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ABSTRACT: The study introduces a variety of fuzzy set-o
riented neurons, proposes architectures of neural networks and
addresses the fundamental issues oftheir leaming. Subsequently
the applications of these networks are studied in detail. A
particular emphasis is focused on an explicit character of
knowledge representation realized by these networks signifi
cantly facilitating their leaming and interpretation.

FUZZVSETS

1 • INTRODUCTION

With the resurgence of neural networks (Grossberg, 1988;
Hecht-Nielsen, 1991) one can witness a growing interest in
merging concepts of fuzzy sets and neurocomputations with a
limpid anticipation of designing conceptually and computatio
nally efficient schemes of information processing (IEEE, 1992;
Rocha, 1992). The main features of these two areas clearly
indicate that this type of symbiosis is definitely worth pursuing,
see Fig.!.
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Figure 1 • Main features of neural networks and fuzzy sets and interaction between them
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Within a variety of approaches, architectures and algorithms
existing in this research area, one can suggest the following
taxonomy whose main criterion becomes a leveI of interaction
(symbiosis) between neural networks and fuzzy sets:
(i) numerical coupling. In this framework, the neural networks

are perceived as enhancements of computational faculties
of fuzzy sets giving rise to neurofuzzy controllers, neuro
fuzzy classifiers, helping determine membership functions,
etc. In fact, this is the most commonly used way of
incorporating neurocomputations into the fuzzy set-orien
ted constructs.

(ii) the essence of this approach is to "fuzzify" the existing
neural networks by admitting some concepts of fuzzy sets
into their processing units. For instance, a standard neuron
with "n" inputs xJ,x2, ... ,xn and connections wJ' w2'"'' wn
being described by

/I

LW,X,
'=1

becomes "fuzzified" by considering these connections (and
the inputs) as some fuzzy numbers , say

/I

(Jj(w,0x,)
'=1

where (Jj and ~ are treated as the extended operations of
addition and multiplication realized for the corresponding
fuzzy numbers. While conceptually simple, this approach
carries a very substantial price tag as far as the computa
tions are concemed not being well balanced by the
potential gains guaranteed by this approach.

(iii) conceptual coupling. Within this framework one tends to
combine the concepts of fuzzy sets and neural networks
into a coherent conceptual framework by taking advantage
of logic-inclined architectures of the neurons. Furthermore,
one can benefit from the explicit schemes of knowledge

Aggregative
neurons
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Figure 2 . Taxonomy of fuzzy neurons

representation and capabilities of uncertainty processing
both emerging out of fuzzy sets and augment these by the
leaming faculties of the neural networks.

In this study pursuing the latter approach we will be concemed
with a class of logic-oriented class of fuzzy neurons. Each of
them takes care of a simple basic function (OR, AND,
MATCH, etc.). When combined together they can easily
represent a generic topology of the problem at hand. The
architectures emerging in this way will be referred to as
knowledge-based networks. The paper will look at these
networks, study a variety of architectures tackling different
knowledge representation aspects, uncertainty management and
relevant leaming mechanisms. The second part of the paper will
be devoted to a diversity Df applications giving rise to several
types of specialized networks.

CONCEPTS ANO ARCHITECTURES

2· LOGIC·BASEO NEURONS

In this section we will introduce and study basic properties of
neurons developed with the aid of logic operations (fuzzy set
connectives) (Pedrycz, 1991; Pedrycz, 1993). We will consider
a collection Df inputsxi' i=1,2, ... ,n arranged in a vector form
as x E [O,I]n .The connections of the neurons will be denoted
by W,v, .... The first class of neurons (aggregative logic neurons)
realizes aggregation of the input signals, while the second one
carries out some referential processing; for a more detailed
diagram outlining this classification refer to Fig.2.

Referential
neurons

MATCH(EQ)

DIFF(lNEQ)

DOM
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2.1 - Aggregative CR and AND logic neurons y ORjAND

The OR neuron realizes a mapping [O,I]n ~ [O,I]ffi and is
described as OR

y = OR[xl ANDwl' x2ANDw2, ••. , xnANDwn]

where w=[Wj, w2' ... , Wn] E [O,I]n summarizes a colIection of
the connections (weights) of the neuron.

The standard implementation of the fuzzy set connectives
involves triangular norms that means that the OR and AND
operators are realized by some s- and t-norms, respectively.
This produces the folIowing expression

Figure 3· OR!AND neuron architecture

(2)

(1)

n

y = S[xj t Wj ]

1=1

In the AND neuron the OR and AND operators are utilized in
a reversed order. We obtain

y = OR(x;w)

with its coordinatewise characterization given by

y = AND(x;w) (3)

(4)

which again in the notation of the triangular norms reads as

n

y = T[xjtWj)
1=1

It is worth noting that from a formal point of view the OR and
AND neuron can be viewed as welI-known types of single-Ievel
fuzzy relational equations, cf (Di Nola et aI., 1989). The OR
neuron is equivalent to a simple relational structure with the
max-t composition while the AND neuron captures its dual
min-s counterpart.

neuron. In limit, when Â. = 1 and 11 = O, the OR/AND neuron
operates like apure AND neuron. In the second extremaI
situation for which Â. =O and)l =1, the structure functions as
apure OR neuron. We will use the notation

y = OR/AND(x; w,Â,IJ.)

to underline the nature of the intermediate characteristics
produced by the neuron.

The relevant detailed formulas describing this architecture read
as,

The AND and OR neurons realize "pure" logic operations on
the membership values. The role of the connections is to
differentiate between particular leveis of impact that the
individual inputs might have on the result of aggregation.
Owing to the boundary conditions of the triangular norms, we
conclude that higher values of the connections in the OR
neuron emphasize a stronger influence that the corresponding
inputs pose on the output of the neuron. The opposite weighting
(ranking) effect takes place in the case of the AND neuron: the
values of wj close to 1 make that influence of xj almost
negligible, cf. (Pedrycz, 1993). The specific numerical form of
this relationship depends upon the triangular norms being
utilized in their utilization.

y = OR( [ZI ~]; v)

ZI =AND(X; w1} anti ~ = OR( x; w2} • (5)

with v = [Â.j }12]' wj = [wjJ Wj2 ... Wjn]' i=I,2, being the connec
tions of the corresponding neurons. We can encapsulate the
above expressions into a single formula writing down

y = OR/AND (X; connections)

where the connections summarize alI the connections of the
network.

2.2 - CRIAND neurons

2.3 - Computational enhancements of fuzzy
neurons

As a straightforward combination of these two neurons we will
introduce a neuron with intermediate logical characteristics. The
OR/AND neuron is constructed by putting several AND and
OR neurons into a single two-Iayer structure as shown in Fig.3
The main motivation behind combining several neurons and
considering them as a single computational entity lies in an
ability of this neuron to synthesize intermediate logical
characteristics. The influence coming from the OR (AND) part
of the neuron can be properly balanced by selecting suitable
values of the connections Â. and 11 during the leaming of this

Two further enhancements of the fuzzy neurons can be anticipa
ted. They are aimed at making these processing units more
flexible from a conceptual point of view:
(i) incorporating of inhibitory inputs. As the coding range

being commonly encountered in fuzzy sets is the unit
interval, the inhibitory effect to be conveyed by some
variables can be achieved by including their complements

instead of the direct variables themselves, say xj = 1 -x"
Now the higher the value of Xj' the lower the activation
levei stemming from it (N.B. the reader should be aware
that some attempts to replace the [0,1] interval by its
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The relationship of inclusion is expressed in sense of the
pseudocomplement operation (implication). Due to the
properties of the <p operator one obtains

y = INCL(x; w,f)

y = .S [wi t (Xi~fi)]
1=1

DIFFER(x;w,g) = OR(xa Ig;w)

(iii) the inclusion neuron summarizes the degrees of inclusion
to which X is included in the reference point f,

ifa<b then acpb=l
if a > b' > b 1 then a cp b' ~ a cp b

a,b,b' E [0,1] , namely the output of the neuron becomes
a monotonic function of the degree of satisfaetion of the
inclusion property.

(iv) the dominanee neuron expresses a relationship dual to that
carried out by the inclusion neuron

(7)y = DIFFER(x;w,g)

a 1a b = 1 - a a b.

As before, the referenftal character of processing is
emphasized by noting that

11

y= S [w,t(x,a 1St)]
1=1

where the differenee operator 1= is taken as a complement
of the equality index,

i.e.,

differenee neuron. The neuron eombines degrees to whieh
x is different fiom the given referenee point g = [gl' g2'
... , gn]' The output is interpreted as a global leveI of
differenee observed between the inputs and the reference
point,

(ii)

y = AND (REF(x; reference...,point), w)

(eonjunetive form of aggregation)
where REF(.) stands for the referenee operation earried out with
respeet to the provided point of referenee.

2.4 - Referential logic-based neurons

y = OR (REF(x; reference...,point), w)

( disjunetive form of aggregation)
or

[-1,1] extension with a simultaneous preservation of the
properties of triangular norms is erroneous as in general
their properties are not sustained, for example (-I)t(-l);t-l)

(ii) an additional nonlinear transformation following the
logical operation realized by the neuron. Its main objeetive
there is to allow the neuron to realize an "onto" mapping
between its inputs and the output. Interestingly enough,
this also gives rise to a eoneept of a weightless neuron in
whieh the eonneetions are equal (and eventually kept
eonstant) while the added nonlinearity serves as a linguis
tie modifier (quantifier).

In eomparison to the AND, OR and OR/AND neurons realizing
operations of the aggregative eharaeter, the elass of neurons
diseussed now is useful in realizing referenee eomputations.
The main idea behind this strueture is that the input signals are
not direetly aggregated as this has been done in the aggregative
neuron but rather than that they are analyzed first (e.g.,
eompared ) with respeet to the given referenee point. The
results of this analysis ( including operations like matehing,
inclusion, differenee, dominanee) are afterwards summarized
in the aggregative part of the neuron along the way that has
been deseribed before. In general one ean deseribe the referenee
neuron as

Depending on the referenee operation the funetional behavior
of the neuron is deseribed aeeordingly ( all the formulas below
pertain to the disjunetive form of aggregation),
(i) MATCR neuron:

y = MATCH(x;r, w) (6)

y = DOM(x;w,h)

where h is a reference point. In other words, the domi
nance relationship generates the degrees to which x
dominates h. The eoordinatewise notation of the neuron
reads as

or equivalently

n

y S [wAx,eri)]
1=1

where r E [O,I]n stands for a referenee point defined in the
unit hypereube. The matehing operator will be defined as
(Pedryez, 1990)

1[ - -]a a b = - (a cp b) A (b cp a) + (ãcpb) A (bcpii)
2

where /\ denotes minimum and a <p b = sup{ C E [0,1] I
ate :5 b} . To emphasize the referential eharaeter of proeessing
earried out by the neuron one ean rewrite (6) as

n

y= S [w1t <ht ... x)]
1=1

Note now that if hi :5 xi then the dominance of hi by xi

along the i-th coordinate equals 1, hi <p xi = 1.

One can also learn that the basic referential neurons deseribed
by (6) and (7) pertain to fuzzy relational equations with equality
and difference operators as studied in Di Nola (1989). Fig. 4
illustrates example eharaeteristies of the reference neurons in
their conjunctive form of aggregation. The <p-operator induced
by the product operation is given as a<pb=min(I,a/b).

y = OR(x a r; w)

The use ofthe OR neuron indieates an "optimistie" (disjunetive)
eharaeter of the final aggregation. The pessimistie form of this
aggregation ean be realized using the AND operation.
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Figure 4 - Characteristics of reference neurons
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t-norm: xy
s-norm: max(x,y)

reference r = [0.4 0.7]
connections w =[0.2 0.4]
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where z E [0.1].

y = INCL(OR(x;w);z);

The leamíng can vary from case to case and usually heavíly
depends on the ínítíal ínformatíon avaílable to the problem
whích can be ímmedíately accommodated ín the network. For
ínstance. ín many sítuatíons ít ís obvíous in advance that some
connectíons wíll be nonexistent. Thís allows us to buíld an
ínítíal configuratíon of the network beíng very dívergent from
the fully connected network.Thís ínítíal knowledge tangíbly
enhances the learníng procedure elímínatíng a need to modífy
ali the connectíons of the network thus preventíng us from
proceedíng wíth learníng from scratch. On the other hand. íf the
ínítíal domaín knowledge about the problem (network) ís not
sufficíent. then a fully connected structures yieldíng hígher
values of íts entropy functíon, cf. (Machado & Rocha. 1990;
Rocha, 1992) would be strongly recommended.

4 - PARAMETRIC LEARNING

of OR neurons producíng generalized maxterms.The output
layer has a single AND neuron.We wíll be usíng a concíse
notatíon N(x,w.v) to describe the network wíth the connectíons
w and v standíng between the successíve layers.

In many cases the role of the índívídual layers ís also obvíous
so that one can project the behavíor of the network (and
evaluate íts leamíng capabílítíes) wíth thís respect. The
followíngtwo general strategíes of leamíng are worth pur
suíng:
- successíve reductíons. One starts from a large and eventually

excessíve neural network (contaíníng many elements ín
the hídden layer ). analyzes the results of learníng and, íf
possíble. resumes the síze of the network. These reduc
tíons are carried out as far as they do not drastícally affect
the qualíty of leamíng (by slowíng it down sígníficantly
and/or elevatíng the values of the mínímízed performance
índex). The maín advantage of this strategy lies ín fast
learning.Thís ís achíeved due the " underconstraínt" nature
of the successíve networks. A certaín shortcomíng ís that
the network constructed ín thís way can be faírly "
overdístributed" .

- successíve expansíons. The startíng poínt ín thís strategy ís
a small neural network whích afterwards ís expanded
successívely based on the values of the obtaíned perfor-

The learníng ín the structures of the fuzzy neural networks ís
usually carried out ín a supervísed manner. For a gíven
collectíon of ínput-output paírs of data (xl' fI) ..... (xN' fN). the
procedure of parametric leamíng modífies the parameters of the
network (both connectíons and reference poínts) mínímízíng
the performance índex Q. The general scheme of learníng can
be symbolically expressed as

~_connections = - ç élQ
aconnections

where 1; denotes a leamíng rate. The parameters of the network
are adjusted followíng these íncrements.

new3onnections = connections + ~connections

The relevant detaíls of the learníng scheme can be fully
specífied once the topology of the network as well as some
other detaíls regardíng the form of triangular norms have been
made avaílable.

y
2

y
m

o'.;.;

generalized
maxterms

WGTIC JPlROC]ESSOR

DRANO

genera1ized
minterms

Figure 5 • Architecture of a logic processor

The POM (product of maxterms) versíon of the LP ímplements
logícal relationshíps by AND-íng the generalízed maxterms of
the ínputs. In thís topology the hídden layer consísts of a series

An ímportant class of decísíon networks concems approxíma
tíon of mappíngs between the unít hypercubes ( from [O.I]n to
[O.I]m or [0.1] for m=l) realízed ín a logíc-based format.
There are two generic structures of these networks named logíc
processors (LP) (Pedrycz. 1991; Pedrycz. 1993a). Dependíng
on the values of "m" we wíll be referring to a scalar or vector
versíon of the logíc processor. In sequeI we wíll concentrate on
íts scalar versíon.namely we admít m=1. Those are heteroge
neous archítectures contaíníng OR and AND aggregatíve
neurons in theír layers. The logíc processor consísts of two
layers. The first type of the structure consísts of "h" AND
neurons formíng a hídden layer and a síngle OR neuron placed
ín the output layer. The AND neurons accomplísh a so-called
generalízed mínterms ( let us remínd that ín addítíon to the
direct objectíves xi we have to admít also theír complements x).
Overall. thís network wíll be referred to as a sum of products
(SOM) versíon of the LP. see Fíg.5.

3 - APPROXIMATION OF LOGICAL RELA
TIONSHIPS-DEVELOPMENT OF LOGIC PRO
CESSORS

2.5 - Fuzzy threshold neuron

Thís class of fuzzy neurons constítutíng a straíghtforward
generalizatíon of threshold computíng uníts (threshold gates). cf.
(Muroga. 1971) ís formed by a serial composítíon of the
aggregatíve neuron followed by the ínclusíon operator whích
generalízes the two-valued threshold element. More formally.
thís neuron ís described as
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mance indexo Too high values of the index suggest
further expansions. The network derived in this way could
be compact nevertheless under some circumstances a total
computational overhead (many unsuccessfulIy extended
structures of the neural networks) may not be acceptable
and could make this approach computationalIy quite cosdy.

5 - GENETIC ALGORITHMS AS A TOOL FOR
GLOBAL OPTIMIZATION

The paradigm of GAS is welI known with many good literature
references, cf. (Booker & Goldberg, 1989; Davis, 1991;
Goldberg, 1989). Let us recall that the genetic algorithm is
aimed at finding a global maximum of a function of many
variables through performing a genetic-inclined search of the
space. An important initial phase of the algorithm refers to a
way of coding of the elements of this space. They are usually
represented as strings of bits. In sequeI the search is performed
by modifying the binary strings with an intent to increase their
fitness. The basic steps followed by the algorithm and leading
toward this goal embrace reproduction, crossover, and muta
tion. Within the first step the strings are "reproduced" contribu
ting to the next generation according to their fitness. The
probability of reproduction of the individual string is activated
through the roulette mechanism (Davis, 1991). During crosso
ver, that is viewed as the most essential factor of genetic
computations, the binary strings are mated by exchanging their
substrings. Finally, the mutation mechanism changes (comple
ments) randomly some of the bits of the strings. The modifica
tion of this form produces a random walk across the search
space. Each GA mechanism is equipped with its own intensity
rate; for some detailed guidelines with this regard, refer e.g.,
to Davis (1991). The string with the highest fitness encountered
within all the populations is then considered to be a solution to
the optimization problem. The most striking feature of the GA
optimization lies in its attempt to explore the search space in a
global fashion by studying the entire population of the strings.
We should take a full advantage of this phenomenon when
developing a hybrid learning scheme anticipating that the
information accumulated in the final population can be further
utilized in pursuing more detailed leaming.

5.1 - Hybridization: Gradient-based and
genetic-oriented schemes in learning fuzzy
neural networks

In virtue of the GA principIe, the algorithm proceeds with the
optimization by processing an initial population of the connec
tions (and reference points) of the network. The value of each
of the connections are coded individualIy as binary strings with
the aid of "m" bits. Subsequently, the strings are transformed
with the aid of the three GA mechanisms. The final population
of the connections (strings) can be used in two different
manners to enhance the detailed leaming:
(i) GA initialization: the best string across alI the populations

which, anyway, is sought as the primary outcome of the
GA optimization, constitutes a starting point for a finer
gradient-like parametric learning. We can refer to that as

a "local" usage of the GA results. The following learning
phase is aimed at further optimization of the performance
index Q. Note that in order to maintain a consistency
between these two steps of optimization, Q should be kept
compatible with the previous fitness function F, say
Q=M.F where M is an upper bound of the fitness
function.

(ii) GA initialization and supervision: the "global" usage ofthe
GA occurs while guiding the subsequent learning phase
with the aid of a so-calIed feasibility zone. The main
idea is that the changes of the connections as computed by
the gradient-based method are additionalIy "censored" by
the feasibility zone. The zone itself is constructed based
upon the strings coming from the subpopulation with the
highest values of the fitness function. As such, the zone
defines the most "promising" search region with the
highest likelihood of finding the solution to the equations.
Denote the feasibilityzone by n, n E [O,I]n x [O,I]m. Let
the updated entries of connections folIowing the gradient
method be given as

connectionsnew = connections - ~ ao (8)
aconnections

where Q is the performance index to be minimized, while
SE [0,1] denotes the leaming rate. The above updates are
additionalIy modified by restricting the values of connec·
tionsnew to n, namely

connectionsnew = (connections - ~ ao.)
&onnections lo

The choice of the learning rate S, whose selection Seems to be
quite criticaI to success of most of the gradient-driven learning
schemes, is therefore very much relaxed due to the additional
guiding mechanisms generated by the GA. The construction of
the feasibility zone n is solely based on the final population of
the strings of the connections. Consider Fmax as being the
maximal value of the fitness function achieved throughout the
populations. Select then a threshold leveI of the fitness function,
say F*, such that the strings of the final population with F > F*
account for ~% of the entire population, (e.g., ~ =90%). The
strings with the fitness function greater than F* contribute to
the construction of the guarding regions. To limit a computatio
nal overhead associated with the formation of the feasibility
zone itself it could be approximated by a hyperbox in [O,I]n x
[O,I]m whose coordinates are computed by taking the extreme
values of the strings coming from this subpopulation.

5.2 - The stratified GA learning in fuzzy
neural networks

Therange of applicability of the GA techniques can go beyond
the pure parametric optimization schemes as this has been
discussed so faro We discuss the concept of the structural
leaming realized in a stratified scheme where each layer is
responsible for a specific facet of improvement of the network:
the higher the position of the stratum in the entire learning
scheme, the more general type of architectural changes to the
optimized network.

As the fuzzy neural networks are heterogeneous (being
composed of different types of neurons with distinct functional
characteristics), .this layered approach could be strongly
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recommended. The overall scheme is shown
in Fig. 6.
At the highest leveI of the leaming procedure,
the overall architecture of the network is
established and coded in the form of a binary
string. For instance, considering that only
aggregative (AND and aR) neurons will
contribute to the architecture, the coding may
include the type of the individual neurons and
a qualitative strength of the connection (e.g.,
like positive and negative weights). We will
not restrict ourselves to any particular arran
gement of the neurons into layers - the con
nections giving rise to this ordering in the
network are also subject to the optimization
processo

Consider a small network in the configuration
shown in Fig. 7 where neurons 1 and 2 are
input processing units; the outputs are asso
ciated with neurons 5 and 6.

GA-based

structurallearning

•GA-based
parametric leaming

gradient-based
parametricleaming

Figure 6 • Hierarchical learning with Genetic Algorithms

NEURALBOOLEAN

At the lower leveI of the stratified leaming, the GA is of a
parametric nature and tackles the process of modifications of
the values of the connections for the fixed architecture. The
arrows going downwards the scheme, Fig.6, illustrate the
direction at which the architectural information about the
network is transmitted; the up arrows indicating upwards show
the flow of information including the values of the fitness
function. While the selection of the fitness function at the
lower leveIs of leaming are straightforward (being of the form
of the Mean Squared Error criterion), at the leveI of the
structuralleaming one should make sure that some control over
the size of the network is also preserved (that could be accom
plished e.g., by adding to the fitness function a term describing
the size of the network).

6· INDUCED
NETWORK5

1 2 3 4 5 6
00 00 01 00 00 10

00 00 01 10 00 00

00 00 00 01 01 01

00 00 00 00 00 01

000000000000

000000000000

1

2

S = 3
4

5

6

The coding of the connections is worked out
at a qualitative leveI just distinguishing betwe
en positive (excitatory), negative (inhibitory)
and no-connection links between the neurons. AlI this structu
ral information is structured in an (pxp) - binary matrix C
(where "p" stands for the number of the neurons in the net
work). Each entry of S occupies two bits. AdditionalIy, the
p-dimensional vector T specifies the types of the neurons
throughout the network.
The complete description of the network is formalized as

T = [1 O O 1 O 1]
with the folIowing coding : I - ANO neuron, O- aR neuron

where now the coding has been realized as : 00 - no connec
tion, 01 - positive connectiOri, 10 - negative connection, 11 
unused.

AND OR

The elicitation of the structure out of the network can be
enhanced by pruning some weaker connections of the neurons.
Generally, in the aR neuron one eliminates alI the connections

the values of whose are below a certain thres
hold À. These connections are set to O while
the values of the remaining ones are retained
or elevated to 1. The opposite rule holds for
the ANO neuron: all the connections with the
values above the threshold value are set to
1.The threshold leveIs for the neurons could
be set up arbitrarily or are subject to optimiza
tion.

The optimized way of pruning the connections
leads to the approximation of the fuzzy neural
network by its Boolean version.Within this
procedure alI the connections of the network
are converted either to O or 1. Let Y = N(x,

Figure 7 • Ao example neural network
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W, v ) denotes the neural network to be approximated,where
W, v, are colIections of the connections (provided as matrices
or vectors)between the successive layers. The idea of this
approximation is to replace N(x, w, v) by its Boolean counter
part, say B( x, wO' vo), in such a way that the results produced
by the Boolean network are as close as possible to those
produced by the original network. The quality of approximation
can be characterized formalIy by the performance index

minE ~N(x,w,v,. ..) - B(x,wB,vB"')1 (9)
WB"VB "

where l-I stands for the distance function. The above sum is
taken over a certain colIection of inputs X. The values of (9)
indicate how welI the network can be represented by its optimal
Boolean counterpart. The minimization is worked out with
respect to the Boolean connections of the network B while one
attempts to approxirnate the network N over a set of inputs
defined in X. More precisely,one can refer to the Boolean
approximation of the network carried with respect to X. Ob
viously, different elements of X could result in fairly different
approximations and different Boolean networks associated with
the same fuzzy neural network. In particular, one can look at
the two families of inputs:
(i) Xis the same as the training data set,
(ii) X covers the entire universe of discourse consisting of

elements being distributed evenly in the input hypercube.

7· REPRESENTING AND PROCESSING UN·
CERTAINTV

Situations could emerge in which some of the objectives might
not be specified or could be provided with a certain precision.
The express this fact one has to come up with a suitable
knowledge representation scheme. This will tack1e the problem
of matching fuzzy quantities using possibility an necessity
measures.
Let A denotes a fuzzy set viewed as a reference. Any input
datum X (despite of its character) is then"translated" into an
internaI logical format as folIows, cf (Zadeh, 1978)

Poss(X IA) = sup[min(X(x),A(x»] (10)
xEX

Nec(X IA) = inf[max(X(x),A(x))] (11)
xEX

The basic properties of these measures have been thoroughly
studied in the literature; for more details the reader can refer
e.g., to Dubois & Prade (1988). Let us remind that the possibi
lity measure evaluates a degree of overlap of X and A while the
necessity measure is involved in expressing a degree of
inclusion of X in A, see also Fig.8.

The multidimensional optimization task (9) can be reduced by
admitting a simplified strategy of building the Boolean net
work.The crux of this simplification is to reduce the dimensio
nality of the search by selecting a uniform threshold strategy
for AND and OR neurons. Let us introduce two threshold
operations. The first of them pertains to alI the OR neurons in
the network. It replaces their original connections by O or 1
depending on their position with respect to the threshold À

jJ, ifw < À

T),(w) =ll, ifw ~À

The second thresholding operation Tp(w) with a threshold value
p is used in the ANO neuron and works as folIows,

~
'ifW~""T (W) =

I' 1, if W >....

By considering these threshold operations the original optimiza
tion task (9) reduces to the folIowing two-dimensional version

x

Poss(X/A)

A

minE IIN(x,w,v,.·-) - B(x,w,v""H
),,1' "

which is computationally much more amenable than that given
previously. Another feasible option might be the one in which
we retain the most significant connections of the neuron not
necessarily replacing alI of them by O or l.In place of the
above transformations we can define less "drastic" modifica
tions

eifW<Ã
T),(w) = ,

ifw~À

and

TI'(w) =~' ifw ~ ....
1, ifw> ....

Figure 8 - Computations or possibility and necessity measu
res

These two generic definitions can be immediately generalized
by replacing the lattice (max and min) operators used in the
above definitions by the triangular norms. This approach is
useful in capturing a global aspect of evaluation of the above
matehing properties. Observe that due to the sup and inf
operations the above expressions are noininteractive and the
final numerical results produced there depend solely upon a
single element of the universe of discourse- thus the aggrega
tion operations are rather limited with this respect. The sound
generalization would be of the type
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Poss(XIA) = S (x(x) t A(x»
xEX

Nec(XIA) =T «l-X(x» s A(X»
xEX

that involves the s-t and tos eomposition, respectively. One ean
also study the sup-t or inf-s aggregation whieh implies interaeti
vity at a " local" leveI of the individual elements of the
universe of diseourse. This gives rise to the expressions

Poss(X IA) = sup(X(x)t A(x» (12)
xEX

Nec(X IA) = inf«l-X(x» s A(x» (13)
xEX

The possibility and neeessity measures proeessed together ean
be useful in handling uneertainty, in particular the aspeets of
ignoranee and eonfliet manifested in the available input
information X. Again, these two notions are context-dependent
and as such should be analyzed with respeet to the given fuzzy
set A. The eontext-dependeney implies also that the numerical
qualifieations ofthese phenomena depend upon the environment
( the frame of eognition) within which they are embedded. Let
us define two indices

À = Poss(X IA)

~ = 1 - Nec(XIA)
as expressing relationships occurring between X and A. For a
pointwise eharaeter of X, the quantities À and I; are linked
together via a straightforward relationship

À + ~ = 1
(for any numerical information X both the measures coincide).
In general, when the datum is of a general (viz. nonpointwise)
character then we end up having one of these inequalities

À + ~< 1, À + ~>1

These cases are worth studying since they tackle the situations
including information ignoranee and confliet:

Let À + I; > 1 that can be expressed as À + I; = 1= y, where y
E [0,1]. The higher the value of y, the higher the leveI of
conflict emerging out of X placed in the context of A; y denotes
this leveI.
The case in which À +1; < 1, with À + I; = 1+ y, y E [0,1],
articulates a situation of ignoranee arising from expressing X
via A. More precisely, y is utilized to express this leveI of
ignoranee.

APPLlCATIONS

In this part of the paper we will eonsider a variety of problems
and study their neural network formulation. As will be illumi
nated, the topology of the problem itself eould be directly
translated into the architecture of the network.
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8· DISTRIBUTED MODELLlNG

In system modeling and identifieation proeedures, we are
usually provided with a vast amount of experimental data. The
aim of identification is to develop a model that ean properly
reflect the very nature of the physical phenomena. Based on
these experimental data, most of the modeling teehnique derive
a mathematical model in sense of analytical linear or nonlinear
functions. Although in most of the cases, the mathematical
model can deseribe the system completely, it fails to provide
much insight into how the system works and what the main and
essential dependencies between its variables are. The insightful
concepts and distinctions are usually qualitative, but they are
embedded with the much more complex framework established
by the real valued variables and differential equations. From the
discussion of the LP in the previous section, we have leamed
that the strong logical structure conveyed by the LP can
formulate the logical relationship underlying the given data set.
This provides us with an altemative way to describe a system.
Without migrating into the realm of eomplicated nonlinear
equations, we ean figure out and exploit logical relationships
oecurring between the State variables and inputs to deseribe a
system. This inspires the idea of distributed modeling. The
main thrust of distributed modelling (Pedrycz, 1993a) is to
develop fuzzy models that are highly distributed and realized as
an ensemble of logically coupled processing units. Each of
them operates as an autonomous computing strueture and is
equipped with its own dynamics. A high leveI of autonomy in
this type of modelling ean be achieved by associating each unit
with an individual variable of the system, cf. Fig. 9.

Figure 9 - An example of distributed modelling

The dynamical behavior of the system results as a sequenee of
interactions between its variables (proeessors) that are carried
out either in a cooperative or competitive manner. These
interactions are reflected by the excitatory or inhibitory
connections set up individually for the proeessors. In addition
to the character of these interaetions, their strength ean be
flexibly modelled by assigning different numerical values to
the eorresponding eonnections of the processors.The individual
LPs are assigned to each of the state variables in the conside
red system. Its task is to deseribe the logical interactions of the
modeling state variable with the other state variables as well as
inputs to the system. Using the LP as the generic building
blocks of distributed modeling, we can derive a model in a far
more simpler and qualitative, however still formal fashion.
These new models are easy to comprehend. They also provide



(12)

further infonnation for reasoning and analyzing the system in
a qualitative way.

9 - FUZZY JK FLlP-FLOPS: BASIC FORMU
LAS ANO THEIR NETWORK REPRESENTA
TION

The fundamental fonnula of the fuzzy JK flip-flop associates a
current status of the device, denoted by Q(k) and the current
inputs J and K with its status Q(k+l) occurring in the successi
ve discrete time instants. The fundamental expression reads as
(Hirota & Ozawa, 1991)

Q(K+1) = Flip..flop (Q(k),J,K) =

= (J s i) t (J s Q(k» t <K s Q(k»
with t- and s- being some triangular nonns (t- and s-nonns) and
the overbar denoting complement (e.g. Q= 1 - Q). In particular,
we may use lattice min and max operators in the flip-flop
implementation.
Let us recall several main properties of (12).
(i) The fuzzy JK flip-flop reduces to its well-known and

standard Boolean (two-valued) version for Q(k), J, and K
restricted to {O,1}; J plays a role of a set input while K
denotes a reset one.

(ii) The basic fonnula assures that for any initial state Q(k)
there always exists an appropriate combination of inputs
J and K that translates Q(k) into the desired state Q(k+l).
In such a way the flip-flop is fully "controllable" and there
is always a nonempty family of inputs J x K E [0,1] x
[0,1] such that (1) is satisfied. More fonnally we will put
this observation down as

3 {Q(k+1) = Flipjlop(Q(k), J, K)} "# 4>
IxKE[O.l:r

Note, however, that the dynamics of the flip-flop is fully
represented by the transition Q(k) ~ Q(k + 1). It is obvious
that the character of this transition is fully predetennined by
the specification of the triangular nonns standing in the fonnula
of the flip-flop. The choice of the nonns implies uniquely
two-dimensional regions of the inputs J x K and assures the
required transition ( control or transition regions). Once the.
triangular nonns have been accepted, the characteristics of the
flip-flop become nonmodifiable since there is no extra free
parameters of the construct to be adjusted.

Q(k+1)

v

OR

K

Q(k+1)-AND(z;v)

z - OR([J K Ji<Q(k»); w)

Figure 10 • Network realization of a fuzzy JK flip.flop

pertains to training of the individual flip-flop. The Iearning is
carried out in a supervised mode. This mode calls for a series
of ordered input-output pairs on the basis of whose the connec
tions of the flip-flop are modified to follow the target values
contained in the training set. Each pair of data invoIves a
vector of the inputs of the corresponding flip-flops, x E [0,1]°,
the current state of the flip-flop, say Q(k), and the target state
denoted here as Q(k + 1). The entire family of the training
cases can be concisely given as {x(k), Q(k), Q(k+l)}, k=I,2..
.N. One defines the perfonnance index as

N

V = E ~Q(k + 1) - Flipjlop(Q(k),J(k),K(k» I
k=l

(in particular I·~ can be defined as the Euclidean distance; in
this situation V becomes a standard MSE criterion). The set and
reset signals J(k) and K(k) are driven by the inputs x(k),
namely, J(k) = J(x(k» and K(k) = K(x(k» (more preciseIy these
can be fonned in the sense of the ANO or ORlANO neuron
aggregating the inputs).

10 - OESIGNING FUZZY CONTROLLERS

Let us remind that usually fuzzy controllers are constructed
based on a family of conditionaI control statements.

i = 1,2,...,c where state; and control; are fuzzy relations (or sets)
of state and controI. These associations reflect the control
knowIedge linked as it is perceived qualitativeIy by a human
being. The antecedent (condition) part (including state;) usualIy
consists of several subconditions or objectives. The commonly
utilized combination of them invoIves an error of the system
variabIe variabIe and its change. For instance, the ruIe can be
read as,

- if the error is small and change_of_error is
positive_medium then control is negative_small.

The main question arising in this context concems feasibIe
generalizations of the flip-flop to fumish it with a necessary
design flexibility. An interesting extension that is definiteIy
worth following concems parameterization of the device as
shown in Fig. 10, cf. (Hirota & Pedrycz, 1994). The resuIting
network includes a singIe hidden layer.
In this context, one can also call the previous version a
weightless fuzzy flip-flopl.

The idea of Iearning of a structure composed of many fuzzy
flip-flops reduces to the collection of tasks where each of them

1 In fac~ lhe fuzziness factor captured by lhe weightless fuzzy flip-flop does nol reside directly
wilhin Ihis consquc~ bUI originates from lhe multivalued (fuzzy) inpuI varlables.

if statei then control,
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conclusion
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if & and DEI then UI

if & and DEz then UI

if~ and DEI then Ui

if~ and DEz then~

if~ and DEI then~

if~ and DEz then Ui

conclusion
confidence

AND

condition
layer

U1 U1

U2 Us

Us U2

subcondition
confidence

By looking at the fuzzy neural network as a
suitable model of the fuzzy controller one could
resolve some of these issues or at least alleviate
them. The format of the control statements clearly
supports the use of the logic processor. In more
detail:
- each AND neuron builds the corresponding

condition of the mIe. The connections of this
neuron are utilized to reflect different impor
tance leveIs of the subconditions being sum
marized.

- the OR neuron aggregates several situations
(specified by the corresponding conditions)
again modulating their impact on the fuzzy set
of controI. For "m" fuzzy sets of control, this
realization requires "m" separate multi-input
single-output logic processors or a single
multi-input m-out processor, see Fig.l!.

Several design points are worth underlining:
i) The design based on the standard max-min

composition relates the controller very closely
to Hebbian leaming and, as such, is plagued
by alI the deficiencies resulting fiom that. In
particular, these include crosstalk and a limi
ted capacity of the controller. Furthermore in
this construct the mIes are treated uniformly
as playing an equally important role at the
inference phase. Obviously, the mIes could
be made more specific in this regard but this
requires that an additional knowledge to be
acquired. Another default and rather strong
assumption is that all these control mIes are
consistent (e.g., they are derived based on a
single control criterion). The violation of this
assumption could arise quite often bearing in
mind a multi-goal and compromise-based
nature of control tasks.

ii) The aggregation mechanism applied to the
control mIes is quite often selected arbitrarily.

11 • FUZZY PETRI NETS CONTROl RULES

Figure 11 • Control rules and their network representation
In contrast to some extensions of Petri nets
(Murata, 1989) available in the literature, cf.(Chen
et ai., 1990; Looney, '1988; Scarpelli & Gomide,
1994), the generalization discussed here in takes advantage of
its fuzzy neural network representation. Let us briefly remind
that the Petri net operates asynchronously firing independently
its transitions; this firing is allowed while some preconditions
are meto The fundamental requirement of fireability is that each
of the input places of the transition to be fired has to have a
nonzero number of tokens. Once the transition has been fired
each input place loses one token while the associated output
places gain a token, see Fig.12.

goveming the behavior of the transition and its associated
places accordingly, cf. (pedrycz & Gornide, 1994)
a degree of firing of the transition

z = DOM(x;r,w)

marking of the input place after firing

Xi(new) = AND(xpZ)

marking of the output place after firing

The generalization adrnits now that the markings of the places
are viewed as some grades of membership. We will allow also
some connections to be used in order to discriminate between
the input places. Let us write down the detailed formulas

y(new) = OR(y;Z)

These can be immediately translated into the neural network as
shown in Fig.13.
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before firing
The discussed applicational iIIustrations c1early highlight a
broad range of utilization of these networks.
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