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ABSTRACT - One of the advantages of least squares
Padé reduction is that an extra number of constraints can
be taken into account to determine a reduced-order mode!.
Because the coefficients of such a model are determined
by satisfying the constraints only approximate!y, in a least
squares sense', the exact retention of poles cannot be guar
anteed in spite of the fact that in some situations the ex
act retention of poles might be of paramount irilportance.
This work investigates the use of a model matching al
gorithm to achieve exact pole retention while computing
part of the reduced-order model by least squares Padé tech
niques. Numerical examples are included to illustrate the
new method.

1 INTRODUCTION

The standard model order reduction problem, as it is known·
nowadays, can be traced back to the sixties and has at
tracted much attention ever since. The existing methods
can be roughly divided into two groups. The first such
group includes techniques developed in the time domain
(Davison, 1966; Chidambara, 1967; Fossard, 1969). A fea
ture common to these methods is the that the reduced-order
model is constrained to retain specified modes of the orig
inal system. This has two main advantages, namely i) the
simplified model retains fundamental physical properties of
the original system such as time constants, and ii) the sta
bility of the final model is guaranteed. These characteristics
confer a greater physical meaning upon the models pro
duced by such methods which is usually welcome by most
control engineers. The second group includes methods de-
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veloped in the frequency domain~ The most popular meth
ods in this group are those which constrain the reduced
order model to match a finite number of coefficients com
puted directly from the original mode!. Such coefficients
are often purely mathematical and have no obvious physi
cal interpretation. A few examples include partia! quotient~

(Chen and Shieh, 1968) and tirr:te moments (Gibilaro and
Lees, 1969). The main advantage of these techniques iE
that the algorithms are simple and the simplified modeh
are usually more accurate than those produced bymethodE
in the first group. The main disadvantage, however, is -that
the reduced-order models may turn out to be unstable. It
seems appropriate to conjecture that the appearance of un
stable modeIs can be partly explained by the lack of phys
ica! constraints which is characteristic of most frequency
domain methods for order reduction.

In subsequent years, a number of methods were developed
in order to overcome the aforementioned stability problem
One of the simplest stability preserving methods consists oj
retaining dominant poles of the original model (Shamash,
1975). This can be interpreted as an attempt to imposE
some physical constraints on the reduced-order models de
rived by frequency domain methods. Other stability pre·
serving methods developed in the frequency domain includ(
the Routh method (Hutton and~Friedland,1975), the stabil
ity equation method (Chen et a!ii, 1980) and mixed meth
ods (PaI, 1980). See (Bultheel' and van Barel, 1986) for a
more complete listo

Two othertechniques for model simplification which have
received much attention in the literature are the bal
anced truncation approximation (Moore, 1980; Pernebo
and Silverman, 1982) and the Hankel-norm approximation
(Glover, 1984). The main advantages of these methods is
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that stability ofthe reduced-order models is guaranteed and
that bounds on the approximation error can be obtained
a priori. These properties commend these methods for
controller design purposes (McFarlane and Glover, 1989).
Some difficulties related to these techniques are i) they as
sume that the original model is asymptotically stáble, and
ii) if the smallest Hankel singular values of a model are rel
atively large, then the approximation is not very accurate.
Some attempts have been made to minimize such difficul
ties. For instance, the simplification of unstable systems has
been considered in (Yang et nlii, 1993) where a translation
transformation was used in connection with the balancing
technique. Enhanced accuracy can be attained over certain
frequency ranges by choosing appropriate weighting func
tions (Latham and Anderson, 1985) which might be impor
tant in many situations [chap. 10] (Aguirre, 1993b),(Skelton,
1988).

Alternative methods for solving the stability problem in the
frequency domain' exploit the concept of least-squares Padé
approximation. This approach was originalIy proposed as
a solution to the stability problem (Shoji et alii, 1985) but
it was shown that stability is not mathematicalIy guaran
teed by this method (Lucas and Beat, 1990; Lucas and
Munro, 1991). However, one of the main advantages is
that additional Padé coefficients and Markov parameters
are employed in the simplification and consequently better
accuracy is usually achieved (Aguirre, 199~a). Another ad
vantage is that the nuinber of constraints used to determine
the reduced-order modeJ. may be varied, thus a family of
simplified modeis éan be easily computed. The best 'model
is then selected using appropriate criteria which should also
refiect the need~ of the application at hand. Moreover, the
concept of least-squares Padé approximation has been re
cently exploited to overcome problems related to the ap
pearance of purely imaginary poles in squared-magnitude
transfer funéti~ns (Aguirre, 1994b).

In this paper a procedure is proposed to achieve exact pole
retention while determining the rest of the coefficients in the
reduced-order model by least squares matching·of Padé co
efficients and/or Markov parameters. This combines three
of the aforementioned advantages, namely i) exact pole fe
tention, ii) stability preservation if the original model is
stable, and iii) the approximate matching of a relatively
large (compared to the 'classical Padé andmixed methods)
number of Padé and Markov parameters. The extension of
this method to the multivariable case has been considered
elsewhere (Aguirre and Mendes, 1994).

The outline oí' the paper is as follows. The necessity of
developing special -algorithms for least-squares Padé ap
proximation with exact pole· retention is discussed in the
following section. The new procedure is based on an algo
rithm. previously suggested for open:...loop mod~l matching
problems and is reviewed in §3. The new procedure is de
scribed in §4. The problem of selecting the dominant poles
of a given model is briefiy addressed in §5. Numerical ex
amples are provided in §6. Final remarks and conclusions
are given iJi § 7.
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2 5TATEMENT DF PRDBLEM

In many cases of madel simplification via lnoment match
ing, the retentian of only one or two poles is sufficient to
guarantee stability. Consequently, not only the numerator
polynomial but also some of the denominator coefficients
are 'free variables' which can be used to improve accuracy
by matching some more moments. Reduced-order mod
eIs obtained in this way are in general more accurate than
those obtained by mixed rriethods (where usualIy only the
numerator is determined by lnoment matching) because a
larger number of time-moments is matched. The appeal of
this property is refiected by a number of papers in which
the principal aim is to allow the matching of one or at most
two extra moments in arder to increase accuracy (Singh,
1981; Lepschy and Viaro, 1982; Alexandro, 1984).

The chief claim of the least squares Padé method of model
reductí'on is that better accuracy is sometimes possible if an
even greater number of constraints is used. In such cases,
since the nun1ber of constraints exceeds the number of free
parameters, the resulting overdetermined set of equations
has to be solved by standard least squares techniques. Con
sequently, alI the constraints used, that is moment match
ing and pole retention constraints, are taken into account
but are satisfied ~ly approximately despite the fact that in
many applications it is desirable that poles of the original
system be retained exactly in the reduced-order mode!.

Clearly, it is desirable to develop an algorithm which would
retain such poles (the fixed part of the simplified model)
exactly whilst using the moment matching const'raints ta
determine the rest of the coefficients (the variable part of
the reduced-order model). When the number 'af constraints
equals that of coefficients, the solution to this problem is
trivial and welI known.'

The main point of this paper is to show that by stating
the aforementioned problem as a controller design problem
instead of a model s~mplificationproblem, an existing algo
rithm, ariginalIy developed for performing open-Ioop model
matching, can be satisfactorily used.' Conversely, the madel
matching problem can also be stated as a partial model re
duction problem.

Therefore, the model reduction problem stated above will
be solved by using constraints which will guarantee exact
pole locations even when the resulting set of equations is
overdetermined. Such constraints will be taken from the
algorithm described in the next section.

The two main differences between this paper and the refer
ence (Aguirre, 1992b) are as follows i) in this paper, madel
reduction is the main focus whilst controller design was the
main issue in the latter reference, and ii) overdetermined
systems are solved in this study to galn further flexibility
and enhance accuracy whilst in the aforementioned ref~r

ence the number of constraints always equaled the number
af coefficients thus yielding exact moment matching. An,
additional difference is that in problems of model reduction
with pole retention, the issue af which poles to retain arises.
This important matter, which is absent in controller design



problems, is dealt with in some detail in section 5o

o .

3 THE MODEL- MATCHING ALGORITHM

Consider figure 1 where the transfer functions are

functionD( s) which will make D(s)G(s) match the pre
specified set of P Padé coefficients and M Markov param
eters {CO,.Cl,'o.,. Cp-l, m v , mll,+l, ... , mv+M-l}, where
P+M == p+m+ 1, is given by the solution of the following
set of linear equations

G(s) = gO+glS+ ... +gqsq
ho + h1s + oo0+ hnsn

D(s) = aO+als+ ... +apsP

bo + b1 s + ooo+ bmsm

(1)

(2)

Yoco == Xo,
YoCk == Xk - L~=l YjCk-j, k == 1.,2, ... , P - 1,
1 == Yn+m,

k .
mk == Xn+m-k - Lj=l Yn+m-jmk-j, k == li, lI+ 1, ooo,

, li + M -1,
(5)

where, Ci is the i th Padé coefficient of a given reference
model J«s), mi is the .ith Markov pararheter of J«s), m v
is the first non-zero Markov parameter of J«s) and

4 ORDER-REDUCTION PROCEDURE·

IJ{(s)- - - - - 1

:. ~I D(s) H G(s) ~
L_____ __J

Figure 1 - Open-Ioop model matching schematic diagramo

The open-Ioop model matching problem consists in finding
a transfer function D(s) such that D(jw)G(jw) == J«jw)
when the plant G(s) and a reference model J«s) are giveno
This can be achieved by moment matching in which case the
solution is, in a sense, approximate, that is D(jw )G(jw) ~
J«jw) o Before presenting an algorithm to solve this ap
proximate model matching problem, a few definitions are
required.

i

Xi == L aj gi-j,
j=O

. i

Yi == Lbj hi- j ,
j=o

Proof·

See (Aguirre, 1992b)o

i == 0,1, ... , q+ p,

i==O,l, ... ,n+m.

(6)

(7)

o

The Padé coefficients of a transfer function, say G(s), are
defined as

{
Co == go lho,

[
,k] (3)

Ck == gk - Lj=l hj Ck-j lho, k >0 ,

where gi == O for i > q, hi == O for i > no The numbers
{Ci }~o E ffi, known as Padé coefficients, are the coefficients
of the Taylor expansion of G(s) arbund the point s == O
and are proportional to the time-momentso Conversely, the
Markov parameters are defined as

where the numbers {mi}~o E ]R are the coefficients of the
Taylor expansion of G(s) around the point s == 00.

Lemma 3.1
(Open-loop approximate model mat.ching). The transfer

The model matching probIem, as stated above, is different
from the conventional model reduction probIem (where the
entire simplified modeI is to be computed) because onI)'
one part, namely D(s), of the open-Ioop transfer function
D(s)G(s) is to be determined and G(s) ,is known a priori.

On the other hand, the modeI reduction probIem of con
cern in this paper is similar to the controller design prob
Iem because onIy one part of the reduced modeI is to be
determined and the other part is assumed to have be.en pre
viously chosen, namely the poles to be retained. In other
words, the desired reduced model is R(s) == D(s)G(s), where
G(s) == 1/Po(s) and the zeros of the polynomial Po(S) arE
the poles of the original system, J«s), which should be re·
tained in R(s)o Thus least squares Padé reduction witl
exact pole retention can be achieved using the followin~

procedure

Step 1: Choose the poles to be retained and form Po(s)

Step 2: Compute Padé and Markovparameters from the
original model J<(s) using equations (3) and (4)

Step 3: Form a set of P+M+1 ~ p+m+2 linear equations
from (5)
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Step 4: Determine the coefficients of D(s) by solving the
resulting set of equations by the least squares method

Step 5: The desired simplified model is
R(s)==k x D(s)/Po(s),
where k is such that k x D(O)/Po(O) == j{(O)

Remark 4.1 The last step in the procedure above guar
antees that the reduced-order model matches the steady
state gain of the original modeI".

Remark 4.2 If P+M+1 ==ptm-t-2 in step 3, this procedure
is equivalent to classical techniques which match Padé and
Markov parameters exactly. Note that, by choosing differ
ent values of P and M for which the inequality in step 3
holds, a family of reduced-order· models is obtained. The
best model can then be chosen by using quality or robust
ness criteria. It should be emphasized that having to choose
a performance criterion in order to select the best candidate
of a family of models need not be seen as a limitation of the
method. On the contrary, in many practical situations this
mayconfer greater flexibility to the procedure and may also
provide the means by which the best model for a certain
application can be selected via practical and meaningful en
gineering constraints (Lastman and Sinha, 1985; Aguirre,
1994a). In the example provided, the Hoo-norm of the error
has been used to select the best simplified modeI.

Remark 4.3 Since lemma 3.1 holds for rational models,
the above procedure can be also used to exactly retain zeros
ofthe original model by taking G(s) == Zo(s)/Po(s), where
the zeros of the polynomial Zo(s) are the zeros of the orig
inal model which should be retained in the reduced-order
modeI. The retention of zeros is important in the reduction
of non-minimum phase systems and in many other situa
tions (Marshall, 1980).

5 SELECTING THE DOMINANT POLES

The retention ofpoles in reduced-order models is a standard
procedure (Shamash, 1975; I<imura, 1983; I<rajewski et alii,
1990). In the introduction it has been conje'ctured that
imposing constraints for the retention of dominant poles in
simplified models usually yields improved results because
such constraints are in a sense physically motivated and
not a mere mathematical exercise.

So far it has been assumed that the poles to be retained in
the reduced-order model are known in advance. In practice,
however, this will hardly be the case and the identification
of the truly dominant poles of a system may not be easy.
The common, but rather nalve, approach to this problem
is to choose the slowest poles to be the most dominant. It
has been pointed out that a slow mode might have a small
'weight' at the output and therefore might not be dominant
(Moore, 1980; Aguirre, 1993a).

The choice ofwhichpoles to retllin in a reduced-order model
is crucial because the accuracy of such a model will depend
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greatly on the true dominance of the retained poles. Fur
thermore, a reduced-order model intended for analysis and
design would be of great help if, besides being accurate,
it retained those poles which characterized the most im
portant modes of the original system because it is usually
required that such poles be confined to a 'safe' region of the
s-plane in some design- procedures (Liaw and Chao, 1993).

There are some metho,ds which quantify modal dominance
and therefore permit the selection of the most dominant
poles (Zhao et alii, 1981; Ouyang et alii, 1987; Aguirre,
1993a). Among these methods, the easiest to implement
is the one based on the modal dominance índices (MDI)
defined as (Aguirre, 1993a)

i== 1,2, ,CY,

1 == 1,2, , (3,

i == CY + 21 - 1, CY + 21 ,
(8)

where Ji is the i th residue corresponding to the pole at
'xi, cy is the number of real poles and (3 is the number of
conjugate pairs and asterisks denote complex conjugates.
It is often useful to express the li as a percentage of the
total contribution, that is I li I % ==1 li I x 100/E I I \,
where the summation is taken over all the poles. 'The MDI
can also be readily determined directly from state-space
realizations (Aguirre, 1993a), and are invariant with respect
to coordinate ·transformations.

It is interesting to note that the MDI are, roughly speak
ing, an~logous to the Hankel singular values in the sense
that both quantities try' to quantify aspects of input-output
dominance of a system. There is a crucial difference, how
ever. Whilst the MDI essentially quantify the iInportance
of the time constants of a system, the Hankel singular val
ues quantify the input-output contribution of state vari
ables of a state-space realization. In most cases, the state
variables of a linear model are lnathematical abstractions
and have no obvious physical meaning, this is likely to be
true after representing the original model in balanced co
ordinates. On the other h'and, although poles in a transfer
function might appear scaled in time, there is often a clear
correspondence between some poles in a transfer function
and real-life time constants. These characteristics are not,
per se, necessarily good nor bad as far as IDodel reduction is
concerned but have been described to point out fundamen
tal differences between the two approaches. A luore rigor
ous justification of the MDI was given in (Aguirre, 1993a)
where, for 'instance, is was pointed out that the impulse re
sponse energy of unrepeated real poles are proportional to
the squared value of the respective MDI.

6 NUMERICAL RESULTS

Two numerical examples are discussed in order to illustrate
some of the main points of the papel'.



Example 6.1

Consider the transfer function of a real combustion control
system (Pena et alii, 1990)

7 52683 + 10.35782 + 0.920518 + 0.63827

0.5

O~--+--_-...i.:':='::::"~+------------.:..::---;

~

~ -0.5
Q

.5h

.§ -1

-1.5

for P==4, M==3and I1 I«jw) - R 13(jW) 1100==0.38.

Figure 2 - Nyquist diagrams (-) 1<1 (jw), (- -) R 11 (jW),
(...) R 12(jW) and (_._) R 13(jW)

Figure 2 shows the Nyquist diagram of the transfer func
tions above. It is interesting to note that the plot of 1<1 (jw)
has two loops. The smallest one corresponds to the slow
est pair of complex poles. Clearly, the model which nearly
retains these poles, namely R2(8), is the best approximant
only at very low frequencies, however its overall accuracy
is totalIy inadequate. O

This transfer function is rather difficult to simplify because
it has two pairs of complex poles and the fastest poles are

.more dominant according to the MDI.. In particular, the
poles at 8 == -0.2795 ±jO.8306 have percentage MDI of 1,1 I
% == 2 x 48.86% while the MDI for the poles at 8 == -0.0141 ±
jO.2547 are just 1,2 I % == 2 x 1.14%. Unsurprisingly, the
classical Padé method yields an unstable modelo

Therefore it is desired that the complex pair of poles at
8 == -0.2795 ± jO.8306 be exactly retained in the reduced
mode!. In addition, a third-order reduced model with a
second-order numerator is desired. Retaining such poles
and matching Padé coefficients exactly produces

0.517182 + 0.54338 + 0.0526
R11 (8) == 83 + 0.666382 + 0.82808 + 0.0825' (10)

with " I«jw) - R 11 (jW) 1100==0.42. The least squares Padé
with approximate pole retention for P == 5· and M == 1 yields

0.352582 + 0.05638 + 0.0207
R12(8) == 83 + 0.528582 + 0.07908 + 0.0325' (11)

-2

o 0.5 1 1.5

real

2 2.5 3 3.5

Example 6.2

Consider the non-minimum phase transfer function (EI
Attar and Vidyasagar, 1978)

This model has been recently considered in (AI-Saggaf and
Bettayeb, 1993) where the folIowing reduced-order modeIs
have been given

with " I«jw) - R 12 (jW) 1100==2.65.

It is interesting to note that although constraints for the re
tention of the fastest poles were used, the slowest poles were
nearly retained by the least squares Padé method (Aguirre,
1992a). This ilIustrates the need to retain poles exactly.
On the other hand, the importance of being able to discern
which poles should be retained in a model can be appreci
ated by noticing that R12(8) has a pair of poles which al
most coincides with the slowest poles in the original mode!.
However, because such poles are not dominant, the perfor
mance of sucli. a transfer function is inadequate. Indeed,
Shamash's method fails to produce a stable model when
the slowest poles are retained. This clearly ilIustrates that
the slowest poles are not necessarily dominant.

,r ( ) 35.82238 3 -120.92868 2 t2327.88-2863
1\2 s == 85 t9.88 4 t162.98 3 t872.38 2 t4284.38t5751.6

R () - -0.14338 4 t3.53688 3 -19.56818 2 t217.44748-246.3792
oH S - 8 4 t5.08708 3 t94.84198 2 t270.16478t694.665

(13)

,
(14)

FinalIy, the new algorithm was used to obtain a reduced
order model which retained the fastest poles. Thus p == 2
and m == 1 since Po ( 8) is a second-order polynomial. The
number of Padé and Markov constraints taken into account,
P and M, were varied in the ranges 1 :s; P :s; 10 and p+m+ 1
P :s; M. :s; 10. The best simplified model, chosen according
to the Hoo-norm of the error, was

The former reduced-order model, RoH(8), was obtained us
ing theoptimal Hankel approxirnation whereas REV(8) was
derived using uniform approximation for alI L1- and Loo
inputs as described in (EI-Attar and Vidyasagar, 1978).
The fourth- and third-order modeIs obtained via the bal
ancing technique described in (Moore, 1980) areR () 0.459148 2 tO.557118tO.04947

13 S == 0.9705683 tO.64337 8 2 tO.80177 8tO.077507 (12)

R () - 33.80598 2 -7.18888t2330.9
EV S - 84 t10.9748 3 t227.70368 2 +1018.58+10154.5 . (15)
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0.4..------r----....------r----.----.--------,

respectively. Retaining the pole with largest MDI, namely
s = -1.8 and using the same criterion as in the previous
example to choose the best candidate, the following model
was obtained using the method described in this papel' for
P=6 and M=O

and

( )
2.057683 -5.275482 +132.94458-127.3847

Rb4 S = 84+2.619083 +89.245582 +143.96818+603.0204

0.7928s2 + 0.8533s - 1.6371
Rb3(S) = s3 + 0.9969s2+ 15.0708s + 1.6521

(16)

(17)

0.5 1.5 2 2.5 3

The approximation can be improved further by exactly re
taining the three non..:.minimu·m phase zeros of the original
model !(2(S) in addition to the dominant pole at s=-1.8.
In so doing the following model was obtained for P = 5 and
M=O .

Finally, the following third-órder model was obtained for
P = 4 and M = Oand which also retains the dominant pole
at s=-1.8

R () - 17.978182 +14.51908-48.2358
21 S - 84+9.596183+51.792582 +121.80228+96.9029

R () - 4.92508 3 -16.62568 2 +320.03318-393.6140
22 S - 0.99548 4 +22.13678 3 +119.75808 2 +588.94648+790.7477

R 18.5465s - 23.7864
23(8)= 83 +7.711982+37.18878+47.7856 .

(18)

. (19)

(20)

Figure 3 - Step response of models (-) !<2(S),
(-0-) RoH(s), (...) REV(s), (-*-) Rb4(s), (-+-) Rb3(s), (
-) R 22 (S) and (_._) R 23(S).

of W(s) and of !(2(S), respectively, performing an opti
mal Hankel-norm approximation· and finally obtaining the
reduced-order model by performing a decomposition involv
ing four -rational functions.

It is worth pointing out that R21 (S), R23(S) and REV(S)
are the only models which retained the pole-zero difference
of the original model. This is usually considered relevant
in some practical situations (Marshall, 1980). The other
reduced-order models have roll-off rates which are different
from the original model. This would introduce difliculties
in situations where the noise amplification is important and
also in closed-Ioop applications with high loop gain (Mar
shall, 1980; Aguirre, 1993b). O

.The step responses of these models are shown in figure 3. It
should be noted that because the responses of R 21 (s) and
R23(s) are very similar, only the latter was included in the
figure.

Based on this figure, the following remarks can be made.
The reduced-order model REV (s) seems the most accurate
at high frequencies but presents unacceptable mismatch at
low frequencies. The most accurate model in the range of
medium frequencies is clearly RoH(s) but this model also
presents mismatches at both high frequencies (because it is
proper transfer function while the original model is strictly
proper) and low frequencies. The only models which match
the dynamic~at low frequencies are R 22 (S) and R 23(S), see
remark 4.1, Vv~ich also seem to tradeoff satisfactorily the
approximation "at high and medium frequencies. The most
inaccurate models have been produced by the 'plain' bal
ancing approach.

It is noted that the accuracy of RoH(s) over the mid
frequency range is a direct result of a r?,ther elaborate
procedure which involves choosing a frequency weighting
function W(s), obtaining unstable and stable projections
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7 FINAL REMARKS AND CONClUSIONS

It should be noted that for all combinations for which
P+M = p+m+ 1 holds, exact pole and coeflicient match
ing is achieved. When P + M > P+ m + 1 however, the
Padé and Markov parameters are approximately lnatched
but the selected poles (the zeros of Po ( s)) are still exactly
retained. This confers greater meaning to the reduced-order
model since the retained poles provide a physicallink with
the original system. Moreover, since all the poles of the
reduced-order model can be exactly placed stability is ulti
lnately guaranteed by specifying the entire reduced denom
inator. In most practical situations, however, the retention
of one 01' two truly dominant poles suflices to yield a sta
ble model, but this cannot be, of course, mathematically
guaranteed unless all the poles in the simplified model are
placed in the left half plane.

It is noted that four Padé constraints, three Markov con
straints and two pole retention constraints were used in the
determination of six coeflicients in example 6.1 and that five
Padé, one' pole and three zero retention constraints were



used to determine eight coeflicients of R22 (S). This ilIus
trates that further improvement may be achieved by taking
into account some extra Padé coeflicients and Markov pa
rameters and matching them in a least squares sense.

If the sequences of Padé coeflicients and Markov parame
ters display explosive behavior, and if too many extra coef
ficients are taken into account in a certain application, the
problem may become numericalIy ilI-conditioned. A solu
tion to this problem has been suggested in (Lucas and Beat,
1990) but this was unnecessary in the many examples tried.

Step 5 of the procedure in §3 is needed to match the steady
state gain of the original modeI. Thus, in reality, the proce
dure guarantees exact pole retention and exact steady-state
agreement.

A procedure has been suggested for the simplification of
transfer functions. The main features of the new method
are i) it takes into account additional information via ex
tra Padé and Markov parameters which are approximately
matched using least squares techniques, ii) poles of the orig
inal system are matched exaetly and therefore iii) stability
is guaranteed, iv) the methods in (Shamash, 1975; Shoji et
alii, 1985; Lucas and Beat, 1990; Lucas and Munro, 1991;
Aguirre, 1992a) are special cases of the procedure presented
in this paper which v) uses a simple and computer-oriented
algorithm which can also be used in open-Ioop controlIer
design (Aguirre, 1992a) problems, and vi) a family of sim
plified models (alI of which retain the same specified poles)
may be obtained by varying two parameters within lim
ited ranges and the best model can be selected using a cost
function.
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