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1 Introduction

The aim of these notes and the corresponding course is to present basic concepts of robust

state estimation in dynamic systems, and to provide some of the existing algorithms. Special

emphasis is given to robust filtering methodologies in an ?too setting as well as in a minimum

vari an ce sense.

A fundamental problem in control systems is the estimation of the state variables of a

dynamic system using available noisy measurements. Over the past three decades considerable

interest has been devoted to state estimation methods based on the minimization of the variance

of the estimation error, i.e. the celebrated Kalman filtering approach [1]. This type of estimation

assumes the knowledge of a perfect dynamic model for the signal generating system, and that the

noise sources are "white processes" with known statistics, or coloured noises with known spectral

density. Unfortunately, these assumptions limit the applications of minimum variance estimators

as in many situations only an approxirnate signal model is available and/or the statistics of the

noise sources are not fully known or unavailable. AIso, it has been known that Kalman filter type

estimators may not be robust against uncertainty in the dynamic model of the signal generating

system. The frequent recurrence of filtering problems with modelling uncertainty has led to a

wide interest in alternative filtering methods.

The need to handle uncertainty in filtering problems has motivated the use of a new measure

ofperformance - the?toe norm - which has been introduced for robust control design ([12: 14,59]).

In ?too estimation the noise sources one considers are arbitrary signals with bounded energy. The

estirnator, which is required to produce an estimate of a given linear combination of the state

variables based on the available measurements, is designed to guarantee that the transference

from the noise signals to the estimation error should possess an ?too norm less than a prescribed

positive value. This is equivalent to imposing an upper bound on the maximum gain of the

4



estimation prror over all frequencies. This estimation approach is very appropriate in a number

of practical situations, for example; (a) when only upper bounds on the .<;pectral density of the

process and measurement noises are known: (b) when the estimation error is required to be

uniformly small over ali frequencies; (c) to provide robust stabili ty for the estimation error to

plant unmodelled dynamics.

H oo filtering for linear systems was first addressed in [17] where a polynomial approach was

used. A solution to the H oo filtering problem via the interpolation theory was also presented in

[15]. Howe"er, one of the most popular methods in the past few years is the Riccati equation

approach; see, e.g. [2, 4, 26, 27, 33, 35, 39, 49, 53, 56, 57, 58]. Filters that minimize a bound

on the variance of the estimation error while satisfying a prescribed H oo performance have been

also proposed [6,21,24,32,37,40]. In addition, the problem ofHoo nonlinear filtering has been

recently tackled in [5,28].

Over the past few years, there have been an increasing interest in the problem of robust

estimation for systems with parameter uncertainty in the dynamic mode!. In the context of

linear systems with real norm-bounded parameter uncertainty. robust filters with a guaranteed

Hoo performance irrespective of the uncertainties have been developed in [9, 16, 36, 44, 45],

whereas the design of robust H oo smoothers has been extensively analysed in [41] ineluding

fixed-point, fixed-lag as well as fixed-interval smoothers. In addition, design methodologies of

robust H oo filters for a class of uncertain nonlinear systems have been recently proposed in

[11, 28, 46, 47, 50J. On the other hand, very recently the issue of robust filtering for uncertain

linear systems with a performance measure in the minimum variance sense has been attracting a

lot of interest. In particular, the design of filters with an optimal guaranteed error variance has

been investigated by a number of investigators [7, 20, 29, 31, 34]. These filters can be viewed

as extensions of the Kalman filter in order to provide a guaranteed performance irrespective of

parameter uncertainties in the system mode\.

In these notes we will present an overview of techniques of standard H oo filtering and robust

filtering for systems with parameter uncertainty, where for the latter performance measures in the

minimum variance as well as in the H oo sense wi11 be considered. For simplicity of presentation.

oI)ly continuous-time systems will be treated.

The organization of these notes is as follows. Initially, in Section 2, we present a number

of fundamental concepts related to signals and systems including, the notions Df [2 norm Df a

signal, H oo norm of a transfer function, and quadratic stability. We shall also review the main

results on Kalman filtering theory.

In Section 3, we analyse the Hoo filtering problem for linear systems where the matrices of

the state space model are perfectly known, i.e. there is no uncertain parameter. We consider

both finite-horizon and infinite-horizon estimation problems.

Section 4 is devoted to H"" filtering for a elass of nonlinear systems described by a known

linear state space model with the addition Df known state-dependent nonlinearities which appear

in the system dynamics as well as in the measurement mode!.

In Section 5 we analyse the problem of robust minimum variance filtering for linear systems
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subject to norm-bounded parameter uncertainty in both the state and output matrices of the

state space model. Attention wiU be focused on the design of Linear filters with an optimal

guaranteed errar variance. i.e. filters with an optimized upper bound on the e,timation error

variance for ali admissible uncertainties.

Session 6 deals with a robust 7too filtering technique for linear uncertain systems of the

same form as in Section .5. The robust filter is required to guarantee a prescribed performance

in an 7too sense in spite of the parameter uncertainty.

\Ve conelude these notes by discussing in Section 7 the robust version of the 7t oo filtering

problem treated in Section~. The elass of nonlinear systems we wiU considered is described by a

linear state space model subject to norm-bounded parameter uncertainty in both the state and

output matrices and with the addition of known state-dependent nonlinearities. As in Seclion 6.

the nonLinearities are allowed to appear in both the state and measurement equations.

1.1 Notation

R

Rn

Rmxn (cmxn )

Re(a)

~

sup

E(· ]

A.T
A*

I

I nxn

diag( AI, A2 , ••• , An)

P ~ O (P ~ O)

P > O (P < O)

P ~ Q (P ~ Q)

P > Q (P < Q)

..\(A)

<7i(A)

<7max(A)

t r( A)

II ·11

set of real numbers.

n-dimensional real Euelidean space.

set of m x n real (complex) matrices.

real part of the complex number a.

is defined to be.

supremum (similar to maximum).

mean or expectation of a random variable.

transpose of the matrix A.

complex conjugate transpose of the matrix .4.

identity matrix.

identity matrix of dimension n X n.

block diagonal matrix with Ai, i = 1,2, .... n on the main diagonal.

symmetric positive (negative) semi-definite matrix P E Rnxn

symmetric positive (negative) definhe matrix P E Rnxn.

P - Q ~ O (P - Q ~ O) for symmetric matrices P, Q E Rnxc.

P - Q > O (P -Q < O) for symmetric matrices P,Q E Rnx,..

ith eigenvalue of matrix A.

ith singular value of matrix A, i.e. <7i(A) = JÁ,(A*A) = )).,,(.4.4.*).

maximum singular value of matrix A.

trace of the matrix A.

Euelidean norm of a vector. i.e. IIxll = ~, or spectral norm of a
matrix, defined by the maximum singular value.
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2 Background and fundamentaIs

In this section we shall introduce a number of definitions and fundamental conce;>ts related

. to signals and systems which will be used throughout these notes. Moreover, we give a number

of basic results we shall need further on.

2.1 Stability, Detectability and Stabilizability

Consider a linear system described by the state space model

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(2.1 )

(2.2)

where x(t) E ~n is the state, u(t) E ~' is the input, y(t) E ~m is output, and A, E and C are

real constant matrices. The system (2.1)-(2.2) is asymptoticalIy stable lIlx(t)11 - O as t - 00

for any initial state and with zero input) if and only if alI the eigenvalues of A. have negative

real parI. In this case the matrix A. is said to be Hl.lrwitz stab/e.

A way of testing the Hurwitz stability of a matrix (or equivalently, the asymptotic 'stability

of the system (2.1)-(2.2)) is via the well known Lyapunov Lemma:

Lemma 2.1 The matrix A is Hurwitz stab/e if and on/y if there exists a matrix P = pT > O

Sl.lch that

(2.3)

Note thats V(x) = xT Px is a Lyapunov funetion for the system (2.1).

The system (2.1)-(2.2), or the pair (C, A), is said to be deteetab/e if there exists a matrix

K sueh A -](C is Hurwitz stable. (C, A) deteetable means that there exists an asymptotically

stable state observer for the system (2.1 )-(2.2) of the form

i(t) = Ai(t) + Eu(t) + K[y(t) - Ci(t))

such that the estimation error x(t) - i(t) goes to zero as t - 00. The deteetability of (C. A)

can be tested using the following faet:

Proposition 2.1 The pair (C, A) is detectab/e if and only if any of the following eql.liva/ent

conditions ho/ds:

[
U - A](a) rank C = n, for ali À = À;(A) with Re(À) 2: o.

(b) Ax = Àx and Cx = O for some comp/ex nl.lmber À with Re(À) 2: O implies x = o.

The system (2.1)-(2.2), or the pair (A, E), is said to be stabilizable if there exists a matrix

J such A - EJ is Hurwitz stable. (A, B) stabilizable means that there exists a state feedback

control law l.l(t) = -Jx(t) for the system (2.1) such that the resulting c1osed·loop system is

asymptoticalIy stable. Note that (A, B) is stabilizable if and only if (ET, AT ) is detectable.
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2.2 Norms of Signals and Systems

In the sequei we présent the definitions of norms of signals and systems used throughout

these notes. We. will also recall few important properties of these norms.

.c,-Norm of a Signal

We define .q as the space of square integrable n-dimensional vector signals u( . ) on [O. x)

with norm

where 11· II denotes the Euclidean vector narm. We shall refer to IIuil2 as the L2- norm of u.

We note that Ilull~ can be interpreted as the total energy of the signal u. The motivation

for this is that if 1L is a scalar signal which is assumed to be the voltage across a 111 resistor,

then Ilull~ coincides with the total energy dissipated in this resistor. Thus, a signal u E Dl wil1

be calJed ali energy signal.

Observe that by Parseval 's theorem, the L2- norm can also be calculated in the freq~ency

domain as:

where U(jw) is the Fourier transfarm of u(t) .

.c,[0, T]-Norm of a Signal

We define L~[O,T] as the set of square integrable n-dimensional vector signals u( . ) on a

finite interval [O, T] with norm
1

Ilullro.T] ~ [f IIU(t) 112 dt] ' < 00.

We shall refer to Ilull[o.T] as the L2[0, T]-norm of u.

Root Mean Square (RMS) Value of a Signal

We define the RMS value of a vector signal u as

provided this limit exists. Note that 11·llrm. is not a norm (Ilull rm• = Odoes not imply that u(·)

is identically zero).
The square of the RMS value of a signal is known as the signal average power. The reason

for this is that if u is a scalar signal which is assumed to be the voltage across a 111 resistor,

then Ilull;m. is the average power dissipated in tbis resistor. Thus, a signal u with a finite RMS

value will be called a power signal.

We observe that the RMS value is a measure of the average size of a signal that persists,

i.e. it is a steady state measure of a signal. Such a signal does not have a finite total energy and
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thus the l2-norm is not defined. On the other hand, the l2-norm is appropriate for transient

signals which decay to zero as time progresses. Indeed. these signals have a zero RMS valu~.

:-iote that similarly to the l2-norm, by Parseval's theorem, the R~'lS value can also be

calculated in the frequency domain as:

J:., Gain of a System

Let a dynamic system G with input w E li and output y E l~ (G may be time-varying

and nonlinear). Denote by 9 the operator mapping from w to y, i.e. y = 9· w. The l2 gain of

G, denoced by 119IIL" is defined as the l2-induced norm of the operator 9. i.e.

'" { 119 . wl12 q }
11911.c, = s~p II wl12 : w E l2' W # O . i 2.4)

The l2 gain is the maximum factor by which the system can amplify the size of the input

w. as measured by the l2-norms of the input and output signals. The l2 galn is therefore a

worst-case performance measure in the sense of energy gain.

It follows from (2.4) that

119· wllz :; 119IIL,llwI12. for alI w E l~.

We a1so note that in the case when the system G is linear:

119111:, = sup 119· w112'
Ilwll,~1

( .) -)
~.O

The right hand side of (2.5) corresponds to the largest l2-norm of the response of the syslem

G to energy signals w such that IIwl12 :; 1. Hence, in the case of linear systems the l2 gain of a

system is a1so the worst-case response l2-norm.

1i.= Norm af a Transfer Functian

Let G(s) be a proper stable transfer function matrix of a linear time-invariant system G.

The H= norm of G(s), denoted as IIG(s)II=, is defined by

IIG(s)ll= ~ sup l1max [G(jw)].
wEll

The H= norm can be interpreted as the maximum transfer function matrix galn on the j;.;

axis. In the case of a single-input single-output (SISO) system, the H= norm is the maximum

value of the galn IG(jw)l. i.e. lhe peak value on the Bode magnitude diagram of G(s) or the

distance in the complex plane from the origin to the farthest point on the Nyquist diagram of

G( s). The H= norm is a measure of the worst-case response of the system and in the SISO

case corresponds to the largest amplitude of the steady-state response of the system to any unit

amplitude sinusoidal input.
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The Hoo norm of a transfer function G(s) coincides with the [,2 gain of the system C. i.e.

(2.6)

where W E [,~ and z = 9· w E [,~ are, respectively, the input and output of C, and 9 i5 the

operator mapping from w to z. It also turns out that

The right hand side of (2.i) is known as the RM5 gain of the system C. In view of the above.

we have:

and

IIC( s )1100 = sup
Ilwll, ~l

119· wl12 = sup
IIwll,m'~1

(2.8 )

IIzll2 < IIC(s)11001IwIl2, for ali w E [,~

Ilzllrm. <IIC(s)lloollwllrm" for ali w such that IIwllrm• < 00.

(2.9)

12.10)

The H oo norm of a transfer function may be calculated by computing (1max[C(J".:)l on a

discrete grid of frequencies, and then taking the largest value obtained as the H oo norm. This

procedure can be eomputation-intensive, in particular in the case of multi-input multi-output

systems, and may miss narrow peaks in the frequeney response. An alternative way of caleulating

the H oo norm which is based on Lemma 2.2 as below wiU be discussed in the sequeI.

For simplicity, C(s1 is assumed to be strictly proper and let a state spaee realization

(A,B.C) for C(s), i.e. C(s) = C(sI - A)-IB. Then we have the following resulto

Lemma 2.2 ([8]) Let A be a Hl.lrwitz stab/e matrix and, > Oa given sca/ar. Then IIC(sllloo <
, if and on/y if the Hami/tonian matrix

has no pl.lre/y imaginary eigenva/ues.

In view of Lemma 2.2 it follows that the Hoo norm of a strietly proper stable C(s) is the

infimum of , > O such that the matrix H has at least one eigenvalue on the imaginary axis.

Therefore, Lemma 2.2 suggests the following way to compute IIC(s)lloo. Select an initial; > O

and test if IIC(s 11100 < , by caleulating the eigenvalues of H. lf any of these eigenvalues is purel)"

imaginary, increase ,; otherwise decrease '. Repeat the procedure until IIC(sllloo is caleulated

within a desired accuraey.

'H.oo Norm of a System on Finite-Horizon

Let a dynamic system C with input w E q[O, T] and output z E [,~[O, T) (C may be time

varying and nonlinear). Denote by 9 the operator mapping from w to Z. Motivated by (2.6),
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we define the Hoo norm of G over the time-horizon [O, T] by

~ { 119 . wll[o,71 r }IIGlloo = sup 11 1I : w E .[2[0, TJ, w t- O
w w [O,TI

(2.11)

The right hand side of (2.11) is known as the .[2[0, TJ-induced norm of the operator ç. or the

.[2[0, T] ga;n of the system G.

In the case when the system G is linear, the H oo norm of (2.11) can be easily computed

using the result of Theorem 2.2 (b) as described latter on in this section after the statement of

Theorem 2.2.

2.3 Riccati Equations

Many important modem techniques of filtering and control, including Kalman and H oo
filters, require solving algebraic matrix equations of the form:

AX+XAT+XMX+Q=O (2.12)

where A. M, and Q are square real matrices with M and Q being symmetric. This equation is

known as algebraic Riccati equation (ARE).

Note that if there exists a symmetric solution to (2.12), in general this solution is not

necessarily unique. One solution to the ARE (2.12) which plays an important role in filtering

and control theory is the stabilizing solution.

Definition 2.1 A solution X = XT to the Riccati equation (2.12) is said to be a stabilizing

solution if the matrix A + X M is Hurwitz stable.

It may happen that (2.12) has no stabilizing solution. However, if (2.12) possesses a sta

bilizing solution X, then there exists no other stabilizing solution. We now recal! an import;l.llt

monotonicity property of algebraic Riccati equations.

Lemma 2.3 ([10]) Consider the algebroic Riccati equation

AP + P AT +P(R - W)P +Q =O (2.13)

where Q and W are symmetric positive semi-definite matrices. lf (2.13) has a stabilizing solution

FI = pr ~ O for Q = QI ~ O, R = RI ~ O and W = W I ~ O, then for any symmetric

positive semi-definite matrices Q2, R2 and W 2 satisfying Q2 ~ QI, R 2 ~ RI and W2 ~ WI , the

ARE (2.13) with Q = Q2, R = R 2 and W = W 2 has a stabilizing solution P2 = p! ~ O as well.

Moreover, P2 ::; PI .

2.4 Kalman-Bucy Filter

One of the most popular techniques for state estímation over the past three decaAies has

been the celebrated Kalman filtering. This filtering technique provides the linear !IÚnimum
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variance (or least mean squares error) estimator for signals in a linear system described by a

state space model of the form:

i(l)

y(l) =
z(t) =

Ax(t) + vI(I)

Cx(/.) + V2( I)

Lx(l)

(2.14 )

(2.1.5)

(2.16)

where x( t) E Rn is the state, VI (t) E Rr is the process noise, y( t) E Rm is the measurement.

V2(1) E Rm is the measurement noise, z(l) E RQ is a linear combination of state variables to be

estimated using past measurements, and A, B, C, D and L are known real constant matrices

with appropriate dimensions. When the state x(l) is to be estimated, L is set to the identity

matrix.
The noise signals VI and V2 are assumed to zero-mean white signals with covariance matrices

as below:

E [vI(t)vf(1 - T)] = V18(1 - T)

E [V2(I)vf(1 - T)] = V28(1 - T); v"2 > O

E [vI(I)vf(t - T)] = S8(t - T)

where 8(1) denotes the Dirac delta.....Iso, the initial state of (2.14) is assumed to be a random

variable, xo, with a covariance matrix Po, which is uncorrelated with VI and V2· The non

singularity condition V2 > 0, which means that alI the components of measurement vector are

noisy, is in general adopted for the sake of technical simplification. In such cases the filtering

problem is said to be non-singular. We note that the non-singularity assumption V2 > Ocan be

removed, however the correponding filtering results becomes toa complicated.

The time-domain problem statement is to find a linear causal estimator for z( I) that mini

mizes the variance of estimation error:

E {[Z(I) - i(I)f[z(t) - i(I)]}

where i(l) denotes the estimate of z(l) based on the measurements {y(T), O::; T::; I}.

The linear causal filter that minimizes (2.17) for any finite t ~ O is given by:

(2.17)

i(l) =
i(l)

Ai(l) + K(I) [y(l) - Ci(I)],

LX(I)

i(O) = Xo (2.18)

(2.19)

where the filter gain matrix K(t) satisfies

where P(t) = pT(t) ~ Ois the solution of the Riccati differential equation (RDE):

Ê'(t) = (A - SV2-
IC) P(t) + P(t) (A - SV2-

IC( - P(t)C
T

V2-
I
CP(I)

+VI -SV2-
I ST, P(O)=Po

12
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The filter of (2.18)-(2.19) is known as the Kalman filter. We note that the RDE (2.21) is

guaranteed to have a bounded solution P(t) = pT(t) 2: Oover any finite-horizon [O, tj.
Observe thaL although the system (2.14)-(2.16) is time-invariant. the filter of (2.18)-(2.19)

turns out to be time-varying. 11. should be also remarked that the above result still holds when

the matrices A. B, C, L, 5, FI and V2 are piecewise continuous time-varying.

In the case wheré we aim to minimize the asymptotic errar variance. i.e. minimize (2.17)

for t ~ 00. the optimal estimate of z can be obtained via a stationary Kalman filter. In

such situation, the filter is also required to be asymptotically stable and for thaL the following

assumption on the system (2.14)-(2.16) is needed:

Assumption 2.1

(a) (C, A) is deteetable;

(b) rank [ A -cjW
! FI:] = n + m, for ali W E (-00,00).

F'2

The linear causal a.symptotically stable filter that asymptotically minimizes (2.17'1 is given

by (2.18)-(2.19) with P(t) replaced by the constant matrix P = pT 2: O, namely the otabilizing

solu tion to the algebraic Riccati equation:

(2.22 )

Note lhat the existence of a stabilizing solution P = p T 2: O to the ARE (2.22) is guaranteed

by Assumption 2.1.

2.5 Bounded Real Lemma

An important 1.001 in 1100 performance analysis is the so-called bounded real iemma. lt

relates the boundedness of the 1100 norm of linear systems to a certain type of Riccati equations

and illequalities. In the following we shall present the strict bounded real lemma for both the

ca,es of finite and infinit.e horizon.

Striet Bounded Real Lemma on Infinite-Horizon

Theorem 2.1 ([12,60]) Given a scalar, > O. the foliowing statements are equivaient:

la) Thc matrix Ais Hurwitz stable and flC(s! - A)-I Blloo < ,;

Ib) There exists a stabilizing soiution P = p T 2: O to the Riccati equation

(2.23 )

Ic! There exists a matrix Q = QT > O such that

(2.24)
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(d) There exists a stabilizing solution X = X T 2: O to the Riccati equation

(2 'r)._0)

(e) There exists a matrix Y = yT > O such that

Strict Bounded Real Lemma on Finite-Horizon

Consider the following linear time-varying system

(2.26 )

(5): x(t)

z(t)

A(t)x(t) + B(t)w(t), x(O) = xo

C(t)x{t)

(2.27)

(2.28)

where x(t) E ~n is the state. Xo is an unknown initiaJ state. w(t) E IR" is the input ,ignal.

=(t) E ~g is the output. and the time-varying matrices A(t). B(t) and C(t) are a.ssumed to be

real piecewise continuous and bounded.

Assuming that u E .q[O. T] and z E (~[O. T], we define the following worst-ca.se performance

measure for the system (2.27)-(2.28) over the time-horizon [O. TJ:

1 '),il Ilzll[o.T];-
J\i(R,T) = sUl' [11 112 T R ]

w [O,TJ + Xo Xo

where R = RT > O is a given weighting matrix for the initiaJ state and the supremum is taken

over ali (w, xo) E q[O. T] E!) ~n such that IIwll[o,T] + xr;Rxo f: 0_
The above performance measure is indeed the induced norm of the operator mapping from

(1I'.Ia) to z. Thus.JV(R.T) can be viewed as the worst-case gain fram the (w.xo) to z.

In the ca.se where the initial state Xo is known to be zero. the performance measure.q R. T)

lurns out to be the H= norm of the system (5) over the time-horizon [O. T], namely:

il { Ilzll[o,Tl "] }11511= = s~p Ilwll[o,T]: w E (2[0, T • w f: O: Xo = O .

;\pxt. introduce the following Riccati differentiaJ equation (RDE)

Q(t) = A(t)Q(t) + Q(t)AT(t) + ,-2Q(t)CT(t)C(t)Q(t) + B(t)BT(t) (2.29)

\\", not€' that the existence of a bounded solution Q(t) to (2.29) over [O, rJ, V r > O. with initiaJ

condition Q(O) = M = M T > O (respectively, M = M T 2: O). implies that Q(t) is symmetric

p0si1.ive defini te (respectively, positive semi-definite) over [O, rJ.
A version of the strict bounded real lemma for the system (2.27)-(2.28) on a !inite time

burizon [O. T] is given below.
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Theorem 2.2 ([23]) Given the system (2.27)-(2.28) and a scalar 'Y > O, we have the following

results:

_.L

(a) N(R,T) < I if an only if there exists a bounded solution Q(t) = QT(t) > O to the RDE

(2.29) over [O, T] with initial condition Q(O) = R-I.

(b) 11511"" < I if and only if there exists a bound~d solution Q( t) QT (t) > O to the RDE

(2.29) over [O, T] with initial condition Q(O) = O.

In view of Theorem 2.2 (b), the H"", norm of the system 5 on a finite- horizon [O, T] can be

calculated by a search on I similarly to the case of the Hoc norm of a transfer function. Pick an

initial I> O and check if II Gil"", < i by testing if the RDE (2.29) with initial condition Q(O) = O

has a bounded solution over [O, T]. Ir such solution exists, decrease I; otherwise increase "I.

Repeat the procedure until a desired accuracy is achieved.

2.6 Quadratic Stability and Robust Performance

Fundamental issues in the design of filters (and controllers) for uncertain systems. l.e.

systems with significant modelling uncertainty, are robust stability and robust performance.

Robust stability means that the system remains stable for a given set of uncertai':lty while

robust performance means that both stability and performance requirements are met for a given

set of uncertainty. A widely used concept of robust stability for uncertain systems with time-

1. varying parameter uncertainty is that of quadrotic stability which was proposed in [3]. This

robus! stability concept is based on a quadratic Lyapunov function and can be viewed as an

extension of the stability result of Lemma 2.l.

Consider uncertain linear systems described by

i(t) = [A + ÔA(t)]x(t), x(O) = Xa (2.30)

where x E :Rn , A is a known real constant matrix, and ôA(t) IS an unknown time-varying

matrix representing time-varying parameter uncertainties. The admissible uncertainties ~A(t)

are assumed to belong to a set V and satisfy certain regularity conditions sucn that the solution

of (2.30) is welI defined.

Definition 2.2 The system (2.30) is said to be quadrotical/y stable if there exists a matrix

p = )'7' > O such that

[A +ÔA(tWP + P[A + ÔA(t)] < O

for ali ~A(t) belonging to V.

(2.31)

We observe that quadratic stability implies uniform asymptotic stability for alI admissible un

certainties. Indeed, it is easy to see that V(x) = xT Px is a Lyapunov function for the system

(2.30) for alI admissible ôA( t).
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In the robust fi!tering problems treated later in these notes we will consider uncertainties

~ ..l(t) which are norm-bounded and of the form

~A(t) = H F(t)E

where F( t) is an unknown real time-varying matrix satisfying

IIF(t)li::; 1, for ali t ~ O

(2.32 )

(2.33 )

and where E and H are known real constant matrices of appropriate dimensions which specify

how the uncertain parameters in F(t) affect the matrix A. The above form of ~A(t) is a matrix

generalization of the scalar case where the magnitude of ~A(t) is known to be bounded. say

I~A(t)1 ::; Q. Indeed, such ~A(t)

Q.

The quadratic stability of uncertain linear systems with ~A(t) as in (2.32)-(2.33) can be

easily ascertained via an 'H.oo norm condition as described in the theorem that follows.

Theorem 2.3 ([22]) Consider the uncertain system (2.30) with l::.A as in (2.32). Then this

system is quadratically stable for ali uncertainty matrices F(t) satisfying (2.33) if an only if

IIE(sl - 04)-1 Hlloo < 1.

We now present a robust performance result for the foliowing class of nonlinear systems:

x( t)

y( t)

[A + l::.A(t)Jx(t) +Gg[x(t)] + Bw(t)

Cx(t)

(2.34 )

(2.35)

(2.36)

where x(t) E 1Rn , y(t) E 1Rm , w(t) E 1Rr and belongs to .C;, A. B, C and G are known real

constant matrices of appropriate dimensions, ~A(t) is a norm-bounded uncertain matrix as

in (2.32)-(2.33), and g(.) : 1Rn - 1Rng is a known nonlinear function satisfying the foliowing

assulllption:

Assumption 2.2 There exists a known constant matrix W g such that for any x E Rn

Thcn we have the following robust performance result in an 'H. oo setting:

Lemma 2.4 ([42]) _Consider the system (2.34)-(2.35) satisfying Assumption 2.2 and let '( > O

bc a givcn scalar. 11 for same scalar E > O there exists a stabilizing solution P = p T 2: O to the

!liccali equation

AP+PAT +p(..,,-2CTC+EETE+WgTWg) +BBT +~HHT +GG
T

=0

thcn lhe system (2.34) is globally uniformly asymptotically stable and under ::ero-initial condi

limlS.

for ali non-zero w E Di and for ali uncertain matrices F(t) satisfying (2.33).
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In the case where there is no pararneter uncertainty in the systern (2.34)-(2.35). the above

result reduces to the following:

Corollary 2.1 ([42]) Consíder the system (2.34)-(2.35) satísfyíng Assumptíon 2.2 and with

.6.A(t) == O, and let I > O be a gíven scalar. lf there exists a stabílízing solutíon P = pT 2: O to

the Riccati equation

(2.37 )

then this system is globaliy uníformly asymptotiealiy stable and under zero ínitial conditions,

for ali non-zero w E Di.

We conclude this section by recalling an irnportant matrix inequality:

,
: Lemma 2.5 ([48]) Let A. E, F, H and Q be real matríces of appropríate dímensions, trith F

I; aliowed to be time-varying and Q being symmetric. Then there exists a matrix P = p T > O

sueh that

IA + H F EjP + PIA + H F Ef + Q < O

for ali matriees F satisfyíng IIFII ~ 1 íf and only íf there exists a sealar é > O sueh that

AP+ PAT + éPETEP+ ~HHT +Q < O.
é

3 'Hoo Linear Filtering

This section deais with the desigl1 of state estimators with an Hoc perfornance rneasure and

where the only uncertainty in the systern model is in the form of a bounded energy noise signal,

i.e. there is no uncertainty in the matrices of the systern state space rnode!. We consider both

finite-liorizon and infinite-horizon estirnation problerns. Moreover, we consider two situations

for the systern 'initial state: one corresponds to the case when the initial state is unknown. while

in the other the initial state is assumed to be zero. The latter case will also correspond to the

sittiation where we are concerned with steady state filtering, i.e. under the assurnption that

measurements have been continuing for a sufficient long time so that the effect of the initial

condition has becorne zero.

3.1 Problem Formulation

Consider linear systems described by a state space model of the forrn

x( t) Ax(t) + Bw(t), x(O) = xo (3.1 )

y(t) = Cx(t) + Dw(t) (3.2 )

z( t) bx(t) (3.3 )
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where x(t) E Rn is the state, Xo is an unknow initial state, w(t) E Rr is the noise signal.

y(t) E Rm is the measurement, and z(t) E Rq is a linear combination of state variables to be

estimated over the horizon [O, T], T > O, using the measurements y( t). The noise w is assumed

to be an arbitrary signal in Di[O, T] and A, B, C, D and L are known real constant matrices with

appropriate dimensions. When the matrix L is the identity, the state x(t) is to be estimated.

For the sake of technical simplification, we shall adopt the foilowing assumption:

Assumption 3.1

Note that Assumption 3.1 is simiiar to the standard assumption in non-singular Kalman

filter which considers that ail the components of the measurement vector are noisy. The case of

a singular matrix V can be treated using a technique proposed in [38] for solving singular "Hoc

control problems.

We observe that the case where the input and measurement noise signals are different,

say VI and V2, respectively, is a particular case of (3.1 )-(3.2) where the matrices B and Dare

replaced by [B OJ and [O DJ, respectively.

The above signal estimation setting is quite general and encampasses a numbér af typical

situations which arise in the areas af control engineering and signal processing. For example,

consider the filtering problem with a signal generating mechanism as shown in Figure 3.1. The

signals v(t) and n(t) are energy bounded noise sources and s(t) is the signal to be estimated

using the noisy measurement, y(t). Both the signal generator and measurement subsystem are

described by linear state-space models with the signal generator modei being strictly proper and

the measurement system is assumed square. In this situation, it is easy to see that this filtering

problem can be recast as a filtering problem similar to those analysed in these notes.

n(t)
1slgna measurement

generator system estimator

v(t)
~

s(t) ...
M

+'~ y(t)...
LI!

s(t) ...
, W ,. ,. .

+

Figure 3.1 Signal Generating Mechanism.

Here we are cancerned with obtaining an estimate 2(t) of z(t) over a horizon [O, TJ via a

linear causal filter :F using the measurements Yt = {y(T), O S T S t} and where no a priori

estimate of the initial state of (3.1) is assumed. The filter is required to provide a uniformly

small estimate error, e(t) = z(t) - 2(t), V t E [O, T], for alI w E q[O, T] and Xo E Rn. We shall

consider the fol1owing worst-case performance measure:

(3.4)
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(3.5 )

where R = RT > O is a given weighting matrix for the initial state and the supremum is taken

over ali (w, xo) E .q;[0, T] EB :R" such that Ilwllfo,T] + x6Rxo -I O, The weighting matrix R is a

measure of the uncertainty in xo relative to the uncertainty in w. A 'large' value of R indicates

that the initial state is likely to be very elose to zero.

The above index of performance is indeed the induced norm of the operator from lhe 'noise'

signal, (w, xo), to the estimation errar, Z - z. Thus, h (R, T) can be interpreted as the v'orst-case

gain from (w, xo) to z - z.
In the case where the initial state xo is known to be zero, the performance measure af (3.4)

is replaced by:

Jo(T) ~ sup { Ilz - ZIl[o,T]} .
o#wEq[O,T] II wll[o,T]

In (3.5), T is aliowed to be 00 and in this case by the notation L:í[O, T] and 1I·1I[0.T] we mean

L:í and 11 ·112, respectively. We observe that the index of performance of (3.5) can be viewed as

the limit of (3.4) as the smaliest eigenvalue of weighting matrix R tends to infinity. The reason

for this is because for such matrix R, the ini tial state Xo wilI be forced to be zero. Also. note

that the performance measure Jo(oo) coincides with IIGew(s)lIoo, where Gew(s) is the transfer

function matrix from w to the estimation error, e = z - z.
The filtering problems we address in this section are as follows:

Given a prescribed levei of 'noise' attenuation , > O and an initial state weighting matrix

R = R T > O, find a linear causal filter F such that:

• In the finite-horizon case,

h(R,T) <" or alternatively, Jo(T) < [ when xo = O.

• In the infinite-horizon case,

The filter is asymptotically stable, and under zero initial conditions, IIGew ( s )11"" < [.

The above estimation problems, will be referred to as standard H oo filtering and the resulting

fillers, which are commonly known as H oo sub-optimal filters, are said to achieve a level of noise

attenuation [. These filters are designed to guarantee that the worst-case gain fram (w, xo)

to the estimation error z - z is less [' We note that in the infinite-horizon case, an 1í."", filter

ensures that the 'maximum gain' in frequency from the noise source to the estimation error is

bounded by [. An H oo optimal filter is the one which minimizes either h (R, T) (alternatively,

Jo(T)) or IIGew (s)lIoo, i.e. it minimizes the worst-case gain from noise to the estimation error.

The standard H oo problem can be interpreted as a minimax problem where the estimator

strategy z(') is deterrnined such that the payoff function

.J ~ Ilz - zllfo,T] - [2 [lIwllfo,T] + x6Rxo]

salisfies .J < O for ali w E L: 2 [0. T] and Xo E :R" subject to the constraint Ilwllfo.T) + x6 Rxo -I O.

We can view the H oo estimation prablem as a dynarnic, two-persons, zero-sum game. In this

game the first player, say a statistician, is required to find an estimation strategy z(t) = F(Yt),
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so that the cost function .J will be minimized. The statistician opponent, say nature, is looking

for the worst possible n,oise signal and initial state which comply with the given measurements

and will maximize .:T. The H= estimator will corresponds to the statistician' strategy which is

indeed designed to handle the worst possible Xo and w.

Observe that unlike the traditional minimurn.variance filtering approach, e.g. the celebrated

Kalman filtering method, H= filtering treats the noise signals as deterministic disturbance

and thus no a priori knowledge of the noise statistics is required, except of the boundedness

assumption of its energy or average power. This make the H oo filtering approach suitable for

applications where little knowledge about the noise statistics is available.

3.2 H oo Filters

We first note that the standard H oo filtering problem can be solved via severa! different

approaches, induding interpolation theory approach, game theoretical approach, and Riecati

equation approach. In the sequei, we will present a solution to the standard H= filtering

problem using a Riccati equation approach. To this end, introduce the following matrix Riccati

differential equation (RDE):

F(t) = (A - BDTV-tC) P(t) +P(t) (A _ BDTV-tC) T

+P(t) (,-2LTL- CTV-tC) P(t)+ B (I - DTV-tD) B T . (3.6)

It can be easily shown that the existence ofa bounded solution P( t) to (3.6) over [O,,], V. >
O, with initial condition P(O) = M = MT > O(respectively, M = MT ~ O), implies that P(t) is

symmetric positive definite (respectively, positive semi-definite) over [O, .).
First, we shall present a solution to the problem of H oo filtering on finite-horizon.

Theorem 3.1 Consider the system (3.1)-(3.3) satisfying Assumption 2.1 and let , > O be a

given constant. Then we have the following resuIts:

(a) Assume that Xo is unknown and let R = RT > O be a given initial state weighting matrix.

Then, there exists a linear causal filter such that Jt (R, T) < , if and only if the1'/' exists a

bounded solution P(t) to the RDE (3.6) over [O, TJ with initial condition P(O) = R- t ,

(b) Assuming that Xo = O, there exists a linear causal filter such that Jo(T) < , if and only if

there exists a bounded solution P(t) to the RDE (3.6) over [O, T] with initial condition P(O) = O.

(c) When condition (a), or (b) is satisfied, a suitable filter for both the above cases is given by:

i( t)

i(t) =

M(t) + K(t) [y(t) - Cx(t)) ,

LX(t)

x(O) = O (3.7)

(3.8)

where the filter gain matrix K(t) satisfies
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(d) When condition (a), ar (b) is satisfied, every linear causal filter that achieves a levei of

noise attenuation , is of the form:

~(t) = AW) + K(t) [y(t) - Cç(t)] - ,-2P(t)LTr(t), ç(O) = °
z(t) = Lç(t) + r(t)

r(t) = W [y(t) - Cç(t)]

(3.10)

(3.11)

(3.12)

where W(·) is any linear causal operator from L2'[O, T] to Li[O, T] with an L2[0, T]-induwi norm

smaller than ,.

Proof. For simplicity of presentation, we shall only give the proof af the sufficiency of the

results (a) and (b). The other proofs can be found in [26, 27].

We first consider the proof of the sufficiency of (a). Let P(t) be a bounded solution to (3.6)

over [O, T] with initial condition P(O) = R. In view of (3.9), it is easy to verify that the RDE

(3.6) can be rewritten in the form

F(t) = [A - K(t)C] P(t) + P(t) [A - K(t)C]T + ,-2p(t)LTLP(t)

+ [B - K(t)D] [B - K(t)DJT, P(O) = rI. (3.13)

Next, letting i(t) ~ x(t) - i(t) and considering (3.1)-(3.3) and (3.7)-(3.8), we have that

thê -<lation error, z(t) - 2'(t), can be described by the following state space model

:f(t) - [A - K(t)C]i(t) + [B - K(t)D]w(t), i(O) =Xa

z(t) - z(t) - Li(t).

Hence, in view ofTheorem 2.2(a), (3.13) implies that J1(R,T) < ,.
The proof of the sufficiency of (b) is similar the above proof except that now P(O) =°and

Theorem 2.2 (b) is used in lieu of Theorem 2.2 (a).

Remark 3.1 It should be observed that the results of Theorem 3.1 still hold in the case where

the matrices A, B, C, D and L of the system (3.1)-(3.3) are bounded, piecewise continuous

time- varying. O

Remark 3.2 Note the similarity of the above H oo filtering result with the Kalman filtering.

As, -+ oc the Riccati equation (3.6) becomes the Riccati equation of the finite-horizon Kalman

filter for the system (3.1)-(3.2) subject to the assumption that the noise signal w(t) is a zero

mean white process with an identity power spectrum density matrix. Furthermore, the estimator

of (3.7)-(3.9) becomes the corresponding Kalman filter for the system (3.1 )-(3.3). O

We now analyse the H oo filtering problem on infinite-horizon. Since in this case lhe filter

is required to be asymptotically stable, we shall make the following assumption for the system

(3.1)-(3.2):
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Assumption 3.2

(o) (C, A) is detectoble;

(b) rank [ A-dwl ~] =n+m, for ol/w E (-Xi,OO).

lt should be noted that Assumption 3.2 (a) is necessary for the existence of an asymptotically

stable filter for the system of (3.1)-(3.2). Assumption 3.2 (b) is equivalent to requiring that the

transfer function matrix C(sl - A)-I B + D has no transmission zeros on the imaginary axis.

We observe that Assumption 3.2 is a standard assumption in infinite-horizon Kalman filtering.

A complete solution to the?too filtering on infinite-horizon is provided by the next theorem:

see [26, 27J for the proof.

Theorem 3.2 Let the system (3.1)- (3.3) with Xa = O ond sotisfying Assumptions 3.1 and 3.2.

Given a constant , > O, the fol/owing statements are equivalent:

(a) There exist a linear causal. asymptotical/y stoble filter such that 11 Gew( s) 1100 < ',.

(b) There exists a stabilizing solution P = p T ~ O to the algebraic Riccati equation

(A - BDTV-1C) P + P (A _ BDTV-1C) T + P (,-2LT L _ CTV-1C) P

+ B (I - DTV- I D) BT = O. (3.14)

When any of the above conditions is satisfied, we have that:

(i) A suitable time-invariant fiiter is given by (3.7)-(3.9) with P(t) replaced by the constant

matrix P as in (b).

(ii) Every proper linear time-invariant fiiter that achieves a levei of noise atienuotion , is of

the form (3.10)-(3.12), with W(·) replaced by any proper stable transfer funetion matrix W(s)

satisfying IIW(s)ll= < ,.
vvv

Remark 3.3 Similarly to the case of finite-horizon ?too filtering, as , - 00, the result of

Theorem 3.2 reduces to the well known infinite-horizon Kalman filtering result for the system

(:U)-(3.3) under the assumption that the noise signal w(t) is a zero-mean white process with

an identity power spectrum density matrix. O

3.3 An Example

Consider the following second order resonant system

:i: ( t) [~ -1 + 8 ] [ -O 4545 ]= -0.5 x(t) + 0.9090 w(t)

y( t) [O 100] x(t) + v(t)

z( t) = [O 100Jx(t)

where h is an uncertain parameter satisfying 181 ~ 0.3.
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Both stationary Kalman filter and 71.00 filter are designed for the nominal system that has

been chosen to correspond to b = O. These filters are of the fol1owing form:

i(t) = [~ _~\] i(t) + I{ [y(t) - [O 100]i(t)], i(O) = O

z(t) = [O 100] i(t)

For the Kalman filter design, the noise sources w(t) and v(t) were assumed to be uncorrelated,

zero-mean, white signals with unit power spectra densities. The resulting filter gain is given by

/{ = /{K = [0.447 0.909f·

For the 71.00 filter design, we take I = LI = 0.83 dB which yields

K = J(00 = [1.0350 2.1807jT.

We then apply the two filters to the above system, with b = 0.3 and b = -0.3. The

frequence response magnitude of the transfer function from [w v]T to e = z - z for both filters,

denoted by [G.w G.v ], are shown in Figures 2.1 and 2.2. From the results in these figures, we

make the fol1owing observations:

• The Kalman filter is more sensitive to parameter changes than the standard 71.00 filter;

• The 71.00 filter performs better than the Kalman filter for both b = 0.3 and b = -0.3. We

note that the 71.00 filter provides not only a smaller maximum frequency gain but also a

smal1er estimation errar variance;

• The magnitude of [G.w G.v ] are worsened for both designs when the parameter uncertainty

b exists;
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Based on the above observations, there is a need to consider the parameter uncertainty in

lhe design procedure in order lo obtain a more robust filter. This problem wiH be analysed in

Seetions 5-7.

4 'Hoo Filtering for a Class of Nonlinear Systems

In this seetion we consider the problem of H oo filtering for a class of nonlinear systems.

The c1ass of systems eonsidered here is described by a linear state space model with the addition

of known state-dependent nonlinearities satisfying global Lipsehitz eonditions whieh appear in

both the state and output equations. The problem we address is the design of nonlinear filters

sueh that the estimation error is globally asymptotically stable and the induced L2 norm of the

operator mapping from the noise to the estimation error is within a prescribed bound.

4.1 Problem Formulation

Consider a nonlinear system af the form:

x(t) = Ax(t) +Gg[x(t)] +Bw(t)

y(t) = Gx(t) +Hh[x(t)] +Dw(t)

z(t) = Lx(t)

(4.1)

(4.2)

(4.3)

where x(t) E Rn is the state, w(t) E RT is a naise signal which is assumed ta belong to Di,
y(t) E Rm is the measurement, z(t) E Rq is a linear combination af state variables to be

estimated, g(.) : Rn - Rng and h(·) : Rn _ Rnh are known nonlinear functions, and A, B, G,

J) and L are known real constant matrices af appropriate dimensians.
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We shall make the fol1owing assumptions for the system (4.1)-(4.3):

Assumption 4.1

There exist known constant matrices Wg and Wh such that for any Xl and X2 E ~r.

IIg(XI) - g(x2)11 < IIWg(XI - x2)11

IIh(xJl- h(x2)1I < IIWh(xI - x2)1I·

Assumption 4.2

(a) (C, A) is detectable;

(b) DDT + HHT > O.

Observe that Assumption 4.2 is a standard assumption in non-singular Hoc filtering for

the linear part of system (4.1)-(4.3). Assumption 4.2 (b) can be viewed as a non-singularity

assumption for the Hoc tiltering problem for system (4.1)-(4.3). We note that when there is no

nonlinearity in the output equation (4.2), i.e. H = O, Assumption 4.2(b) reduces to DDT > O,

which is a standard assumption in the non-singular Hoc filtering for the linear part of tJte system

(4.1 )-(4.3).

In this section we are concerned with designing a nonlinear filter :F to provide an estimate

i(t) of z(t), based on {y(r); O~ r ~ t} and with a uniformly small estimation error z(t) - i(t)

for alI w E Di. For the sake of simplification of the presentation, attention will be focused on

the design of a stationary tilter on infinite-horizon, and thus the initial state of (4.1) is assume

to be zero. More specifically, the Hoc til tering problem we shall address is as fol1ows:

Given a prescribed levei of noise attenuation , > O, find a causal filter :F such that the

filtering errar is globally uniformly asymptotically stable and subject to zero initial conditions,

Ilz - il/2 < ,IIwl12 for ali non-zero w E q.

4.2 A Hoc Nonlinear Filter

..... nonlinear filter that solves the H oo filtering problem for the system (4.1)-(4.3) is provided

belo......

Theorem 4.1 Consider the system (4.1)-(4.3) satisfying Assumptions 4·1 and 4.2. Given a

precribed levei of noise attenuation, > O, the Hoc filtering problem for (4.1)-(4.3) is solvable if

for some E > O there exists a stabilizing solution P = pT ::::: O to the ARE

(A - BDT'Ç'-IC) P + p (A - BDTV-1Cf + p (,-2LTL +W;Wg +W[Wh - CTV-1C) p

+B (I - DT'Ç'-I D) BT + GGT = O (4.4)

where

(4.5)
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J/oreover, a suitable nonlinear filter is given by:

i(t) = Ai(t) + Gg[i(t)] + [( [y(t) - Ci(t) - Hh[i(t)]] , i(O) = o (4.6)

i(t) = H(t) (4.7)

I

1
where

Proof.

A' = (PC T + EDT ) V-I. (4.8)

With the filter (4.6)·(4.7) and letting i ~ x - i, we obtain the following stale space

equations for the estirnation error:

i( t)

z(t) - i(t)

(A - [(C)i(t) + (e - A"fl) ~(x, i) + (E - [( D)w(t), i(O) = o
Li(t)

(4.9)

(4.10)

where
_ [g(X)-9(i)]

~(x.x) = h(x) - h(i) ,

e = [G O], fi = [O H].

Also, note that by Assurnption 4.1

Ilç(x,x) 11 ~II Wi 11

where

W~ [W; wzy
Next, considering (4.8), it is easy to verify that the ARE (4.4) can be rewritten as

(A - [{C)P + P(A - [{Cf + P (,-2LTL +WTW) P+ (E -1(D)(E - [{D)T

+ (G-[{fI)(e-[{fI)T =0. (4.11)

V'V'v

We note thal., when there is no nonlinear terrn in (4.1) and (4.2), the rnatrices G. H. Wg

and H\ should be set to zero. Under these conditions, l.he filter of (4.6)-( 4.7) recovers lhe linear

stationary Hoc filter discussed in Section 3.

Hence, in view of Corollary 2.1, (4.11) irnplies that the estirnation errar systern (4.9)-(4.10) is

globally uniforrnly asyrnptotically stable and Ilz - il12< IIwl12 for ali non-zero w E .c;.

5 Robust Minimum Variance Filtering

This section is concerned with thp robust rninirnurn variance filtering problern for linear

systerns subject to norrn-bounded pararneter uncertainty in both the state and output rnalrices.

The problern addressed is the design of stationary linear filters which yield an optirnized upper

bound on the estirnation error variance for ali adrnissible uncertainties. This filtering method

ology can be viewed as an extension of the well known steady state Kalrnan filter, in the sense

that it provides a guaranteed performance irrespective of parameter uncertainties in the systern

mode!.
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5.1 Problem Formulation

Throughout this section we consider linear uncertain systems described by a state space

model of the form

x(t) = [A + ~A(t)Jx(t) +Bw(t)

y(t) [C + ~C(t)]x(t) + Dw(t)

z(t) = Lx(t)

(5.1 )

(5.2)

(5.3)

where x(t) E Rn is the state, y(t) E Rm is the measurement, w(t) E Rr is a zero-mean white

noise signal with an identity power spectrum density matrix, z(t) E RQ is a linear combination

of state variables to be estimated, A, B, C and Dare known constant matrices that describe

the nominal system of (5.1 )-(5.3), and ~A( t) and ~C(t) are unknown matrices representing

time-varying parameter uncertainties. The admissible uncertainties are assumed to be of the

form

(5.4 )

where F(t) E Rixj IS an unknown time-varying matrix with Lebesgue measurable elements

satisfying

IIF(t)1I ~ 1, V t ~ O (5.5)

and E, H I and H 2 are known real constant matrices of appropriate dimensions which specify

how the elements of the nominal matrices A and C are affected by the uncertain parameters in

F(t).

We observe that the case where the input and measurement noise signals are uncorrelated

zero-mean white signals, say VI(t) and V2(t), respectively, with identity power spectrum density

matrices, is a particular case of (5.1)-(5.2) where w(t) = [v;(t) vJ(t)f and the matrices B

and Dare replaced by [B O] and [O Dl, respectively.

It is assumed that the initial state of (5.1) is a zero-mean random variable, XQ, which is

uncorrelated with w( t) for ali t ~ O. We shall also adopt the following assumption for the system

(5.1 )-(5.2):

Assumption 5.1

(a) The system (5.1) is quadratically stable;

(b) [D H2 ] is ollull row rank.

lt should be noted that due to the presence of time-varying parameter uncertainty, Assump

tion 5.1 (a) is required in order to guarantee the uniform asymptotic stability of the estimation

error dynamics. The reason for this is because of the parameter uncertainty, the estimation

error dynamics is driven by the state of the system of (5.1) and thus the quadratic stability of

the latter system is required for the boundedness of the estimation error. Note that the Hurwitz

stability of the nominal state matrix A is a necessary condition for Assumption 5.1 (a) to hold.



Assumption 5.1 (b) means that the robust ?too filtering problem is non-singular. Observe

that if the pararneter uncertainty in the output matrix disappears, i.e. H 2 = O, Assump

tion 5.1 (b) reduces to DDT > O, wbich is a standard assumption in the Kalman filtering

problem for the nominal system of (5.1)-(5.3).

An important consequence of Assumption 5.1 (a) is that the uniform asymptotic stability

of the estimation error dynarnics is ensured by the asymptotic stability of the filter. Xote that

bis assumption also implies the detectability of the system (5.1)-(5.2).

Our aim is the design of a stationary robust linear estimator for z with a guaranteed

performance in the sense of the mean squares error. More specifica1ly, we are concerned with

finding an nth order asymptotically stable estimator for z of the form

i(t) - Aex(t) + Ky(t), x(O) = O

z(t) - Lex(t)

(5.6)

(5.7)

where z is the estimate of z and Ae , K, and L e are constant matrices to be determined in order

to ensure that, asymptotica1ly, the worst-case error variance

sup E {[(z - z) - E(z - zW[(z - z) - E(z - z)l}
IIFII9

will satisfy a known upper bound, where E[ .] denotes the mean or expectation. Moreover, this

upper bound is required to be as small as possible.

In view of the system (5.1 )-(5.3) and estimator (5.6)-(5.7), the estimation error, e(t) =

z(t) - z(t), can be described by the following state-space equations:

where

~(t) - [Ac+ HcF(t)EclW) + Bcw(t), ~(O) = ~o

e(t) - LcW)

(5.8)

(5.9)

Ac =

H c =

KC ]
A-KC '

Ec = [E E],

[
KD ]Bc = B _ KD '

L c = [L - L e L e ].

Note that since Xo and w(t) have zero means, it follows from (5.8)-(5.9) that the means of ~(t)

and e(t), denoted by (t) and e(t), respectively, satisfy:

(t)

ê(t) =

[Ac+HcF(t)Ecl(t),

Lc((l).

(O) = O (5.10)

(5.11)

This implies that (t) = O and e(t) = O for a1l t ~ O, Le. the signals ~(t) and e(t) have zero

means for a1l t ~ O.
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In connection with the estimation error system of (5.8)-(5.9) we introduce the following

Riccati equation

AeP + PA~ +óPErEeP + BeBr + ~HeH"[ = O
ó

where ó is a positive parameter to be chosen. Hence, we have the following resulto

(5.12)

Lemma 5.1 Consider the system (5.1)-(5.3) satisfying Assumption 5.1 and let a filter of the

form (5.6)-(5.7) be given. Assume that, for some sealar ó > O, there exists a stabilizing solution

P = p T ~ O to the ARE (5.12). Then, the given filter and the system (5.8) are asymptotiealiy

stable, and the asymptotie eovarianee matrix of ~ satisfies the bound

(5.13)

for ali admissible uneertainties.

Proa!. First, we note that the matrix Ae+ HeF(t)Ee is similar to

- .:. [ A+~A(t)
Ae(t) = K[C +~C(t)]

Indeed, it is easy to verify that -1 -Ae+ HeF(t)Ee = T Ae(t)T where

T_ [In In]
- O In .

For a given filter of the forro (5.6)-(5.7), assume that there exists a positive semi-definite

stabilizing solution P to (5.12) for some ó > O. By Lemma 2.3, it follows that there exists a

stabilizing solution Q = QT ~ Oto the Riccati equation

T T 1 TAeQ +QAe +óQEe EeQ + -HeHe = O.
ó

In view of Theorem 2.3, this implies that the system

i](t) = [Ae+ HeF(t)Ec]1](t), 1](0) = 1]0

is quadratically stable for any time-varying matrix F(t) of appropriate dimensions satisfying the

bound 11 F(t) 11::; 1 for any t ~ o. Thus, we conclude that the system (5.8) is asymptotically

stable. Furthermore, since Ae + HeF(t)Ee is similar to Ãe(t), we also have that the matrix A.

is Hurwitz stable, i.e. the given filter is asymptotically stable.

Now, as ~(t) has zero mean for any t ~ O, we readily find from (5.8) and (5.10) that the

covariance matrix of ~(t), namely Pe(t) ~ E[~(t)~T(t)], satisfies

. T T
Pe(t) = [Ae+ HeF(t)EelPe(t) + Pe(t)[Ae+ He(t)F(t)Eel + BeBe, V t ~ O;

Pe(O) = diag {O, Xo} (5.14)

, where Xo is the covariance matrix of Xo. Observe that lhe exponential stability of the system
I

(5.8) guarantees the boundedness ofthe asymptotic covariance matrix of ~(t).
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Next, using Lemma 2.5, it follows from (5.12) that

(5.15 )

Hence, subtracting (5.14) from (5.15) it follows that p(t) ~ P - P~(t) satisfies the difierential

inequality

(5.16)

Finally, sinee the system (5.8) is asymptotieally stable, we obtain from (5.16) that. asymp

totiealiy, p(t) 2: O, i.e. p{(t) :s P as t -- 00 and for ali admissible uneertainties.
'\7'\7\

In view of Lemma 5.1, it follows that any filter of the form (5.6)-(5.7) for whieh lhe ARE

(5.12) has a positive semi-definite stabilizing solution P for some é > O, will guarantee that the

asymptotie estimation error varianee satisfies the bound

(5.li)

for ali admissible uneertainties, where tr(-) stands for the matrix trace.

Tn the sequei we will derive a filter whieh minimizes the bound on the asymptotie error

varianee in (5.17).

5.2 The Optimai Robust Fiiter

We begin by introdueing the foliowing Riccati equations:

AS +SAT +éSETES + BBT + ~H1H[ = O
é

(5.18)

and

(A - ÊbTv-1C) Y + Y (A - ÊbTV-1Cf +Y (éET E - CTV-1C) Y

+Ê(I_bTV-lb)ÊT=O (5.19)

where

- - - TV=DD (.5.20)

and é is a positive sealar to be chosen.

At this point we wish to note that the Riceati equations (5.12), (5.18) and (5.19) are closely

related. Indeed, it happens that the existence of a positive semi-definite stabilizing solution to

(5.12) guarantees the existence of a positive semi-definite stabilizing solution to (5.18) and (5.19)

as shown below.

Lemma 5.2

(i) li for a given filter of (5.6)-(5.7) and for some scalar é> O the ARE (5.12) has a stabi/izing

solution P = pT 2: O, then there exists a stabilizing solution S = ST 2: O to the ARE (5.18) for

the same E:"

(ii) lf for some scalar é > ü the ARE (5.18) has a stabilizing solution S = ST 2: O, then there

exists a stabilizing solution Y = y T 2: O to the ARE (5.19) for the same é. Moreover, Y:S S.
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(5.21 )

Proof. (i) Let P = p T ~ O be the stabilizing solution to (5.12) for a given filter (5.6 )-(5.7) and

for some é > O. First, introduce the non-singular transformation matrix

, ó T T
and denote P = MPM . Premultiplying and postmultiplying (5.12) by M and M . respec-

tively, it f01l0ws that F satisfies the Riccati equation

" "T "T" 1· 'T "TAcP+PAc +éPEcEcP+-HcHc +BcBc =0
é

where

Also, we observe that
, . 'T' ( T ) -IAc+éPEcEc=M Ac+éPEcEc M

and then the matrix Âc+éFÊ'[Êc is similar to Ac+éPE'[Ec. Since P is the stabilizing solution

to (5.12), this implies that Pis the stabilizing solution to (5.21).

Now, partitioning P conform with M as below:

it is easy to verify from (5.21) that Pu satisfies the ARE (5.18). It remains to be shown that

Fu is the stabilizing solution to (5.18), i.e. the matrix A +éFnETEis Hurwitz stable. To this

end, first we note that the matrix Âc + é PÊ'[ Êc is of the forro

~ ]
where '*' denotes entries which are irrelevant. Since F is the stabilizing solution of (5.21), the

above matrix is Hurwitz stable, which implies A +éFuETEis Hurwitz stable as weU.

(ii) First, we observe that by Theorem 2.1, the existence of a stabilizing solution 5 = ST ~ O

to (.5.18) for some é > Oguarantees that
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where ÜJ is a noise signal belonging to [2[0,(0), iJ is the measurement, Z is a linear combination

of the state variables to be estimated, and é is the saroe as in (5.18). Using Theorem 3.2, we have

that the existence of a stabilizing solution Y = yT ~ O to (5.19) is a necessary and suflicient

11 ,fiE(sI - A)-I Ê 1100< 1.

Next, in connection with the ARE (5.19) we define the system

. ,

i = Ai + BÜJ

Y = ei + DÜJ

z = ,fiEi

l1\'------------------------------

(5.22)



condition for the existence of a linear causal time-invariant filter to estimate Z, based on y,
such that 11 Gêü,(s) 1100< 1, where Go,z,(s) is the transfer matrix from the noise signal, ÜI, to the

estimation error , e= z - Z., with ze being the estimate of z.
Now, considering that the transfer matrix from ÜI to Z, denoted by G i,z,( s), is given by

it follows from (5.22) that with the estimate ze(t) == o, 11 Gê,z,(s) 1100=11 Giw(s) 1100< 1. This

implies the existence of a stabilizing solution Y = y T ~ O to (5.19) for the same ê as in (5.18).

In order to show that Y ~ S, we first note that the ARE (5.19) can be rewritten as

Hence, comparing the above equation with (5.18) it follows from Lemma 2.3 that Y ~ S. This

completes the proof. V'V'V'

We now present the optimal robust filter, in the sense of minimizing the upper bound on

the asymptotic error variance in (5.17). For details of the proof see [34].

Theorem 5.1 Consíder the system (5.1)-(5.3) satísfyíng Assumptíon 5.1. Then there exists

an asymptotically stable filter of the form (5.6)-(5.7) that minimizes the bound on the asymptotic

error variance in (5.17) if and only íf for some ê > O the ARE (5.18) has a stabilizing soIutíon

S = ST ~ O. Under this condition, the optimaI filter is gíven by

where

i(t) = (A +êYE T E)i:(t) +K[y(t) - Ci:(t)]

i(t) = Li:(t)

(5.23)

(5.24)

(5.25)

and Y = yT ~ O is the stabilizing solutíon of the ARE (5.19). Moreover, thís filter guarantees

that asymptotically

We note that when there is no parameter uncertainty in the system (5.1)-(5.2), we have

that H1 = O, H2 = 0, and E = 0, and in this situation the robust filter of Theorem 5.1 recovers

the stationary Kalman filter for the nominal system of (5.1)-(5.3).

In view of Theorems 2.1 and 2.3, it can be easily established that the quadratic stability

of the system (5.1) implies the existence of a positive semi-definite stabilizing solution to (5.18)

for some ê > O. Hence, as long as Assumption 5.1 holds, the filter of Theorem 5.1 is guaranteed

to eXisto
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In order to calculate the robust filter of (5.23)-( 5.24) we need to search for a scalar :. > O

for which the Riccati equation (5.18) has a positive semi-definite stabilizing solution. Note that

by Theorem 2.1 and Lemma 2.2, this is equivalent of searching for an é > Osuch that the matrix

,'vI, = [-é;TE BBT +_é;;HIHf]

has no purely imaginary eigenvalues. Once such é is found, we then calculate the stabilizing

solution Y = yT 2: O to (5.19) for this é and then the robust filter is readily obtained from

(5.23)-(5.25). Note that the existence of the solution Y is guaranteed by Lemma 5.2 (ii).

The search for a suitable é > O can be carried out as follows. Pick a first guess for:. and

computes the eigenvalues of M,. If none of these eigenvalues are purely imaginary, we have found

a suitable value é; otherwise decrease é and repeat the procedure. The latter search procedure

foliows from the fact that if the ARE (5.18) has a positive semi-definite stabilizing solution for

some é = t > O then, by Lemma 2.3, (5.18) also has a positive semi-defini te stabilizing solution

for any é E (O,E].

Rem:lrk 5.1 Although the stabilizing solution of the ARE (5.18) plays no role in the cal

culation of the filter of (5.23)-(5.24), in order for this filter to provide a bound on tke error

variance it does not suffice to find a positive semi-definite stabilizing solution to (5.19) for a

suitable é > O. Observe that it is also required to verify if for this é the ARE (5.18) has a

positive semi-definite stabilizing solution. It may happen that there exist values of é > O for

which (5.19) has a positive semi-definite stabilizing solution Y but not (5.18). For such \-a1ues

of é, the resulting fi1ter cannot guarantee that tr( LY LT ) is a bound on the error variance for ali

admissible uncertainties. This situation is illustrated via an example in the next sub-section. O

Remark 5.2 The filter of Theorem 5.1 minimizes the bound on the asymptotic error variance

in (5.17) for a fixed é > O. However, since different values of é give rise to different values for

the optimal error variance bound, tr[LY(é)LT], we can still minimize this bound with respect

to the parameter é.

We know from Lemma 2.3 that if the ARE (5.18) has a positive semi-definite stabilizing

solution for some é = t > O, then (5.18) also has a positive semi-definite stabilizing solution for

any é E (O,t]. This implies that if the robust filter of Theorem 5.1 can be found for a given

:. > O, then there exists an é' > Osuch that for any é E (O, é'] the robust filter is guaranteed to

exists. Observe that é' isthe largest é such that the ARE (5.18) admits a stabilizing solution

5 = ST 2: O. T.his allows us to carry out the minimization of the upper bound on the estimation

error variance wi th respect to é, namely

min {tr [LY(é)LT ] : Y(é) = yT(é) 2: O is the stabilizing solution of (5.19)}.
'E(G.,' J

In the case where the stabilizing solution, Y, of (5.19) is positive defini te for any é in the

interval (O,é'], by Theorem 5 of [30J it foliows that tr[LY(é)LT] is a convex function of:. on

(O,e]. Thus, in this situation any local-minimum will also be a global minimum of tr[LY(:.)LT]
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and efficient numerical convex optimization methods can be used to perform the above mini-

mization problem..We observe, that by a standard result in algebraic Riccati equations (see,

e.g. Theorem 3.2 oí [43]), the stabilizing solution of (5.19) for any [ in the interval (O,[*J is

guaranteed to be positive definite if and only if the pair (A, [B Hd) is controllable. O

6 Robust 'Hoc Filtering for U ncertain Linear Systems

In Section 3 we have studied the problem of Hoc filtering for linear systems where the only

modelling uncertainty is in the form of a bounded energy noise signal. In practice, very often

the model used to describe the signal generating mechanism is inexact. For example, the model, .
may be obtained by linearizing a nonlinear system around its operating poínts. Also, there may

exist unknown parameter and/or parameter variations. In such situations it is highly desirable

to have filter design techniques which can take jnto account ali possible uncertainties.

In this section we consíder the problem of Hoc filtering for linear systems subject to param

eter uncertainty. The parameter uncertainty allowed is time-'varying norm-bounded and appears

in both the state and output matrices. The problem addressed is the design of an asymptotically

stable linear filter such that the induced (2 norm of the operator mapping from the noise to the

filtering error is kept witrun a prescribed bound for ali admissible parameter uncertainties. The

above problem is referred to as robust Hoc filtering.

6.1 Problem Formulation

We consider uncertain linear systems of the same form as in Section 5, namely:

x(t) = [A + t.A(t)] x(t) + Bw(t)

y(t) = [C +t.C(t)]x(t) +Dw(t)

z(t) = Lx(t)

(6.1)

(6.2).

(6.3)

where x(t) E iRn is the state, y(t) E iRm is the measurement, w(t) E iRr is a noise signal which is

assumed to belong to .1:2, z(t) E IRq is a linear combination of state variables to be estimated, A,

B, C, D and L are known real constant matrices that describe the nominal system of (6.1 )-(6.3),

and t.A(t) and t.C(t) are unknown matrices representing time-varying parameter uncertainties.

The admissible uncertainties are assumed to be of the same form as in (5.4)-(5.5), i.e.

(6.4)

where F(t) E iRixj is an unknown time-varying matrix with Lebesgue measurable elements

satisfying

IIF(t)1I ::; 1, 'ri t ~ O (6.5)

and E, H1 and Hz are known real co~~tant matrices of appropriate dimensions.

Similarly to the problem of robust minimum variance filtering 'in Section 5, we shall assume

that Assumption 5.1 holds.
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Our objective in this section is the design of linear filters with a prescribed Hoc> performance

irrespective of the parameter uncertainty. For the sake of simplicity of the presentation, attention

will be focused on the design of stationary filters, and thus we shall assume that the initial 5tate

of (6.1) is zero. We are concerned with obtaining an estimate i(t) of z(t) via an asymptotically

stable linear filter F:

i(t)

i( t)

Aex(t) +Ky(t), x(O) = O

Lex(t)

{6.6 )

(6.i)

where Ae , K, and L e are constant matrices to be determined such that the estimation error.

z - i, is uniformly small for ali w E L2 and for ali F(t) satisfying (6.5). To be more precise, the

problem of robust Hoc> filtering is as follows:

Given a prescribed levei of noise attenuation ""'I > O, find an asymptotically stable linear

filter F such that under zero initial conditions, Ilz - ill2 < ""'Illwllz for ali non-zero w E Li and

for ali admissible uncertainties.

Note that when there is no parameter uncertainty in the system (6.1)-(6.5), we have that

E = O, H 1 = Oand H 2 = O, and the above filtering problem becomes the standard Hoc> filtering

problem for the nominal system of (6.1)-(6.3) which has been analysed in Section 3.

6.2 Robust 'Hoc> Filter

Sirnilarly to the robust minimum variance filtering problem of Section 5, the state space

equations of the estimation error, e = z - i, in terms of the state variables of (6.1) and (6.6) are

as follows:

where

~(t) =

e( t)

[Ac+HcF(t)EclW) + Bcw(t),

LcW)

ç(O) = O (6.8 )

(6.9)

(,
KC ]

A-KC '

Ec = [E El,

[
KD ]

Bc = B - KD '

In connection with the estimation error of (6.8)-(6.9) we introduce the following Riccati

equation

(6.10)

where I: is a positive parameter to be chosen. Hence, we have the following resulto
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Lemma 6.1 Consider the system (6.1)-(6.3) satisfying Assumption 5.1 and let , >'-0 be a
" .

given scalar. Assume that for a given ftlter of the forro (6.6)-(6.7) and for 5o,me scal!Jr é > O

. the ARE (6.10) admits a stabilizing solution P = pT ~ O. Then the following \1'esults Mld:

(i) The given ftlter is asymptotically stable;

(ii) The error system (6.8)-(6.9) is asymptotically stable and satisftes

(6.11)

for ali non-zero w E q and for ali admissible uncertainties.

AcQ +QA~ -+ Q (,-2L~Lc +éE;Ec) Q +BcB~ +~HcH[ < O

which by Lemma 2.5 leads to

Proof. The proof of the asymptotic stability of the filter and error 'system (6.8)-(6.9) paral1els

that of a similar result in Lemma 5.1.
In order to establish (6.11), we first note that by Theorem 2.1 the existence of a stabilizing

solution p. = pT ~ O to (6.10) implies that there exists a matrix Q = QT > O satisfying the

inequality

(6.12)

Premultiplying and postmultiplying (6.12) by ,Q-1, implies that Z ~ ,2Q-1 satisfies:

(6.13)

Next introduce
J ~100

[eT(t)e(t) - ,2wT(t)w(t)] dto

Since the system (6.8) is asymptotical1y stable and eCO) = O, by completing the squares

using (6.8)-(6.9) it can be easily shown that

J = fooo [eTe - ,2wTw + :t(çTzn] dt

_ fooo eT {[Ac +HcF(t)Ec]T Z +Z [Ac +HeF(t)Ecl +,-2 ZBcB'[Z +L~Lc} edt

_,2100 ([w - ,-2B~zef (w - ,-2B~ ze) dto

. ~V

In view of Lemma 6.1, it follóws that any filter of the form (6.6)-(6.7) for which the ARE

(6.10) has a positive semi-definite stabilizing solution for some é :> Owill solve the robust 1100

filtering problem. A filter that satisfies the conditions ofLemma 6.1, and thus solves the problem

of robust 7t00 filtering, is presented in the following.

Final1y, by considering (6.13), the above implies that J is negative whenever w is non

zero. Thus, we conclude that lIell2 < ,lIwll2 for ali non-zero w E Di and for ali admissible

uncertainties.



Theorem 6.1 Consider the system (6.1)-(6.3) satisfying Assumption 5.1'. Given a prescribed

levei of noise attenuation , > O, the robust H oo filtering problem is solvable if for some [ > o·
the following conditions are satisfied:

(a) There exists a stabilizing solution Y = yT ~ O to the ARE

(A - ÊbTy-1C) y + y (A _ ÊbTy-1C) T + y (,-2LTL + [ETE _ CTy-1C) Y

+Ê (1 - bTy-l b) ÊT = O (6.14)

where

.(6.15 )

(b) There exists a stabilizing solution X = X T ~ O to the ARE

where Y = yT ~ O is the stabilizing solution of the ARE (6.14).

When conditions (a) and (b) are satisfied, a suitable robust H oo filter is given by: •

i(t) = (A + [y ET E)i(t) +K [y(t) - Ci(t)], i(O) = O

i(t) = Li(t)

where

and Y = yT ~ O is the stabilizing solution of the ARE (6.14).

(6.16)

(6.17)

(6.18)

(6.19)

Proof. First, using Lemma 2.3 it can be easi!y verified that X ~ Y. Next, with the filter of

(6.16)-(6.17) and considering the AREs (6.14) and (6.16), it can be shown using straightforward

but tedious manipulations that the matrix

p~[X-y
- O o] > Oy -

is the stabilizing so!ution of (6.10). Hence, the desired result follows from Lemma 6.1.
VVV

We observe that when there is no parameter uncertainty in the system (6.1)-(6.2), i.e.

H 1 = O, H 2 = O and E = O, the robust filter of Theorem 6.1 recovers the infinite-horizon H oo

fi!ter for the nominal system of (6.1)-(6.3) as presented in Theorem 3.2.

Remark 6.1 Note the similarity of the above robust H oo filtering result with the robust min

imum variance filtering of Section 5. Indeed, as , -- 00 the resu!t of Theorem 6.1 recovers that

of Theorem 5.1.
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Similarly to the rabust minimum variance filtering result of Theorem 5.1, the stabilizing

solution of the ARE (6.16) plays no role in the calculation of the filter of (6.17)-(6.18). In fact

this filter is in terms of the stabilizing solution of the ARE (6.14) only. However, in order for the

filter (6.17)-(6.18) to guarantee a levei of noise attenuation '"'I for ali admissible uncertainties, it

does not suffice to find a positive semi-defini te stabilizing solution to (6.14) for a suitable t: > O.

It is also required to verify if for this E: the ARE (6.16) has a positive semi-definite stabilizing

solution as weI!. It may happen that there exist values of E: > Ofor which (6.14) has a positive

semi-defini te stabilizing solution but not (6.16). For such values of E:, the resulting filter is not

guaranteed to pravide the desired "Hoo performance for ali admissible uncertainties. O

7 Robust 1ÍçX) Filtering for Uncertain Nonlinear Systems

This section is devoted to the robust version of the "H oo nonlinear filtering problem treated

in Section 4. The e1ass of nonlinear systems we will considered is described by a linear state

space model subject to time-varying norm-bounded parameter uncertainty in both the state

and output matrices and with the addition of known state-dependent nonlinearities. As in

Section 6, the nonlinearities are Lipschitzian and are allowed to appear in both the state and

measurement equations. We will study the design of nonlinear filters such that the estimation

errar is globally asymptotically stable and the 1:2 gain fram the noise to the estimation errar is

within a prescribed bound for the whole set of admissible systems.

7.1 Problern Forrnulation

Consider uncertain nonlinear systems of the form:

x(t) = [A +6A(t)J x(t) +Gg [x(t)] + Bw(t)

y(t) [C +6C(t)]x(t) + Hh[x(t)] + Dw(t)

z(t) Lx(t)

(7.i )

(7.2)

(7.3)

where x(t) E ~n is the state, w(t) E ~r is a noise signal which is assumed to belong to .q,
y(t) E Rm is the measurement, z(t) E Rq is a linear combination of state variables to be

estimated, g(.) : Rn --. ~ng and h(-) : ~n --. Rnh are known nonlinear functions, and A, B, C,

D and L are known real constant matrices of appropriate dimensions that together with g(.)

and h(-) describe thenominal system of (7.1)-(7.3). The matrices {lA(t) and {lC(t) represent

time-varying norm-bounded pararneter uncertainties in A and C, respectively. The admissible

uncertainties are assumed to be of the same form as in (5.4)-(5.5), i.e.

(7.4)

where F(t) E ~ixj 15 an unknown time-varying matrix with Lebesgue measurable elements

satisfying

IIF(t)1I ~ 1, V t ~ O
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and E, H 1 and H2 are known real constant matrices of appropriate dimensions.

Similarly to the problem of H oo filtering for the nominal system of (7.1)-(7.3) analysed in

Section 4, it is assumed that the nonlinear functions g(-) and h(-) satisfy Assumption 4.1. We

shall also adopt the following assumption:

Assumption 7.1

(a) (C, A) is detectable;

(b) DDT + H1H[ +HHT > O.

We note that Assumption 7.1 is standard in non-singular H oo filtering for the nominal linear

part of the system (7.1)-( 7.3). Similarly to Assumption 4.2 (b), Assumption 7.1 (b) can be viewed

as a non-singularity condition for the H oo filtering problem for system (7.1)-(7.3). Observe that

if the parameter uncertainty and the nonlinearity in the output equation (7.2) disappear, it tum

out that H2 = O and H = O, and Assumption 4.2(b) reduces to DDT > O, which is a standard

assumption in H oo filtering for linear systems without parameter uncertainty.

It should be noted that nonlinear models of the form (7.1)-(7.2) can be used to represent

many important physical systems. A typical example is a power system modelled in the form

of a single machine-infinite bus. The parameter uncertainty in the linear terms can be tegarded

as the variation of the operating point of the nonlinear system.

In this section we will analyse the design of a nonlinear filter F for estimating z(l) with

a prescribed H oo performance for the whole set of admissible systems, using the measurements

Yt = {y(r); O~ r ~ t}. As in the previous sections, we will consider the design of a stationary

filter with a guaranteed noise attenuation on infinite-horizon. Letting ze(t) = F{Ytl denote the

estimate 01 z(t), the robust fioo filtering problem we shall address is as follows:

Given a prescribed levei of noise attenuation "'I > O, find a causal filter F such Ihat the

filtering error is globally uniformly asymptotically stable, and subject to zero initial condilions,

Ilz - zel12 < "'Illwlb for ali non-zero w E .c; and for ali admissible uncerlainties.

7.2 A Robust 1ioo Filter

In the following we present a methodology for designing a nonlinear filter that solves the

robust H oo filtering problem for the system (7.1)-(7.3).

Theorem 7.1 Consider the system (7.1)-(7.3) satisfying Assumptions 4.1 and 7.1. Given a

prescribed levei of noise attenuation "'I > O, the robust H oo filtering problem for (7.1)-(7.3) is

solvable if jor some E > O lhe following conditions are satisfied:

(a) There exists a stabilizing solution Y = yT ~ O to the ARE

(A - ÊbTv-1C) y + Y (A - ÊbTv-1Cf +Y ("'1- 2 LTL +EETE +WgT Wg

+ W[Wh - CTV-1C) Y + Ê (I - bTV-I b) ÊT + GGT = O (7.6)
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)1Jhere

(7.i)

- T 1 T TV = DD + -H2 H2 + H H .
f

(7.8)

(b) There exists a stabi/izing so/ution X = X T ~ O to the ARE

(A _ YW[Wg) x + X (.4 - YW[Wg)T + X (fETE +W[Wg) X + Y (,-2 L
T

L

+2W[Wg +H'';Wh)Y+BBT +~HIHT +2GG
T

=0 (7.9)

where Y = y T 2 O is the stabi/izing so/ution of the ARE (7.6).

When.conditions (a) and (b) are satisfied, a suitab/e robust non/inear"Hoo fi/ter is given by:

i(t) = (A + fY ET E)x(t) +Gg[x(t)] +K [y(t) - Cx(t) - H h[x(t)] ] ,

z(t) = LX(t)

x(O) = O (7.10)

(7.11)

where
(7.12)

and Y = y T 2 O is the stabi/izing so/ution of the ARE (7.6).

Proof. With the filter (7.10)-(7.11) and defining x ~ x - X, we abtain fram (7.1)-(7.2) that

i(t) = [A - KC + (RI - K H2)F(t)EJ x(t) + [-.:lA, + (H I - K H2)F(t)E] x(t)

+G [g[x(t)]- g[x(t)] ] - K H [h[x(t)] - h[x(t)] ] + (B - K D)w(t) (7.13)

where

Hence, by cansidering (7.10)-(7.11) and (7.13), a state space representatian of the estimation

errar, z - z, in terms of x and x is as follows:

iI(t) = [Ac+ HcF(t)Ec]1)(t) +Gcgc[x(t),x(t)] + Bcw(t), 1)(0) = O (7.14)

z(t) - z(t) = Lc1)(t) (7.15)

where
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ge[x(t),i(t)] =

E e = [E E], Le = [O L),

[

g[x(t)] ]
g[x(t)] - g[i(t)J ,

h[x(t)] - h[i(t)]

Note that by Assumption 4.1

Ge = [ ~ O
G

(7.16)

where

vV = ["1 ~J ~[r
Next, using Lemma 2.3 it can be easily verified that X ~ Y, where Y = y T ~ Oand X = XT ~ O

are the stabi1izing solutions of (7.6) and (7.9), respectively. AIso,letting

O ] > Oy -

(7.17)

l

and considering the AREs (7.6) and (7.9), it can be shown using straightforward matrix manip

ulations that P is the stabilizing solution of the Riccati equation:

. T ( -2 T T - T - ) T 1 T TAeP + PAe + P,Le Le + éEe Ee + W W + BeBe + EHeHe + GeGe = O.

Finaliy, considering Lemma 2.4, we conclude from (7.17) that the estimation errar system (7.14)

(7.15) is globaliy uniforrnly asymptotically stable and Ilz - il12< IIwl12 for ali non-zero w E Lí
for ali admissible uncertainties.

V·ie note tha'" when there is no nOlllinear term in (7.1) and (7.2), the matrices G, H, Wg

and Wh should be set to zero. Under these conditions, the filter of (7.10)-(7.11) recovers the

robust linear Hoc> filter anlaysed in Section 6.

Remark 7.1 We observe that the existence of a matrix X satisfying condition (b) of Theo

rem 7.1 will imply the global asymptotic stability ofthe uncertain system (7.1) for alI admissible

uncertainties (see, e.g. [42]). Note thatdue to the existence of parameter uncertainty in the sys

tem (7.1)-(7.2), the requirement of robust global asymptotic stability of (7.1) is needed in order

to ensure the boundedness of the estimation error dynamics for ali admissible uncertainties. O

Remark 7.2 Note that similarly to the robust Hoc> filtering for uncertain linear systems anal

ysed in Section 6, the filter of (7.10)-(7.11)depends on the stabilizing solution of (7.6) but not

on the stabilizing solution of (7.9). However, it should be remarked that the fi1ter (7.10)-(7.11)

can only guarantee the global asymptotic stability of the estimation error and a leveI of noise

attenuation I far ali admissible u.ncertainties if both the AREs (7.6) and (7.9) have a positive

semi-definite stabilizing solution for the same scalar é > O. O
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