

This section presents simple examples to illustrate the
application of the analytical results. Consider the
system in Fig. 1 with Wo =

[
0.707 0.707

]T ,
WoTWo = 1, σ2

z = 10−6 and a unit-variance corre-
lated input signal. The eigenvalue spread (λmax/λmin)
of RXX is equal to 24.

Fig. 5 shows the MSE surface for three different de-
grees of nonlinearity. Note the increasing deformation
(with increasing asymmetry) of the MSE surface with
increasing η2. The LMS algorithm does not converge
for case (c). Notice also that the nonlinearity increases
the region of small gradient in the surface.
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Assuming Fig. 4 with the same parameters described as
above, Fig. 6 shows the MSE surface contours and the
LMS weight trajectories for random initialization, µ =
0.01 and four different degrees of nonlinearity. Vectors
Wo and W̃ are also shown. Notice that in all cases
Wo, W̃ and the converged LMS weight vector W∞ are
aligned with the point (0,0) (the LMS weights converge
asymptotically to this line in plot (d)). This behavior is
in accordance with equations (16) and (20). Figs. 6a-6c
show the weights convergence for η2 < 1. For a small
η2 (Fig. 6a) the converged weights closely approach the
minimum of the MSE surface (which also tends to Wo).
Fig. 6d show the divergence of the LMS algorithm for
η2 > 1.

Figure 5: MSE surfaces: (a) η2 = 10−5; (b) η2 = 0.01,
(c) η2 = 2.
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Figure 6: MSE contours and weight trajectories. ✷ :
Wo; © : W∞; × : W̃; ♦: LMS initialization; Ragged
curves: weight trajectories; Continuous curves: MSE
surface. (a) η2 = 10−5; (b) η2 = 0.5; (c) η2 = 0.8 and
(d) η2 = 2.

Figs. 7 and 8 show the weight bias β (Eq. (20)) and
the MSE misadjustment as a function of η2. As η2 → 0
(linear case), β → 1. When η2 → 1, β increases very
fast and finally grows without bound.
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Figure 7: Weight bias β caused by the LMS algorithm
as a function of η2.

Figs. 9 and 10 show the simulated MSE and the be-
havior of the first coefficient for a system with 30 co-
efficients, µ = 0.01, σ2

z = 10−6, 500 runs and RXX

eigenvalue spread equal to 32. Three different degrees
of nonlinearities are considered for each figure, chosen in
order to permit a clear separation among curves. Fig. 9
shows the MSE behavior for the LMS algorithm (ragged
curves). The minima of the MSE surface (Eq. (17)) for
each degree of nonlinearity are shown as lines of circles.
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Figure 8: Misadjustment caused by the LMS algorithm
as a function of η2.

The distance between each curve in steady-state and the
corresponding minimum confirm the difference between
(17) and (19). Fig. 10 shows the behavior of the first
adaptive weight (similar behavior was verified for all co-
efficients). Again, the optimum solutions (Eq. (16)) are
shown as lines of circles. Mismatches between steady-
state weight behavior and optimum weight confirm the
weight mismatch derived in Eq. (20).
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Figure 9: Simulated mean square error (ragged curve)
and the minimum of the performance surface (o o o).
(a) η2 = 0.0005; (b) η2 = 0.05; (c) η2 = 0.5.

Two important results can be inferred from Fig. 9 and
10: (1) the LMS algorithm cannot achieve the minimum
of the performance surface, generating a biased solution
(multiplicative bias); (2) if the real system is incorrectly
modeled as a linear system, the effect of the nonlinearity
can cause a significant overestimation of the noise can-
cellation capabilities of any adaptive algorithm based on
mean square estimation.
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Figure 10: Simulated behavior of the first coefficient
(ragged curve) and the optimum solution given by Eq.
(16) (o o o). (a) η2 = 0.0005; (b) η2 = 0.2; (c) η2 = 0.5.

Fig. 11 presents the function g (·) and the histograms
for the amplitude of the nonlinearity input (output of
the adaptive filter). The histograms were determined
from the signal amplitudes for all the 7000 iterations,
averaged over 10 runs (10 realizations). Fig. 11 clearly
shows that in cases (b), (c) and (d) the system is driven
into a nonlinear region of operation. This emphasizes
the importance of analytical models that take into con-
sideration the effect of the secondary path nonlinearity
whenever it is physically unavoidable in practical appli-
cations such as active noise and vibration control.

Table 1 compares the MSE of the converged LMS with
the minimum MSE for several degrees of nonlinearity.
These values were obtained from (17) and (19) and con-
firmed through simulation. The last column shows the
corresponding MSE misadjustment.

Table 1: Comparisons between converged LMS and op-
timum solutions.
η2 Error Surface LMS Misadjustment
0.1 -21.34 dB -21.27 dB 0.3 %
0.25 -13.6 dB -13.21 dB 2.87 %
0.5 -8.22 dB -6.77 dB 17.64 %
0.75 -5.48 dB -2.35 dB 57.19 %
0.95 -4.07 dB 1.53 dB 137.53 %
1 -3.78 dB - -
10 3.55 dB - -
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Figure 11: Functions g(·) and respective histograms of
the output of the adaptive filter obtained from simula-
tion. (a) η2 = 0.0005, (b) η2 = 0.05, (c) η2 = 0.2 and
(d) η2 = 0.5.

4 SUMMARY

This paper has investigated the properties of the perfor-
mance surface for a nonlinear mean-square estimation
of a Gaussian random sequence. It expands a previ-
ous study, generalizing the statistical characteristics of
the input signal. The results of this study have direct
application to active noise and vibration control sys-
tems when the transducers are driven into a nonlinear
behavior and the input signal is correlated. They can
be used to evaluate the performance of several methods
for determining the optimum controller. A determin-
istic expression was derived for the MSE surface as a
function of the system’s degree of nonlinearity. It was
shown how the nonlinearity deforms the MSE surface.
This surface was shown to be unimodal, and the opti-
mum weight vector determined. Finally, as an example,
the new results were used to quantify the behavior of

ANC systems employing the LMS adaptive algorithm.
The MSE misadjustment was evaluated as a function of
the degree of nonlinearity. The converged mean weight
vector for the LMS was shown to be a scaled version of
the optimum weight vector.
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