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Abstract - The probIem of regulator design for stochastic linear

discrete-time systems by optimizing a quadratic index of performance

is considered. Loose sepàrability is assumed and om~ste~ahead

minimization of controI magnitude and of controlled state deviation ""

from zero is imposed to obtain the contr~I law. To determine the

weighting matrices in the index of performance, a state estimation
based scheme of anaIysis is proposed. With this approach these matrices "

are taken as covariance matrices, through the use, one step ahead, of :

the information about allowed control magnitude and possible and

desirable state deviation from zero. Convergence of the proposed

regulator is anaIysed also using a state estimation equivalent problem

approach. Complete observability and complete controllability are

shown to guarantee the existence of a sequence of stabilizing control

vaiues, which can be estimated by the adopted optimization design

approa~h. The structure of too resulting control law depends only on
past and present knowledge of system dynamics, making the proposed

solution suitable for applications where adaptive control is necessary.

Results obtained in one case of satellite attitude control are discussed.

1 - INTR0I>UCTION

/

ln the usual LQG solution, the resulting controller depends

on knowledge· of future system dynamics to be implemented
(e.g. Bryson" and Ho, 1969). This is a serious limitation when "

system modelled dynamics is only a local approximation -and
adaptive control schemes are necessary. -

ln this paper, the design of a stochastic linear regulator is
proposed for the case of linear discrete-time systems according
to a strategy that depends on1y on past" and present

information about the dynamic system. This is done by (i)

using an optimization scheme as in the LQG sohltion, but

adoptingan index of performance that on1y includes

one-step-ahead minimization of control and state deviations

from zero; and (ii) looking at the weighting matrices present in

the index of performance as covariance matrices, and using a
state estirilation based scheme of analysis to determine these

matrices.
To analyse convergence of the proposed solution, the

problem of existence and estimation of a sequence of
stabilizing control values is also posed as an equivalent

estimation problem. It is the shown that: the properties of
observability and controllability of the original control
problem imply the existence of a stabilizing sequence; and

that this sequence can be estimated by the proposed
optimization scheme of designo

As expected, theexpression of the control law gain' is
similar to that.of the LQG solution. The on1y difference is in
the way that the state weighting matrix is defined. As a

consequence of this, one gets a regulator for which complete
separability (e.g. Jacobs, 1981) does not hold, since the

control gain results dependent on state uncertainty.
The results presented here come after' some preYious.

heuristic efforts to use a similar' strategy in the design of

adaptive controllers applied to ship and satellite control
(Rios-Neto and Cruz, 1985; Ferreira, Rios-Neto and

Venkataraman, 1985). As a matter" of fact they were
developed looking for the establishment of a theoretical basis
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for the heuristic results used in those applications.
.ln the sections ahead the paper is organized as fol1ows. ln

section 2, the problem of controlling a linear discrete dyna11Üc

system is formulated to introduce the notation and to

establish the basic assumptions. ln section 3, the proposed

solution is presented.· ln section 4, it is analysed fromthe

point of view of convergence. Test results obtained in one case

of satellite attitude control is discussed in section 5. Final1y, in

seçtion 6 the conclusions are presented.

where xCi) is the Kalman filtering state estimate after

measurement y(i) is processed (e.g. Jazwinski, 1970); K(i) is

the Kalman gain; C(i) is the linear state feedback control law .

gain; e (j )~ x (j) - x (j ); x (Q) = N(o;X (Q » . . The
controlled states constitute a stochastic zero mean Gaussian

sequence with second order moments given by (Bryson and

Ho,1969):

xO + 1 ) = (fj)(i + 1, il -n i )C ( i ) (x ( i ) + P( i 1-

-PI i l)(fj)(i + 1, i)-

2 - PROBLEM FORMULATION (3)

The problem is that of controlling a linear discrete-time

dynamic .system for which noise corrupted observations are

given at each sample time, i = O, 1, 2, ... :

x(f+l) =</J (i+l)x(i)+rti)u(i)+w(i)

y ( i ) = H ( i )x (i ) + v( i ), (1)

- • [- - t _. [- - t ]w h e re X (j )= E x (j) x (i) ] ; P (i) = E e O) e (i) ;

• A A

P (j)= E[(xO) ~ xli»~ (x(j)- xO»t]; aryd C(-l)=

= O, x (O) = P (O).

where xCi) is the nxl state vector; u(i) the rxl control vector;

y(i) the mxl observation vector; and v(i), w(i), x(O) are zero

. mean Gaussian vectors, with compatible dimensions, such that

for i,j = O, 1, 2, ... :

t t
E[v(i)w (j)]=O,E[x(O)w (il]1=

t= O, E[x ( O ) v (i l] = O,
. t - t

E[x(O)x (O)]=P(O»O,E[v(i)v(j)]=

= R ( i ) ~. ij,

tE[w(i)w' (j)l=Q(i)~ij,

3 - PROPOSED SCHEME

To determine a regulator type of control law for the

problem of Equations (2), one ends up solving a deterministic

optimization problem in the proposed scheme. At each time

ti ' u li) is determined as the value that minimizes the index

of performance:

J = 1 /2 (u t ( i ) B ( i ) u ( i I +

-pd - t -pd -(x (i+l)-x(i+l)) S(i+l)(x (i+l)-x(i+l))) (4)

subject to the dynamic constraint

whereEl.] indicates the expected value of its argument, and .

~ij is the delta of Kronecker.

The system of Equations (1) is assumed to be completely

observable and completely controllable. The objective is to

control the state. xCi) towards zero as time increases. That is,

one looks for a control strategy that stabilizes the system,

leading to a regulator type sollltion.

To realize this objective, in the next section a procedure

will be proposed using a linear state feedback control law,

where only a loose separation (e.g. Jacobs, 1981) holds. It will

then be necessary to define a controlled state as:

. where xCi) is known and given by the realization coming out

of the Kalman filter state estimate after processing the

observed value of y(i), at ti; B (i) > O is given and

chosen according to the bounds within which u(i) is

constrained; 'x pd ti + 1 ) is given and previously

determined to guide the predicted state towards a desired

contraction of state magnitude at ti+l'; and S (j+l ) > O is
given and previously determined so as to condition a

realization of :(x pd (i + 1 ) - x O + 1 » that is withiri
bounds that are both possible and desirable in terms of the .

objective of the regulator being designed. . .
The determination of S (i +1) and xpd (i + 1) is done

in such a way as to include and mix two types of information~

ln a sense that will be made cJea.r iJl what fol1ows, one" frrst

x (i+1) = ( fj) (i + 1 , i) - r( i ). C ( i » x ( i )

(~O+l,i) - rO) C (i» (xO)

- K(j) (H (j)e O) -v(j»),
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(2)

x(i + 1 ) = fj) (i + 1 , i) x( i ) +r( i ) u ( i ), (5)



considers a predicted and possible distribution for .x (i + 1 )

and, second, imposes a desired contraction on the state
magnitude, at ti+1 .. This can be done as shown in the
following three steps:

diagonal, with variances properly chosen to characterize

virtual sensor errors. The accuracy of the sensors is chosen

such as to guarantee that, witha very high probability, the
xP (i + 1) in correspondence with y d (i + 1) is within the
region of a desired response.

xp (i + 1 ) = cp (i + 1 , j) x( j ) - r ( i ) C (i - 1 ) x( i ) (6)

First step: A possible and predicted controlled state can be
defined as being virtually given by:

xPd(j + 1) ~~P(j + 1), 5(j + 1) = (Pp (j + 1 ))-1 (10)

Third step: Combining the a priori information of Equation
(8) with the observation of Equation (9) one can apply an·

optimal Gauss-Markov linear estimator (e.g. Jazwinski, 1970)
to obtain an estimate, i-P (j + 1 ) ,of a possible and

desirable state, among those attainable at ti +1 . Together
with i-P (i + 1 ) one also obtains the covariance matrix

pP O + 1 ) of the errors (;P (i.+ 1 ) - x P (i + 1 )) . The

second term of the Performance Index (4) is then completely
defined if one chooses:

For the particular situation where the y d f( i + 1 ). is

chosen to be zero, it results:

where in the first equation xP d (i + 1) is to be understoód
as a realization of i-P (i + 1) that results when a chosen

y d (i + 1 ) sufficiently dose to zero is processed; and
5 (i+1 ) , in the second equation, is in correspondence with

.a chosen R d (i + 1) that leads to ti- P (i + 1 ) - Yd (i + 1 ))

within bounds that guarantee the objective of controlled state

contraction at ti + 1 • From the expressions of the
linear estimator, 5 0+1 ) results as:

(7)

(8)

xp( i + 1 ) = (cp (i + 1 , i) - r ( i ) C (i - 1 )) (x( i ) +

+ P ( i ) - P( i ))

(CP(j+1,i)-r( i )C(j-1))

This is the controlled state that results when the matrix
C(i) of the control in Equation (2) is considered with one
sampIe interval lago Thus, xp (i + 1) is certainly a possible

controlled state that can be' reached. It can be viewed not as a

particular realization by as a random variable outof a
stochastic process, which from Equation (1) and the

properties of x(i) is certainly zero mean and Gaussian (Bryson
and Ho, 1969). ln this sense, a possible predicted dispersion

for x (í + 1) results:

t
where XP (j + 1 ) ~ E [ xP (j + 1 ) xP (i +1 ) and the

other variables are as already defined in Equation(3). One can
then look for a stràtegy that leads to an occurred value of

x (i + 1 ) as a convenient outcome of the Gaussian random
variable x P (j + 1 ) , where:

Second step: A desired response at ti+1' for the system
under control can be viewed and defined as those realizations
of xP (i + 1 ) which are sufficiently dose to zero to
g"uarantee the objective of controlled state magnitude.
contraction. ln a virtual sense, it is possibler to consider a
sensor with the capacity of directly observing the state
.x P ( i· + 1 ) . Still in a virtual sense, it is also possible to .
imagine that one is observing, with an imposed accuracy, a
realization of xP (i + 1 ) that satisfies the condition of

being a desired response. This situation can be forJll~y

expressed by:

For this particular situation, the controller that results
from the minimization of the Index (4), subject to the
constraint of Equation (5), is as follows:

-d -P -d
y (j+l)=x (i+1)+v (i+l) (9)

u ( i ) = - C ( i )x( i)

c ( i ) = (r
t

( i )5 (i + 1 ) r ( i) + B ( i ) ) -1

r t (i)5(i + 1 ícp(j + 1, i)

B -1 ( i ) r t (j )( r ( i ) B -1 ( i ) r t ( j) +5. 1 (i + 1 )).1

cp(j+1,j)

(12)

(13)

(14)

where y d (i + 1 ) is chosen to constitute the virtually
observed desired response, at ti+1.

vd (i + 1 ) = N (O, R d (; + 1 )) ,with Rd (j + 1) assurned

where, except for the meaning given to 5 0+1 ) ,the
expression for C(i) is. the sarne as that for the optimal
regulator (e.g. Bryson and Ho, 1969).
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4 - CONVERGENCE ANALYSIS

Byconstruction, consider the following virtual estimation

problem, which is related to but not to be confused with that
of Equations (I):

system of Equation (1). Since xCi) is known and considering the

uncertainties imposed by w(i + 1) and V (i + 1.) the best

way to recover this sequence of the controIs u (i) is to solve

the following parameter estimation problem:

xli + 1) = CP(i + 1, i)x(i) + r(i)u(i) + w(i). (IS)

O=u(i)+&u(i)

y(i + 1) - CP(i + 1, i)x(i) = r( i)u(i) +v(i + 1) (18)

where x (i + 1 ) is the controlled state (see Equation (5),
substituting the expression for xCi) ,as given by the

Kalinan filter when it is applied to problem of ;Equation (I);
w(i ) is such that
cP(j + 1, ili(i) =CP(i + 1, i)x(i) +w(i) and which from

the observability of System (I) converges to a white noise
having the sarne distribution as ~ (i + 1 , i) K ( i ) v ( i )

(Kailath,1968), when the Kalman filter is applied to the
problem of Equations (1); H (i +1 ) ~ I ; and

n
v (i + 1 ) à N (O, S -1 (i + 1 )), a white noise taken as
independent of w(i ) u (i ) and x (i + 1 ) ,by

hypothesis and with S(i+1) as given by Equation (11);
The estimation problem of Equations (15) and (16) is

certainly observable, because H (i + 1 ) à 'n.lf, a t ti, u ( i )

and Vii ( i) are considered as being the outcomes of
Gaussian white noise sequences, with u (i ) = N (O, B - 1 li» ,
and w ( i ) = N (O, cp (i + 1 , i)K ( i ) R (i )cp T (i + 1 , i) K T ( i )

(with dispersion usually negligible as compared to that of
u (i) ) , .then from the controllability (u (i»· ,and

observability (w ( i )) of the original problem of Equations

(1) there results the controllability of the estimation problem

of Equations (IS), (16). Thus convergence is guaranteed for
this estimation problem (e.g. Jazwinski, 1970), implying that

. the estimate i- (i + 1) , given by the Kalman filter, leads to a
residue:

y (i + 1 ) = H (i + 1 )x (i + 1 ) + v( i + 1 )

r (i + 1) =y (i + 1) - x (i + 1 )

. (16)

(17)

where ,&'u ( i) ~ N (O, B ~1 (i) ; and the second equation

resulted from the substitution of x (i + 1) ,as given by

Equation (5)(or, equivalently, by Equation (15)), in Equation
(16).

The solution of the estimation problem of Equation (18),
using a Gauss Markov optimal estimator, is formally equivalent

to that resulting from the minifiÚzation of the Index of

Performance (4) subject to the constraint of Equation (5).

Thus, the proposed controller should lead to the stabilization

of system ~f Equation (1).

5 - NUMERICAL TEST: DIAS MOMENTUM ATfITUDE
CONTROLSYSTEM

With the objective of illustrating the convergence behavior

of the proposed approach one example is numerically
simulated in what follows. It is related to satellite three axis
attitude controI.

This case is based upon a model of double-gimbaled
momentúm wheel given by Kaplan (1976) for the attitude

control of a geostationary satellite. ln discrete-time form the
state model is as follows:

1 O 1,21 E-10 0,1 O -5,OE-04

O 1 O O 0,1 O

CP(i+1,i)=
-1,21,E-10 O 1 5,OE-04 O 0,1

.-:..7,28E-07 O 3,64E-09 1 9 -0,01

O O O O 1 O

-3,64E-09 O -7,28E-07 0,01 O 1

d i a9 ( 1 ,7 3 E -,-2 9 ; 1 ,O9 E - 2 4 ; 1 ,7 5 E - 2 9
6 ,9 OE -: 2 7 ; 4,34 E - 2 2 ; 7 ,O1 E - 2 7

diag(3,4E-09 ; 3,4E-,O~)

[
1 O 00 O 00J
O 1 O O O

that necessarily converges to the associated innovation
process, reaching in the limit, the sarne distribution as that of
v (i + 1 ) • This behavior ·of the residue r (i +1 ) means

that the objective of controlling the state of System (I), to

make it to approach zero, can be reached. The convergence
guarantees the existence of a sequence of occurred values of

u (i) that, together with the correspondent occurred values
of the noises I W (i) I and v (i + 1) ,reproduces the

observed y (i + 1) • If the observed realizations are forced to
be the certainly possible outcomes y (i + 1 ) = xP d (i + 1 ),

this sequence of u(i) satisfies the control objective posed for the
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H ( i )

R ( i )

Q( i)

0,25E-05

O

8,33E-09

5,OE-05

O

2,5E-07

O

1,25E-05

O

O

2,5E-04

O

-8,33E-09

O

2,5E-07

-2 ,5E -07

O

5,OE-05

(19)



where the state vector components are the roll, pitch and yaw
angles and their time rates.

The model above was derived based on a discretization time
interval of 0,1 s for a satellite with the following parameters
(Kaplan, 1976):

Moments of inertia:

: Ix = I z = 2000 N.m.s2

I y = 400 N.m ;s2

NominalWheel Momentum:

h n =200 N .. m.s

Orbital Frequency:

The simulation results are shown in figure 1.

For the kind of application at hand and when comparedt to .
the cotitroller (based on classic frequency domain techniques)

used by Kaplan (1976), the controller exhibits a faster
response when subjected to perturb~tions. in the initial

attitude angles,'reaching afterwards a condition of satisfactory

. error leveIs. The worse results in yaw were ~xpected since this
state is not directly observed (see .tI(i) in Equation 14».

ln addition, tests were also carried out with a satellite
attitude control problem where only one thruster was

available for three-axis' controI. 'This was done using a model
given by Muller and Weber (1972). Results obtained in this

case were still satisfactory despite the fact of having a single
actuator~ which characterizes an adverse situation.

:w o=7,2SE-05 rad/s 6 - CONCLUSIONS

C(-1) =0

Rd (j + 1 ) = d i a 9 (~j (i + 1 ), j = 1 , 2, , 6)

A regulator for stochastic discrete-time linear systems has

been proposed.· It is a sequential state estimate feedback type

of controller. Its main feature is to have a control gain matrix

dependent ,0nÍy on past and present knowledge about system
dynamics and state estimate uncertainties.

The fact that knowledge of future system dyriamic~. is oot

needed to determine present control action is' expected to

make thiscontroller suitable for use.: in adaptive control
schemes.

The approac~ of. lookingat the one:';step-ahead

minimization of the control action and of the state deviatio~

from zero, as a formally equivalent.estima~ion problem, has
allowed to interpret the weighting matrices involved as error

covariance matrices. This certainly facilitates the choice of
these matrices.

Since the; control gain depends on state uncertainty,
complete separability does not hol4. The implications of this
feature have to be better evaluated.

The results obtained fi the numerica1 tests are encouraging
and here one should include those results obtaiJ.led previously,
in a heuristic basis, in application to nonlinear and. time
variant systems (Rios-Neto and Cruz, 19M5; Fe!reira,

Ri6s-Neto and Venkataramen, 1985). However the nwnerical
behavior of matrix XP (j + 1 ) (in Equation (11» indicates

that fUrther investigation is needed to fmd waysof preventing
the tendency it presents of getting nearly singular. ln the cases

tested, sat~atingthe J1latrlx frOlll.bellow waseno.ugh, but one
should look at the results already available in state estimation
to try to infer better approaches to treat this problem.

(21)

(22)

if

. if

X(O) = p (O) = d iag (3,4E -05 '; 3,4E -05 ; 3,4E -05 ;

3,4E-07 ; 3,4E-07 ; 3,4E-07 )

(20)
B( i )=diag (1; 10; 1)

where:

The satellite axes x, y and z are respectively in
cor.respondence with roll, pitch and yaw. The wheel axis

coincides with the y axis.

The controller parameters and initial conditions were as
follows;

and:

CX
1

=CX
2

=CX
3
=0,01

&=& = S SE-OS
1 2 '

& = 5 OE-06
3 '

& =& =& =3 4E-07
4 5 6 '

I
cx.x.p (j + 1)2

J J .
R.(i + 1) =#JJ '

. lit.
J

ln order to avoid near singularity related problems, the
diagonal elements of the matrix X P (i + 1) were saturated

from below at Íevels ej (j =1 ,2, ••. ,6) .
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Fig. 1 - Simulation results for satellite threeaxis attitude control

156 ·SBA:·Controle Bt Automaçio



REFERENCES

BRYSON, A.E. and HO, Y.C. (1969). Applied Optimal Control:
Optimization, Estimation and Control. Blaisdell, Waltharn,
Massachusetts.

FERREIRA, LD.D.; RIOS-NETO, A. and VENKATARAMAN, N.S.
(1985). Stochastic Control of Pitch Motion of Satellites. Using
Stabilizing Flaps. Acta Astronautica, 12, 11, pp. 899-905.

JACOBS, O.LR. (1981). Introduction to Adaptive Control. ln C.J.
Harris and S.A. Billings (Eds.), Self-Tuning and Adaptive Control:
Theory and Applications, pp 1-35. Peter Peregrinus, U.K.

JAZWINSKI, A.H. (1970). Stochastic Processes and Filtering Theory.
Academic Press, New York.

KAILATH, T. (1968). An Innovations Approach to Least-Squares
Estimation. Part I: Linear Filtering in Aàditive White Noise. IEEE
Transactions on Automatic ,Control, AC 13(6), pp. 646-660.

KAPLAN, M.H. (1976). Modem Spacecraft Dynarnics and Control.
John Wiley, New York.

MULLER, P.C. and WEBER, RI. (1972). Analysis and Optimizationof
Certain Qualities of Controllability and Observability of Linear
Dynamical Systems. Automatica, 8, pp. 237-246.

RIOS-NETO, A. and CRUZ, J.J. (1985). A Stochastic Rudder Control
Law .for Ship Path-Foliowing Auto Pilots. Automatica, 21, 4, pp.
371-384.

SBA: Controle Bt Automação 157


