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ABSTRACT - The relevance of nonlinear dynamics and
chaos in science and engineering cannot be overemphasized.
Unfortunately, the enormous wealth of techniques for the
analysis of linear systems which is currently available is to
tally inadequate for handling nonlinear systems in a system
atic, consistent and global way. This paper presents a brief
introduction to some of the main concepts and tools used in
the analysis of nonlinear dynamical system and chaos which
have been currently used in the literature. The main objec
tive is to present a readable introduction to the subject and
provide several references for further reading. A number of
well known and well documented nonlinear models are also
included. Such models can be used as benchmarks not only
for testing some of the tools described in this paper, but
also for developing and troubleshooting other algorithms in
the comprehensive fields of identification, analysis and con
trol of nonlinear dynamical systems. Some of these aspects
will be addressed in a companion paper which follows.

1 INTRODUCTION

An important step towards the analysis of real systems is to
realize that virtually ali systems are in a sense dynamieal.
This does not mean to say, of course, that the dynamics of
every system are always necessarily relevant to the analysis.
Thus although it is sometimes justifiable to regard certain
systems as being sialie, in most cases it is worthwhile taking
into account the dynamics inherent in the systems to be
analyzed.
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Mathematica.l1y, dynamical systems are described by differ
ential equations in continuous-time and by difference equa
tions in discrete-time. On the other hand, most static sys
tems are, of course, described by algebraic equations.

A second step in the analysis of real dynamical systems is to
take into consideration the nonlinearities, which are often
as important to the system as the dynamics. The use of
linear models in science and engineering has always been
common practice. A good linear model, however, describes
the dynamics of the a system only in the neighborhood of
the particular operating point for which such a model was
derived. The need for a broader picture of the dynamics
of real systems has prompted the development and use of
dynamicalmodels which included the nonlinear interactions
observed in practice.

In this paper a few basic concepts related to nonlinear
dynamical systems are brief!y reviewed. The objective is
twofold, namely to provide a brief introduction to nonlinear
dynamics and chaos and to indicate a few basic references
which can be used as a starting point for a more detailed
study on this subject. In particular, this paper will de
scribe a few mathematieal tools sueh as Poinearé seetions,
bifurcation diagrams, Lyapunov exponents and correlation
dimensions. AIso, some of the most commonly used nonlin
ear modeis which display chaotic behavior will be presented
thus providing the reader with both, a few basic tools and
well established benchmarks for testing such tools.

The ambit of the techniques developed for nonlinear sys
tems with chaotie dynamics can be appreciated by con
sidering the wide range of examples in which chaos has
been found. Different types of mathematical equations ex-
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hibit chaotic solutions, for instance ordinary differential
equations, partial differential equations (Abhyankar et alii,
1993), continued fractions (Corless, 1992) anel delay equa
tions (Farmer, 1982).

Chaos is also quite common in many fields of control sys
tems such as nonlinear feed back systems (Baillieul et alii,
1980; Genesio anel Tesi, 1991), adaptive control (Mareels
anel Bitmead, 1986; Mareels anel Bitmeael, 1988; Golelen
anel Yelstie, 1992) and eligital control systems (Ushio and
Hirai, 1983; Ushio and Hsu, 1987)

Chaos seems to be the rule rather than the exception in
many nonlinear mechanical and electrical oscillators and
penelula (Blackburn et alii, 1987; Hasler, 1987; TvIatsumoto,
1987; Ketema, 1991; Kleczka et alii, 1992).

of nonlinear dynamics and chaos.

2 NONLlNEAR DYNAMICS: CONCEPTS
AND TOOLS

This sedion l)l'ovides some concepts and tools for the anal
ysis of nonlinear dynamics. Some of the tools considered
in this section currently constitute active fields of research
pe1' se. Although no attempt has been made to give a thor
ough treatment on such issues, a considerahle number of
references has been ineludeel for further reading.

2.1 Differential and difference equations

An 11. th-order continuous-time system can be described by
the differential equation

Given an initial condition, Yo E IR" anel a time to, a t1'a
jecto1'Y, o1'bit or .solution of equation (1) passing through
(01' based at) Yo at time to is denoteel as <pdyo, to).

where y(t) E IR" is the .state at time t and f : IRr
~ IR" is a

smooth function calleel the vecio1' field. f is saiel to generate
a fiow <Pt : IR" -;. IR", where <Pt(y, t) is a smooth function
which satisfies the group properties <Pt,+1.o = <Pt, o <Pto' and
<p(y, O) = y.

Chaos, fractaIs and nonlinear dynamics are common in
some aspects of human physiology (Mackey and Glass,
1977; Glass et alii, 1987; Goldberger et alii, 1990), pop
ulation dynamics (May, 1987; Hassell et alii, 1991), ecology
and epidemiology (May, 1980; Schaffer, 1985), and the solar
system (Wisdom, 1987; Kern, 1992; Sussman and Wisdom,
1992).

Models of eleetrical systems have been found to exhibit
chaotic dynamics. A few examples inelude DC-DC con
verters (Hamill et alii, 1992), digital filters (Lin and CIma,
1991; Ogorzalek, 1992), power electronic regulators (Tse,
1994), microelectronics (Vau Buskirk and Jeffries, 1985),
robotics (Varghese et alii, 1991) and power system modeIs
(Abed et alii, 1993).

dy . f )- = y =. (y,t
dt

(1)

There seems to be some evidence of low dimensional chaos
in time series recorded from electroencephalogram (Babloy
antz et alii, 1985; Babloyantz, 1986; Layne et alii, 1986)
although such results are so far inconelusive. Other areas
where there has been much debate concerning the possi
bility of chaotic dynamics are economics (Boldrin, 1992;
.Ja.ditz and Sayers, 1993) and the elimate (Lorenz, 1963;
EIgar and Kadtke, 1993).

Many other examples in which chaos has apparently been
diagnosed inelude the models of a rotor blade lag (Flow
ers and Tongue, 1992), force impacting systems (Foale
and Bishop, 1992), belt conveyors (Harrison, 1992), neu
ral systems (Harth, 1983), biological networks (Lewis anel
Glass, 1991), spacecraft attitude control systems (Piper and
Kwatny, 1991) and friction force (Wojewoda et alii, 1992),
to mention a few.

An advantage of focusing on chaotic systems is that chaos is
ubiquitous in nature, science and engineering. Thus simpIe
systems which exhibit chaos commend themselves as valu
able paradigms and benchmarks for developing and testing
new concepts and algorithms which in principIe would ap
ply to a much wider elass of problems. Therefore most of
the tools and concepts reviewed in this papel' are also very
relevant to systems which display regular dynamics.

In the companion papel' the tools and systems described
here will be used in the identification, analysis and control

Because the time is explicit in equation (1), f is said to be
non-autonomou.s. Conversely, systems in which the vec
tor fielel does not contain time explicit1y are called au
tonomou.s .

A system is said to be time pe1'iodic with period T if
f(y, t) = f(y, t + T), 't/y, t. An 11. th-order non-autonomous
system with period T can be converted into an (11. + 1) th
order autonomous system by adding an extra state (J = 2/T
in which case the state space will be transformed from the
Euelidean space IR,,+l to the cylind1'ical .space IR" x Sl,
where Sl = IR/T is the cirele of length T = 27r/w. It is
noted that alI the non-autonomous systems considered in
this work will be time periodic in most situations.

A Fi:red point of for equilib1'úlm, y, is elefined as f(y) =O
for continuous-time systems and as y = f(fJ) for discrete
time systems. Df is the Jacobian mat.rix of the system,
defined as the matrix of first partial derivatives. Evaluating
the Jacobian at a particular point on a trajectory of the
system, that is Df(yd gives a local approximation of the
vedar field f in the neighborhood of Yi, sometimes Df(Yi)
is referred to as a linea1'ization of f at Yi. If D f(y) has no
zero ar purely imaginary eigenvalues, then the eigenvalues
of this matrix characterize the stability of the fixed point
y.

An 11. th-order discrete-time system can be described by a
difference equation of the form
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y(k + 1) = f(y(k), t) . (2)

2.3 Spectral methods

A trajectory or orbit of a eliscrete system is a set of points
{y( k+ I)} k=Q. The elefinitions for discrete systems are anal
ogous to the ones elescribeel for continuous-time systems
anel therefore will be omitteel. For eletails see (Gucken
heimel' anel Holmes, 1983; Parker anel CIma, 1989; Wiggins,
1990).

2.2 NlImerical simlllation of dynamical systems

Generating time series for a system elescribeel by a elif
ference equation is quite straightforwarel since y(k), k =
n y , n y + 1, n y + 2, ... can be computeel by simply comput
ing repeatedly an equation like (2) from a set of n y initial
conelitions.

If the system is elescribeel by an ordinary elifferential equa
tion, simulation cannot be perfol'lneel as easily since an
equation like (1) shoulel be integrateel. Fortunately, there
are a number of well know algorithms available for per
forming this task such as Euler, trapezoielal, Runge-Kutta,
Aelams-Bashforth, Aelams-Moulton anel Gear's algorithm
(Parker and CIma, 1989). The fourth-oreler Runge-Kutta
is uneloubtedly the most commonly useel algorithm for in
tegrating ordinary elifferential equations.

An important question when integrating elifferential equa
tions on a eligital computeI' is the choice of the integration
interva.1. In the case of linear systems 01' nonlinear systems
with relatively slow elynamics the choice of the integration
interval is not usually criticaI. For some nonlinear systems,
however, if such an interval is not sufficiently short spuri
ous chaotic regimes may be ineluced when integrating the
system using, for instance, a fourth-oreler Runge-Kutta al
gorithm, whilst seconel-oreler Runge-Kutta algorithms may
ineluce spurious elynamics even for fairly short integration
intervals (Grantham anel Athalye, 1990). It has also been
reported that in some cases the location of the bifurcation
points depenei on the integration interval if it exceeels a
criticaI value (Aguirre anel Billings, 1994a).

Irrespective of the type of the elynamical equations or the
algorithm useel to solve such equations, an important ques
tion which shoulel be answereel is whether the simulateel
results are representative of the 'real solution'. This is a
nontrivial matter, anel to aelelress it woulel involve a de
taileel look into the shadowing lemma (Guckenheimer anel
Holmes, 1983). For the purposes of this tutorial, it suffices
to mention that there is abunelant evielence that computeI'
simulations are generally reliable as numerical tooIs for the
analysis of elynamical systems (Sauer anel Yorke, 1991).
However, it shoulel also be borne in minei that pitfalls exist
(Troparevsky, 1992), some of them as a consequence of the
extreme sensitivity to initial conelitions exhibiteel by some
systems. This characteristic is one of the most peculiar fea
tures of a chaotic system anel wiII be briefly illustrateel in
section 2.9. Extreme sensitivity to initial conelitions eloes
not invalidate numerical computations but certainly calls
for caution in analyzing the results.

One of the first tools useel in diagnosing chaos was the power
spectrum (Mees anel Sparrm'", 1981). The a.ppearance of a
broael spectrum of frequencies of highly structureel humps
near the low-oreler resonances is usually creeliteel to chaos
in low-oreler systems (Blacher anel Perelang, 1981). How
ever, broael-banel noise anel the existence ofphase coherence
can make it elifficult to eliscriminate experimentally between
chaotic anel perioelic behavior by means of power spectrum
(Farmer et alii, 1980). More recently the raw spectrnm
(sum of the absolute values of the real anel imaginary com
ponents) anel the log spectrum (log of the raw spectrum)
have been compareel with more dassica.l techniques in the
context of chaotic time series analysis (Denton anel Dia
monel,1991).

Recently, the application of spectral techniques to the anal
ysis of chaotic systems has concentrateel on the bispectrum
anel trispectrum (Pezeshki et alú, 1990; Subba Rao, 1992;
Chanelran et alii, 1993; EIgar anel Chanelran, 1993; EIgar
anel Kenneely, 1993). See (Nikias anel Menelel, 1993; Nikias
anel Petropulu, 1993) for an introeluction on higher-oreler
spectral analysis. Such techniques have been useel to ele
tect anel, to a certain extent, to quantify the energy transfer
among frequency modes in chaotic systems.

2.4 Embedded trajectories

One technique useel in the analysis of nonlinear elynamical
systems is to plot a steaely-state trajectory of a system in
the phase-space. Thus if y(t) is a trajectory of a given sys
tem this can be achieved by plotting iJ(t) against y(t). For
low-oreler systems this proceelure can be useel to elistinguish
between elifferent elynamical regimes.

In many praetical situations, however, only one variable is
measureel. In these cases an alternative proceelure is to plot
y(t-Tp ) against y(t) where Tj) is a time lago These variables
can be useel in the reconstruction of attractors (Packarel et
alii, 1980; Takens, 1980) anel such variables also define the
so-calleel pseuelo-phase plane. This is motivateel by the fact
that y(t - Tj)) is, in a way, reIateei to iJ(t) anel consequently
the embeeleleel trajectories representeel in the pseuelo-phase
plane shoulel have properties similar to those of the original
attractor representeel in the phase plane (Moon, 1987).

A further aelvantage of this technique is that it enables
the comparison of trajectories computeel from continuous
systems where iJ(t) is usually available, anel from eliscrete
moelels where iJ(t) is often not available anel would have to
be estimateel.

The choice of Tp for graphical representation purposes is
not criticaI anel plotting a trajectory onto the pseuelo-phase
plane for varying values of Tp may give some insight re
gareling the information flow on the attractor (Fraser anel
Swinney, 1986).

Phase portraits anel plots of trajectory embeelelings can be
useel not only as a means of elistinguishing elifferent elynam-
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ical regimes, but also to demonstrate qualitative relation
ships between original and reconstructed attractors.

2.5 Dynamical attractors

domain methods (Moiola anel Chen, 1993). For reasons of
simplicity, the brute force approach is described in what
follows. This approach is simpIe and robust but in general
it is computationally intensive.

Thus a point l' of a bifurcation diagram of a nonautonomous
systems driven by A cos(w i) wit-h A as the bifurcation pa
rameter is elefined as

If a deterministic and stable system is simulateel for a sufli
ciently long time it reaches .steady-.state. In state space this
corresponds to the trajectories of the system falling on a
particular 'object' which is called the attrac1.o7'. Asymptot
ically stable linear systems excited by constant inputs have
point attractors which have dimension zero anel corresponel
to a constant time series.

l' = { (y, A) E IR x [ I y = y( t.;), A = Ao;
i, =1.0 +[\55 X 2íT/w} ,

(3)

Clearly, the input frequency w can also be used as a bifur
cation parameter. For autonomous systems a bifurcation
eliagram can be obtained in an analogous way by choosillg

A bifurcation eliagram will therefore reveal at which values
of the parameter A E [ the solution of the system bifurcates
anel how it bifurcates. ''''hen studying chaos such diagrams
are also useful in detecting parameter ranges for which the
system behavior is chaotic.

where [ is the interval [ =[Ai Ar] C IR, °:S ia :S 2íT /w anel
I\55 is a constant. This means that the point l' is chosen by
simulating the system for a sufliciently long time [\55 X 27r /w
with A = Ao to ensure that transients have died out before
plotting y( [\55 x 27r /w) against Ao. In practice for each value
of the parameter A, nb points are taken at the instants

(.5 )

·i = 0,1, ... ,nb-1 . (4)

i=0,1, ... ,nb- 1 .i, = ia + (I\ss + i),

2.6 Bifurcation diagrams

Nonlinear systems, on the other hanel, usually elisplay a
wealth ofpossible attractors. To which attractor the system
will finally settle elepenels on the system itself anel also on
the initi aI condi tions.

An aelvantage of consielering attractors in state space as
alternative representations of time series is that a number
of geometrical anel topological results can be used. For the
purposes of this tutorial, it will suflice to point out that
the .shape anel dúnension of the attractors in state space
are elirectly linked to the complexity of the dynamics of
the respective time series. Thus simpIe low dimensional
attractors correspond to simpIe time series dynamics.

The most common attractors are the poin1. at1.ractor (di
mension zero), limi1. cycles (dimension one) and 1.ori (di
mension two). Another type of attractor which has recently
attracted a great deal of attention are the so-called strange
or chaoiic attractor.s which are fractal objects. The deter
mination of the dimension of such attractors will be briefly
addressed in section 2.11.

Another useful tool for assessing the characteristics of the
steaely-state solutions of a system over a range of parame
ter values is the bifurcation diagram which reveals how the
system bifurcates as a certain parameter, called the bifur
cation parameter, is varied. Roughly, a system is saiel to
undergo a bifurcation when there is a qualitative change in
the trajectory of the system as the bifurcation parameter
is varied. At the bifurcation point, the .J acobian of the sys
tem has at least one eigenvalue with the real part equal to
zero for continuous-time systems or on the unit circle for
eliscrete-time systems.

As an example of a bifurcation diagram consider figure 1.
This diagram and the respective system will be described
in some detain in section 4.5. Throughout this tutorial,
bifurcation parameters are denoted by A.. Thus, figure 1
shows some of the different types of attractors displayed by
the system as A is varied. In particular, for A. = 4.5, 9 and
11 the system elisplays period-one, period-three and chaotic
dynamics, respectively. For clarity the respective attractors
represented in the cylindrical state-space (see section 2.1)
are also shown. .

There are a number of known bifurcations. The most com
mon co-dimension one bifurcations are the pi1.chfork, the
saddle-node, the 1.ranscri1.ical, the Hopf bifurcation, anel the
fiip or period doubling, which only occur in discrete maps
or periodically driven systems. For an introduction to bi
furcation and a description of the aforementioneel types see
(Guckenheimer and Holmes, 1983; Mees, 1983; Thompson
and Stewart, 1986) .

Approaches to calculate bifurcation diagrams include the
bruie force, pa1.h following (Parker and CIma, 1989), the
cell-io-cell rnapping technique (Hsu, 1987) anel frequency

2.7 Poincaré sections

A bifurcation diagram shows the different types of attrac
tors to which the system settles to as the bifurcation pa
rameter is varieel. However, a bifurcatioll diagram provide>
very little information concerning the shape of the attrac
tors in state-space. In order to gain further insight into thE
geometry of attractors one may use the so-called PoincarE
maps. Such a map is a cross sectioll of the attractor and car
be obtaineel by defining a plane which should be transversa
to the flow in state space as showll in figure 2.
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ii + 0.1 iJ + y3 = A cos(t)

More precisely, consider a periodic orbit A( of some fiow <Pt
in IRn arising from a nonlinear vector field. Let ~ C IRn be
a hypersurface of dimension n-1 which is tl'ansverse to the
fiow <Pt. Thus the first return 01' Poincaré map P = ~~ ~

is defined for a point q E ~ by

i·····;··..·
l~·.
lQ>

~"'.. :~:'.".'.' A=9 ld·.....""... I····>,,:

. v."' ~;>

where TIO is the time taken for the orbit <pdq) basec1 at q to
first return to ~.

(6)P(q)

This map is very useful in the analysis of nonlinear systems
since it takes place in a space whieh is of lower dimension
than the actuaI system. It is therefore easy to see that
a fixed point of P cOl'l'esponds to a perioc1ic orbit of pe
riod 27r /w for the fiow. Similarly, a subharmonic of periocl
I{ x 27r /w wiU appear as I\. fixed points of P. Quasiperi
odie and chaotic regimes can also be readily recognized us
ing Poincaré maps. For instanee, the first-return map of
a ehaotic solution is formed by a well-defined and finely
structured set of points for noise-free dissipative systems.
Such maps ca be used in the validation of identified modeIs
and reconstructed attractors (Aguil'l'e and Billings, 1994b ).

A=llA=4.5

3.r---·
3[ . -.

2·1-'C:~·V~.'.
/""/~2· ;~ . ./.. ,

1.5~ --~/~'
,

a.5!

Figure 1 - Bifurcation diagram for the Duffing-Ueda oscil
lator, see section 4.5. A, the amplitude of the input, is the
bifurcation parameter.

From the above c1efinition it is clear that if a system has
n > 3, the Poincaré map would require more than two di
mensions for a graphical presentation. In order to restrict
the plots to two-dimensionaI figures, y(t - ~») is plotted
against y(t) at a constant period. For periodicaIly driven
systems the input period is a natural choice and the result
ing plot is caUed a Poincaré section.

y(t)

y(t)

This procedure amounts to defining the Poincaré plane ~P

in the pseudo-phase-space and then sampling the orbit rep
resented in such a space. The choice of~) is not criticaI
but it should not be chosen to be too smaU nor too large
compared to the cOl'l'elation time of the trajectory. Other
wise the geometry and fine structure of the attractor would
not be weU represented. The qualitative information con
veyed by both Poincaré maps and sections are equivalent as
demonstrated by the theory of embeddings (Takens, 1980;
Sauer et alii, 1991).

Although the Poincaré sections are usuaUy obtained by
means of numerical simulation, it is possible, although not
always feasible, to determine Poincaré maps analytically
(Guckenheimer and Holmes, 1983; Brown and CIma, 1993).

2.8 Routes to chaos

y(t)

Figure 2 - A Poincaré section is obtained by defining a
plane in state space which is transversal to the fiow. The
image formed on such a plane is the Poincaré section of
the attractor and wiU display fractal structure if such an
attractor is chaotic.

In the study of chaotic systems it is somewhat instructive
to consider the c1ifferent routes to chaos in order to gain
further insight about the dynamics of the system under
investigation. As pointed out "the benefit in identifying
a particular prechaos pattern of motion with one of these
now classic models is that a body of mathematicaI work
on each exists which may offer better understanding of the
chaotic phenomenon under study" (Moon, 1987,page 62).

Because a thorough study of the routes to chaos is be-
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yond the immediate scope of this work, some of the most
weU-known patterns wiU be listed with some references for
further reading. Some of the routes to chaos reported in
the litel'ature indude period dO'/lbling ca8cade (Feigenbaum,
1983; Wiesenfeld, 1989), q1ta81-periodic rO'/lte to cha08
(Moon, 1987), iterm.ittency (ManneviUe and Pomeau, 1980;
Kadanoff, 198:3), freq1tency locking (Swinney, 1983). For
other routes to chaos see (Robinson, 1982) and referenees
therein.

2.9 Sensitivity to initial conditions

(o) (b)

~
J"'-----' " I

I/
I

, ! J
o 0.1 C. U o.t • .'''<i ,'s

(c) (d)

:~ ~W~~I~~W{oll

nt G.4 OI 0.1 1 ..
(c) (f)

Probably the most fundamental property of chaotic sys
tems is the sensitive dependenee on initial conditions. This
feature arises due to the local divergence of trajectories in

. state space in at least one 'direction'. This wiU be also
addressed in the next section.

In order to iUustrate sensitivity to initial conditions anel
one of its main consequences, it will be helpful to consider
the map

In order to iterate equation (7) on a digital computeI', an
initial conelition y(O) is required. Using this value, the right
hanel side of equation (7) can be evaluated for any vaIue
of A. This proeluces y( 1) which should be 'fedback' anel
useel as the initiaI conelition in the following iteration. This
procedure can be then repeateel as many times as neeessary
to generate a time series y(O), y(I), y(2), ....

A graphical way of seeing this is iUustrateel in figure 3. It
should be noteel that the right hand siele of equation (7) is a
parabola, as shown in figure 3a. Thus to evaluate equation
(7) is equivalent to finei the value on the parabola which
eorresponds to the initial conelition. This is representeel
in figure 3a by the first vertical line. The feeding back of
the new value is then representeel by projecting the value
found on the parabola on the bisector. This completes one
iteration.

y(k) = A [1 - y(k - 1)] y(Ã~ - 1) . (7)

Figure 3 - GraphieaI iteration of the logistic equation (I)
(a) regular motion (A = 2.6) and (b) respective time series.
(c) ehaotie motion (A = 3.9), anel (el) respective time series.
In these figures the same initial eonditiol1 has been used
namely y(O) = 0.22. In figures (e) and (f) an interval oJ
initial eonditions has been iterated for the same values oJ
A as above. The intervaIs useel were y(O) E [0.22 0.24'
and y(O) E [0.220 0.221], respectively. Note how sueh aI;
interval is amplifieel when the system is chaotie, (f). Thi,
is due to the sensitive elependence on initial conelitions.

Considering a much narrower interval of initial conditiom
anel proeeeeling as before yieldeel the results shown in figurE
3f for whieh A = 3.9. Clearly, the interval of initial coneli
tions was wielened at each iteration. Sueh an intervaI ean
be interpreted as an errar in the original initial conelition.
y(O) = 0.22. In practice errors in initial conditions wiU be
aIways present due to a number offactors such as noise, elig
italization effects, rounel-off errors, finite worellength preci
sion, etc. It is this effeet of amplifying errors in initial
eonelitions which is known as the sensitive depenelenee on
initial conelitions anel an immeeliate consequence of this fea
ture is the impossibility of making long-tenn preelietion for
chaotic systems. The next section describes indices which
quantify the sensitivity to initial conditions.

Choosing the initia! condition y(O) = 0.22 anel A = 2.6, fig
ure 3a shows the iterative procedure and reveals that after
a few iterations the equation settles to a point attraetor.
The respective time series is shown in figure 3b. The same
procedure was foUowed for the same initial condition and
A = 3.9. The results are shown in figures 3e-d. Clearly, the
equation does not settle onto any fixed point anel not even
onto a limit cycle. In fact, it is known that equation (7)
displays chaos for A = 3.9.

What happens if instead of a single initial eondition an
interval of initial eonditions is iterated? This is shown in
figures 3e-f. For A = 2.6, the map wiU eventuaUy settle
to the same point attractor as before. This is a typica!
result for regular stable systems and it iUustrates how aU
the trajectories based on the initiaI conditions taken from
the original interval converge to the same attractor.

2.10 lyapunovexponents

Lyapunov exponents measure the average divergenee 01
nearby trajectories aIong certain 'elirections' in state space.
A chaotic attracting set has at least one positive Lyapunov
exponent anel no Lyapunov exponent of a non-chaotic at
tracting set can be positive. Consequently such exponent,
have been useel as a criterion to eletermine if a given at
tracting set is 01' is not chaotic (Wolf, 1986). Recently the
eoncept of local Lyapunov exponents has been investigateel
(Abarbanel, 1992). The local exponents describe orbit in
stabilities a fixed numbel' of steps aheael rather than an
infinite number. The (global) Lyapunov exponents of an
attraeting set of length N can be defined as 1

1 Many authors use log2 in this definition
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1
),i = lim ---;c loge ji(N),

N--HXJ Iv
i=1,2, ... ,n, (8)

of an attracting set of length N can be elefineel as (see also
equation (8))

where loge = In and the {ji(N)}i'=l are the ahsolute values
of the eigenvalues of

N

),1 == ~ lim "" log 11 Dk+1 II
N N-;=~ e II Dk II ' (10)

where Df( Yi) E IR" x n is the J acobian matrix of the n

dimensional differential equation (or discrete map) evalu
ated at Yi, and {ydt~l is a trajectory on the attractor.
Note that n is the dynamical oreler of the system.

In l11any situations the reconstructeel or identifieel modeIs
may have a dimension which is larger than that of the
original systems and therefore such moelels have more Lya
punov exponents. These 'extra' exponents are calleel S]J'lI

rious Lyap'llnov exponents. The estimation of Lyapunov
exponents is known to be a nontrivial task. The simplest
algorithms (Wolf et alii, 1985; Moon, 1987) can only re
liably estimate the largest Lyapunov exponent (Vastano
and Kostelich, 1986). Estimating the entire spectrum is
a typically ill-conelitioned problem and requires more so
phisticated algorithms (Parker and CIma, 1989). Further
problems arise when it comes to decieling which of the es
til11ated exponents are tnle anel which are sp'llrious (Stoop
anel Parisi, 1991; Parlitz, 1992; Abarbanel, 1992). The es
timation of Lyapunov exponents is currently an active field
of research as can be verifieel from the following references
(Sano and Sawaela, 198.5; Eckl11ann et a/ii, 1986; Bryant et
alú, 1990; Brown et alii, 1991; Parlitz, 1992; Kadtke et alii,
199:3; Nicolis and Nicolis, 1993; Chialina et alii, 1994). For
application of Lyapunov exponents in the quantification of
real elata see (Branelstiíter et alii, 198:3; Wolf and Bessoir,
1991; Vastano anel Kostelich, 1986).

where Df(Xi) is the J acobian matrix of f(·) evaluated at
Xi, and also of simulating the system

where Dk is the distance betweell two points on nearby tra
jectories at time k. The estimation of ), 1 is a simulation
based calculation (Moon, 1987: Parker anel CIma, 1989).
The main idea is to be able to eletermine the ratio

(11)

(12)

II Dl II
II Do II '

D= Df(x;) D ,

II Xl - (;C1 + DIl II
II a:o - (xo + Do) II

where .r1 is another point on the trajectory x(k), namely
.r(êlL), ;C1+D1 is a point obtaineel by following the evolution
of the ranelomly chosen initial conelition ;co + Do over the
interval êlL where êlL will be referred to as the Lyapunov
interval.

From the last equation it is clear that one onlv needs to
follow the evolution of perturbations Di along th~ reference
trajectory x( k). It is well known that the Jacobian ma
trix D f( Xi) elescribes the elynamics of the system for small
perturbations in the neighborhood of Xi. Thlls the com
putation of the largest Lyapunov exponent, ),1, consists in
solving the variational equations

(9)[Df(YN )][Df(YN-1 )] ... [Df(Y1)] ,

if the trajectory x( k) ={Xi}~O is not available in advance.
Equations (12) anel (13) are simulated and the ratio II Dk+1 II
/ I1 Dk II is ca.lculated once at each êlL interval. Therefore
estimating ),1 consists in successively preelicting the systems
governed by Df O anel f O êlL seconds into the future
and assessing the expansion of the perturbations Di.

In view of such elifliculties and the fact that the largest
Lyapunov exponent, ),1, is in many cases the only positive
exponent2 anel that this gives an indication of how far into
the future accurate preelictions can be made, it seems ap
propriate to use ),1 to characterize a chaotic attracting set
(Rosenstein et alii, 1993). Ineleeel, the largest Lyapunov
exponent has been useel in this way and to compare sev
eral identified models (Abarbanel et alii, 1989; Abarbanel
et alli, 1990; Principe et alii, 1992).

x = f(x) (13)

The algorithm suggested in (Moon, 1987) for estimating ),1

is described below. A similar algorithm which simultane
ously estimates the correlation dimension to be elefineel in
section 2.11 has been recently investigateel in (Rosenstein
et alii, 1993).

Consider a point Xo on the trajectory x(k) (for the moment
it is assumed that such a trajectory is available a priori),
say Xo =x(O), anel a nearby point Xo+Do. For simplicity it is
assumeel that x(k) E IR, but in general higher-dimensional
systems will be the case. The largest Lyapunov exponent

Some of the ideas described above are illustrateel in figures
4a-b. The former figure is the bifurcation diagram of the
logistic equation (7). Figure 4b shows the largest Lyapunov
exponent of such an equation for a range of values of A.
The largest Lyapunov exponent was ca.Iculated as elescribeel
above. Note that ),1 = O at bifurcation points and that
),1 > Ofor chaotic regimes as predicted by the theory. These
figures a.Iso reveal the narrow windows of regular dynamics
which are surrounded by chaos.

2.11 Correlation dimension

2In this case /\1 ;::: h, where h is the Kolmogorov-Sinai or ITletric
entf,0PY. Note that for dissipative systeITls (chaotic and non-chaotic)
Li=l '\; < O (Eclunann and Ruelle, 1985; Wolf, 1986).

Another quantitative measure of an attracting set is the
fractal elimension. In theory, the fractal dimension of a
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chaotic (non-chaotic) attracting set is non-integer (integer).
An exception to this rule are fai fractais which have in
teger fractal dimension which is consequently inadequate
to describe the properties of such fractais (Farmer, 1986).
Nonetheless, like the largest Lyapunov exponent, the frac
tal dimension can be, in principie, used not only to diagnose
chaos but also to provide some further dynamical informa
tion in most cases (Grassberger ei alú. 1991). A deeper
treatment can be found in (Russell ei ahi, 1980; Farmer ei
alú. 198:3; Grassberger anti Procaccia, 198:3a; Atten ei alii.
1984; Caputo ei alii .. 1986) for raw data and in (Badii and
Politi, 1986; Badii ei alii, 1988; Mitschke, 1990; Brown ei
alá, H)92; Sauer and Yorke. 19~);3) for filtered time series.

The fractal dimension is related to the amount of informa
tion required to characterize a certain trajectory. If the
fractal dimension of an attracting set is D + li, D E ~+,

where O< li < 1. then the smallest number of first-order
differential equations required to describe the data is D+ 1.

There are several types of fractal dimension such as the
poiniwise dimension, correlat-ion dimension, informaiion
dimension, Hausdor/J dimension, Lyapnnov dimension, for
a comparison of some of these dimensions see (Farmer,
1982; Hentschel and Procaccia, 1983; Moon, 1987). For
many strange attractors, however, such measures give
roughly the same value (Moon, 1987; Parker and Cima,
1989). The correlation dimension:3 (Grassberger and Pro
caccia, 1983b), however, is clearly the most widely used
measure of fractal dimension employed in the literature.

A time series {Y;}~l can be embedded in the phase space
where it is represented as a sequence of de-dimensional
points Yj = [Yj Yj-1 ... Yj-d e +1]' Suppose the distance
between two such points is4 S'ij =1 Yi - Yj I then a cor
relation function is defined as (Grassberger and Procaccia,
1983b)

-1

-2
C(e) = lim ~ (number of pairs (i, j) with S'ij < é) .

N~co N
(14)

-3

-4

-5'---------'--------'--------~-----'---'

2.9 3.2 3.5 3.8
A

The correlation dimension is then defined as

D I
· loge C(é)

c = 1n1 .
e-co loge é

(15)

Figure 4 - (a) Bifurcation diagram of the logistic map, and
(b) respective largest Lyapunov exponent, .\1. Note that
.\1 = O at bifurcation points and that .\1 > O for chaotic
regll11es.

For many attractors De will be (roughly) constant for val
ues of é within a certain range. In theory, the choice of
de does not influence the final value of De if de is greater
than a certain value. In particular, it has been shown that
provided there are sufficient noise-free data, de = Ceil(De ),

where Ceil(·) is the smallest integer greater than or equal
to De (Ding ei alii, 1993) and that this result remains trne
in the case the data have been filtered using finiie imp1tlse

3This measure can be seen as a genera./ised dimension and is con
sidered to be the easiest to estimate reliably (Grassberger, 1986b) and
thus remains the most popular procedure so faro

4 Several nonns can be used here such as Euclidean, 1'1 , etc.
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Figure 5 - Logarithm of the correlation function C(t:) plot
ted against log( c) for embedding dimensions de = 2 to
de = 10. The correct value, De ~ 2.0 is attained for de 2': 5.

response (FIR) filters (Sauer and Yorke, 199:3). In prac
tice, due to the lack of data aud to the presence of noise,
de > Ceil( De), thus several estimates of the correlation di
mension are obtained for increasing values of de. If the data
were produced by a low-dimensional system, such estimates
would eventually converge. Of course, these results depend
largely on both the amount and quality of the data avail
able. For a brief account of data requirements, see seetion
3.1 below.

In order to illustrate the estima.tion of De a time series with
N = 15000 data points was obtained by simulating Chua's
circuit (see section 4.3) operating on the double scroll at
tractor. The correlation function C( t:) was then calculated
for 2 ::; de ::; 10 and plotted in figure 5. For small em
bedding dimensions (de = 2) the correlation dimension is
De ~ 1.8 but as de is increased the scaling region converges
to the correct value De ~ 2.0 for de 2': 5.

One of the properties of some fractaIs is self-similarity. This
is illustrated in figure 6 which shows the well known Hénon
attractor (see aIso section 4.2) and an amplification of a
small section of one of its legs. It should be observed tha.t
what appears to be a single 'line' in the attractor turns out
to be two lines (see zoom in figure 6). However, if each of
these lines were zoomed again it would become apparent
that they are composed of other two lines each and this
continues ad infinitum. This particular fractal structure is
sometimes referred to as having a Cantor set structure.

Probably the greatest application of the correlation dimen
sion is to diagnose if the underlying dynamics of a time
series have been produced by a low-order system (Grass-

-o.!lr-~~~~~~~"";'>...,

Figure 6 - Fractal structure of the Hénon attractor.

berger, 1986a; Lorenz, 1991). Because this is an impor
tant problem, the estimation of correlation dimension has
attracted much attention in the last years. Many pa
pers have focused on determining the causes of bad esti
mates (Theiler, 1986), estimating error-bounds (Holzfuss
and Mayer-Kress, 1986; Judd and Mees, 1991) and sug
gesting improvements on the original algorithm described
in (Grassberger and Procaccia, 1983b).

2.12 Other invariants

There are a number of less used invariants of st.range attrac
tors report.ed in the literature such as the Kolmogorov 01'

metric entropy, topologicaI entropy, generalised entropies
and dimensions, partial dimensions, mutuaI information,
etc. (Grassberger aud Procaccia, 1984; Eckmann and Ru
elle, 1985; Fraser, 1986; Grassberger, 1986b).

Vlith few exceptions (Hsu and Kim, 1985), statistics have
received little attention as invariant. measures of strange
attractors. Apparent.ly, the most useful such measure is the
probability densiiy funetion (Packard ei alii, 1980; Moon,
1987; Vallée et alii, 1984; Kapitaniak, 1988)

The estimation of unstable limit cycles has also been put
forward as a way of charaeterizing strange attractors. The
motivation behind this approach is that because a strange
attractor can be viewed as a bundle of infinite unstable
limit cycles, the number of the periodic orbits, the respec
tive distribution and properties should be representative
of the attractor dynamics. Indeed, from such information
other invariants such as entropies and dimensions can be
estimat.ed (Auerbach ei alli, 1987). For more information
on this subjeet, see (Grebogi et alii, 1987; Cvitanovié, 1988;
Lathorp and Kostelich, 1989; Lathorp and Kost.elich, 1992)

3 DIAGNOSING CHAOS

In general, the problem of diagnosing chaos can be reduced
to estimating invariants which would suggest that the data
are chaotic. For instance, positive Lyapunov exponents,
non-integer dimensions and fractal structures in Poincaré
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sections would suggest the presence of chaos. The main
question is how to confidently estimate such properties from
the data, especia.lly when the available records are relatively
short and possibly noisy. The tedmiques that have been
suggesteel in the literature can be elivided in two major
groups.

N on-paraluetric luethods. These incluele the use of
tools which take the data anel estimate dynamical invari
ants which, in turn, will give an indication of the presence
of chaos. Such tools incluele power spectra, the largest Lya
punov exponent. the correlation dimension, reconstructed
trajectories, Poincaré sections, reIative rotation rates etc.
Detailed description and a.pplication of these techniques
can be founel in the literature (Moon, 1987; Tufillaro et
alii, 1990; Dellton anel Diamond, 1991). For a recent com
ment of the practical difficulties in using Lyapunov expo
nents anel dimensions for diagnosing chaos see (Mitschke
anel Dammig, 1993).

Two practical difficulties common to most of these ap
proaches are the number of data POilltS available and the
noise present in the data. These aspects are briefiy dis
cussed in the following section.

Poincaré sections are very popular for detecting chaos be
cause for a chaotic system the Poincaré section reveals the
fractal structure of the attractor. However, in order to be
able to elistinguish between a fractal object and a fuzzy
doud of points a certain amount of data is necessary. Moon
(1987) has suggested that a Poincaré section shoulel consist
of at least 4000 points before dedaring a system chaotic.
For non-autonomous systems this means 4 x 103 forcing
periods which could amount to 4 x 105 data points.

Predietion-based techniques. Some methods try to di
agnose chaos in a data set baseel upon preeliction errors
(Sugihara anel May, 1990; Casdagli, 1991; EIsner, 1992;
Kennel anel Isabelle, 1992). Thus preelictors are estimateel
from, say, the first half of the elata records and used to
predict over the last half. CImos can, in principIe, be di
agnosed based on how the prediction errors behave as the
prediction time is increased (Sugihara and May, 1990), 01'

based on how the prediction errors related to the true data
compare to the prediction errors obtained from 'faked' data
which are random but have the same length anel spectral
magnitude as the original data (Kennel and Isabelle, 1992).
A related approach has been termeel the method of s'Urro
gate data (Theiler et alii, 1992a; Theiler et alii, 1992aa).

Regardless of which criterion is used to decide if the data
are chaotic 01' not, predictions have to be made. Clearly,
the viability of these approaches depends on how easily pre
dictors can be estimated and on the convenience of mak
ing predictions. Once a predictor is estimated criteria anel
statistics such as the ones presented in (Sugihara and May,
1990; Kennel and Isabelle, 1992) can be used to diagnose
chaos.

3.1 Data requirements

The length and quality of the data records are crucial in
the problem of characterization of strange attractors. At
present, there seems to be no general rule which eletermines
the amount of data required to learn the dynamics, to es
timate Lyapunov exponents and the correlation elimension
of attractors. However it is known that "in general the de
tailed diagnosis of chaotic elynamical systems requires long
time series of high quality" (Ruelle. 1987).

Typical values of elata length for learning the dynamics are
2 x 104 (Farmer and Sidorowich, 1987; Abarbanel et alii,
1990) for systems of elimension 2 to 3, 1.2 X 104 - 4 X 104

(Caselagli. 1991).

It has been argued that to estimate the Lyapunov expo
nellts 103 -104 forcing periods shoulel be used (Denton and
Diamonel. 1991). Other estimates are N > lOD (quoteel in
(Rosenstein et alii, 1993) anel N > :30D where D is the di
mension ofthe system (W'olf et alii, 1985) but in some cases
at least 2 x 30D was required (Abarbanel et alii, 1990).
Typical examples in the literature use 4 x 104 - 6.4 X 104

(Eckmann et alii, 1986) 1.6 x 104 (Wolf anel Bessoir, 1991)
anel 2 x 104 elata points (Ellner et alii, 1991).

Fairly long time series are also requireel for estimating the
correlation dimensiono In fact, it has been pointed out
that dimension calculations generally require larger data
recorels (Wolf and Bessoir, 1991). For a strange attractor,
if insufficient data is useel the results would indicate the
dimension of certain parts of the attractor rather than the
elimension of the entire attractor (Denton anel Diamond,
1991). However, results have been reported which suggest
that consistent estimates of the correlation dimension can
be obtained from data sequences with less than 1000 points
(Abraham et alii, 1986). On the other hanel, there seems
to be evielence that "spuriously small dimension estimates
can be obtained from using too few, too finely sampleel anel
too highly smootheel data" (Grassberger, 1986a). More
over, the use of short and noisy data sets may cause the
correct scaling regions to become increasingly shorter and
may cause the estimate of the correlation elimension to con
verge to the correct result for relatively large values of the
embedding dimension (Ding et alii, 1993). Thus typical
examples use 1.5 x 104 - 2.5 X 104 (Grassberger and Procac
cia, 1983b) and 0.8 x 104

- 30 X 104 data points (Atten et
alii, 1984). Thus there seems to be no agreeel upon rule
to determine the amount of data required to estimate di
mensions with confidence but it appears that at least a few
thousanel points for low dimensional attractors are neeeleel
(Theiler, 1986; Havstad and Ehlers, 1989; Ruelle, 1990; Es
sex and Nerenberg, 1991). In particular, N > lOD d 2 has
been quoteel in (Ding et alii, 1993).

It should be realized that the difficulties in obtaining long
time series goes beyonel problems such as storage anel com
putation time. Indeeel, it has been pointeel out that for
some real systems, stationarity cannot always be guaran
teeel even over relatively short periods of time. Examples of
this induele biological systems (May, 1987; Denton anel Dia
mond, 1991), ecological and epielemiologica.l elata (Schaffer,
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Figure 7 - (a) The CIma circuit anel (b) voltage-current
characteristic of the piecewise linear component, NR,
known as Chua's elioele.

As the logistic equation, the Hénon map is a popular bench
mark useel to test a variety of algorithms concerning the
analysis anel signal processing of nonlinear elynamical sys
tems.

1985; Sugihara anel May, 1990). A test for stationarity has
been recently suggesteel in (Isliker anel Kurths, 1993).

4 SOME NONLlNEAR MODELS

The objective of this section is to proviele the reaeler will
a. collection of well elocumenteel simpIe nonlinear 1l10elels
which elisplay a wiele variety of elynamical regimes which
incluele self-oscillations, limit cycles, perioel-eloubling cas
caeles anel chaos.

4.1 THE lOGISTIC EQUATION

In many fielels of science the elynamics of a particular sys
tem are better representeel by eliscrete maps, also calleel
elifference equations, of the form

tL

L C,

(b)

m

4.3 The Chlla circlIit

4.2 The Hénon map

Due to its simplicity anel also because some elynamical in
variants can be deriveel analytically for this moelel, the 10
gistic map is frequently useel as a bench test in the stuely
of elynamical systems. For a review on first-oreler maps see
(May, 1980; May, 1987) .

This equation inelicates that the value of the variable y at
time k + T is a function of the same variable at time k.
The basic equation (16) applies to a number of situations
which incluele switching power circuits (Tse, 1994), popula
tion elynamics, genetics, elemography, economics anel social
sciences, see (May, 1975; May, 1976) anel references therein.

The most well known, anel certainly one of the simplest,
examples of (16) is equation (7) known as the logistic equa
tion which was originally suggesteel as a population elynam
ics moelel (May, 1976) anel elisplays a variety of elynamical
regimes as the bifurcation parameter, A., is varieel in the
interval 2.8 ~ A. ~ 3.9. The bifurcation eliagram of this map,
which is shown in figure 4a, is a classical example of the
period-doubling rmt.te to chaos.

(18)
x > 1
I x I~ 1
x <-1

{

~ = n(y - h(x))
y=:r-y+z
i = -f3y

{

m 1x+(mO -m1 )

h(x) = mox
m1a.: - (mo - In1)

Chua's circuit is certainly one of the most well stuelieel non
linear circuits anel a great number of papers ensure that the
elynamics of this circuit are also well elocumenteel, see for
instance (CIma anel Hasler, 199:3; Maelan, 1993; Matsumoto
et afii, 1993).

where mo = -1/7 anel m1 = 2/7. Varying the parameters
n anel f3 the circuit elisplays several regular anel chaotic
regimes. This system is a particular case of the more gen
eral unfolded Chu,a's circu,it (CIma, 1993). The well known
elouble scroll attractor, for instance, is obtaineel for n =9
anel f3 = 100/7, see figure. 8. For this attractor À1 = 0.23
(Matsumoto et alii, 1985; Chialina et afii, 1994). The esti
mateel value of the correlation elimension for this attractor
was De =1.99 ± 0.023.

The normalizeel equations of Chua's circuit can be written
as (CIma et alii, 1986; CIma, 1992; Maelan, 1993; CIma anel
Hasler, 1993)

(16)y(Á~ + T) = F[y(k)] .

The map (Hénon, 1976)

{
x(k) = 1- ax(k _1)2 + y(k: -1),
y(k) = bx(k -1)

(17)

The only nonlinear element in Chua's circuit is a two
terminal piecewise-linear resistor, calleel Chua's elioele,
which has also' been implemented as an integrated cir
cuit (Cruz anel CIma, 1992), however the entire circuit can
be implementeel with 'off-the-shelf' components (Kennedy,
1992).

was proposeel by the French astronomer Michel Hénon as an
approximation of a Poincaré mapping of the Lorenz system
(see section 4.6). In the literature the parameter values
usua.lly useel are a =1.4 anel b=0.3. Thus these values leael
to the so-calleel Hénon attractor shown in figure 6. For
a more eletaileel elescription of the elynamical properties of
this map see (Moon, 1987; Peitgen et alii, 1992) .

4.4 The DlIffing-Holmes oscillator

One of the classical bench tests in mechanics is the Duffing
oscillator (Duffing, 1918). Two elifferent versions of this
oscillator have been investigated in connection with chaos
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Figure 8 - The double sero11 Chua's attractor.

by Philip Holmes and Yoshishuke Ueda. The equations
whieh deseribe the dynamies of sueh osei11ators are briefiy
deseribed in this and the fo11owing seetion, respectively. a

The we11 known Dufling-Holmes equation is eommonly used
to model mechanieal osei11ations arising in two-we11 poten
tial problems (Moon, 1987) beeause this system is eharae
teristie of many of the structural nonlinearities eneountered
in praetiee (Hunter, 1992). The equation whieh models this
system is (Holmes, 1979; Moon and Holmes, 1979)

:ij + ó iJ - f3 y + y3 = A cos (w t) . (19)

The bifureation diagram for this system for w = 1 rad/s and
0.22:s A :S 0.35 is shown in figure 9a. For Ó = 0.15, f3 =
1, A=0.3 anel w=lrad/s, this system settles to a strange
attraetor whieh is shown in figure 9b. The largest Lyapunov
exponent of this attraetor is )'1 = 0.20 and the eorrelation
elimension equals De = 2.40 ± 0.019.

1.5.------.-----.----.--------.--..---~--,

0.5

-1

-1.5

Equation (19) has been used to model a wiele range of sys
tems in seienee and engineering, a few examples include
(MeCa11um anel Gilmore, 1993; Parlitz, 1993).

-1.5 -1 -0.5 O
y(k)

0.5 1.5

4.5 The DufFing-Ueda oscillator

The Dufling-Ueda equation (Ueda, 1985)
b

y+kiJ+y3=U(t) (20)

Figure 9 - (a) bifureation eliagram, and (b) Poinearé see
tion ofthe Dufling-Hohnes osei11ator, for A = 0.3 and 11, = 5.

was originally proposed as a model for nonlinear osei11a
tors anel has become a beneh test for the study of non-
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Figure 10 - The Duffing-Ueda oscillator.
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linear dynamics. It has also been considered as a simple
paradigm for chaotic dynamics in electrical science (Moon.
1987). Consequently this system has attracted some atten
tion and has been used to investigate nonlinear elynamics in
different situations (Feigenbaum, 198:3; Kapitaniak, 1988).
One of the main reasons for this is that in spite of being sim
pie this moelel can produce a variety of dynamical regimes,
from period-one motions to chaos (Ueda, 1980; Ueda, H)85;
Kawakami, 1986).

The Poincaré sections and bifurcation diagrams were ob
tained as indicated respectively in sections 2.7 and 2.6 for
the input 1l.(i) = A cos(wi). A was used as the bifurca
tion parameter in the bifurcation diagrams. The bifurcation
shown in figure 1 was obtained by taking k = 0.1, w = 1 rad/s
and simulating equation (20) digitally using a fourth-order
Runge-Kutta algarithm with an integration interval equal
to 7r/3000. Figures lIa and llb shows the Poincaré section
of the attractors at A = 5.7 and at A = 11, respectively.
The largest Lyapunov exponent of these attractors are re
spectively .\1 = 0.099 and .\1 = 0.11 and the carrelation
dimensions equal De = 2.10 ± 0.050 and De = 2.19 ± 0.020.
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The bifurcation diagram in figure 1 reveals a number of dy
namical regimes displayeel by this oscillator in the range of
values of A considered. In particular, at A::::::: 4.86 the system
undergoes a period doubling (flip) bifurcation. This hap
pens again at A::::::: 5.41 and characterizes the well known pe
riod doubling route to chaos (Feigenbaum, 1983). Another
similar cascade begins at A ::::::: 9.67 preceding a different
chaotic regime. Two chaotic windows can be distinguished
at approximately 5.55 :S A :S 5.82 and 9.94 :S A :S 11.64.
At A ::::::: 6.61 the system undergoes a supercritical pitch
fork bifurcation and at A::::::: 9.67 it undergoes a sub criticaI
pitchfork bifurcation. The bifurcation diagram begins and
ends with period-1 regimes and displays period-3 dynamics
for 5.82 :S A :S 9.67. It should be noted that in the range
4.5 :S A:S 5.5 there are two co-existent. attractars undergo
ing a sequence of period-doublings, t.his becomes apparent
by using a different set of initial conditions and explains
the broken lines.

4.6 The lorenz equations

The well known Lorenz equat.ions are (Lorenz, 1963) b

{
.~ = rr (y - x)
y = px y
z=xy-(3z.

xz (21)

Figure 11 - Poincaré sections for t.he Duffing-Ueda oscilla
t.ar, for Tp =200 x 7r/3000 anel (a) A=5.7, (b) A=l1.

Choosing rr=10, (3=8/3 and p=28, t.he syst.em described
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Figure 13 - The modifiecl van der Pol oscillator.

anel Akamatsu, 1981)

:ii +P (y~ - lhi +:1/ = A. cos(w 1) . (22)

This is known as the modified van der Pai oBcil/ator (Moon,
1987). Alike the eliverse versions of the Duffing system,
this equation also has a cubic term which is absent in the
original van der Pol equation. On the other hanel, alike the
van eler Pol oscillator, the circuit governeel by equation (22)
also exhibits self-sustained oscillations, that is, oscillations
for A = Owith w = 1.62 rael/s.

Figure 12 - The Lorenz attractor.

by equations (21) settles to the well kllown Lorenz attrac
tor, shown in figure 12.

Since the Lorenz equations were first published in 1963 they
have become a standard for studying complex dynamics.
Fairly detailed descriptions of the dynamics of this system
can be found in (Sparrow, 1982; Thompson anel Stewart,
1986; Peitgen et aiii, 1992). The popularity of the Lorenz
equations is not only due to the fact that it was one of
the first systems published in connection with chaos but
also because it is a physically motivated modeI. Further,
although the Lorenz equations moelel some aspects of fluid
dynamics, it has been shown that the instabilities of such a
model are identical with that of the single moele laser and
applicahle to underdampeellaser spikes (Haken, 1975) anel
that the open-Ioop dynamics of smooth-air-gap brushless
De motors can also be modeled by such equations (Hemati,
1994).

The bifurcation diagram of this system is shown in figure
14a. This bifurcation eliagram presents a number of co
existent attractors anel dynamical regimes interwoven in a
very complicated manner. It. is worth pointing out that
for O< A:::; 3 the oscillator presents quasi-perioelic motions
which cannot be distinguisheel from the chaotic dynamics
baseel upon bifurcation diagrams only.

Taking p = 0.2, 1'1=17 and w = 4 rad/s, this system settles
to the strange attractor shown in figure 14b. The largest
Lyapunov exponent of this attractor is À1 = 0.33 and the
correlation elimension equals De =2.18 ± 0.028.

4.8 The Rõssler equations

The Hénon map elescribed in section 4.2 was originally sug
gesteel as a model for the Poicaré map of the Lorenz equa
tions. Similarly, Rossler proposed the following set of equa
tions (Rossler, 1976)

The largest Lyapunov exponent of the attractor shown in
figure 12 is)'1 =0.90 (Peitgen et aiii, 1992) and the corre
lation dimension equals De =2.01 ± 0.017. {

X = -(y + -=)
y=x+O'y
:: = O' + -= (x - p,) ,

(23)

4.7 The modified van der Pol oscillator

During the twenties van der Pol investigated an electrical
circuit in which the nonlinearity was introduced by a vac
uum valve. One of the principal characteristics of such a
circuit was that it exhibiteel self-sustained oscillations aiso
called relaxation oscillations, thus lending itself as a model
for a number of real oscillating systems such as the heart
(van der Pol and van der Mark, 1928).

The normalized equations of a modified version of the van
der Pol oscillator, which has negative resistance, are (Veda

as a simplifieel version of the Lorenz system, 01' in Rossler 's
words a "modei of a model". The simplification attained by
Rossler can be appreciated by noticing that the attractor
exhibiteel by (23), with [1'=0.2 and p=5.7 see figure 15., is
composed of a single spiral which resembles a lVIobius band
insteael of the two spirals which can be clearly elistinguisheel
in the Lorenz attractor.

The largest Lyapunov exponent of the attractor shown in
figure 15 is À1 = 0.074 , the Lyapunov dimension and the
correlation dimension of this attractor are DL = 2.01 and
De = 1.91 ± 0.002, respectively.
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Figure 15 - The Rossler attractor.

The field of possible applications of equations of the type of
(23) ranges from astrophysics, via chemistry and biology, to
economics (Rossler, 1976). In fact, the Rossler and Lorenz
attractors are regarded as paradigms for chaos thus the
chaotic dynamics of some systems are sometimes classified
as "Rossler-like" or "Lorenz-like" chaos (Gilmore, 1993).

5 DISCUSSION ANO FURTHER REAOING

The analysis and quantification of chaotic dynamics is a
relatively recent area. Nevertheless there is an immense
collection of scientific papers and books devoted to this
subject and any attempt to produce a survey on nonlin
ear dynamics and clla.os, no matter how thorough, would
be, in all certainty, just a rough sketch on this fascinating
subject.

The main objective of this paper has been to review in a
very pragmatic way a few concepts which are believed to
be basic. Since it would be inappropriate to produce an
in-depth review, a rather generous number of references
has been cited for further reading. Needless to say, the
reference list does not exhaust the wealth of papers and
books currently availahle.

The following references seem to be a good starting point.
The books (Gleick, 1987) and (Stewart, 1989) are a good
introduction for the average reader. A more formal cover
age is given by (Thompson and Stewart, 1986) and (Moon,
1987). For a mathematical exposition on the subject see
(Guckenheimer and Holmes, 198:3) and (\Viggins, 1990).
Some practical aspects of bifurcation and chaos are dis
cussed in (Matsumoto et alii, 1993) and a good account
on computer algorithms for nonlinear systems applications
can be found in (Parker and CIma, 1989). See also (Abra.-
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h3m and Shaw, 1992) for a beautifully illustrated introduc
tion to nonlinear dynamics and bifurcations. The following
papers are also good introductions to nonlinear dynamics
and chaos (Mees and Sparrow, 1981; Shaw, 1981; Mees,
1983; Eckmann anel Ruelle, 1985; Crutchfielel et alii, 1986;
Mees anel Sparrow, 1987; Parker anel CIma, 1987; Argyris
et alú, 1991; Thompson anel Stewart, 1993). Gooel sur
veys on modeling anel analysis of chaotic signals can be
founel in (Grassberger et a.lú, 1991; Abarbanel et alú, 199;3).
See also (Hayashi, 1964; Atherton and Dorrah, 1980) for a
rather 'classica.l' approach to the analysis of nonlinear os
cillations. Finally, it is worth pointing out that some soft
ware packages are availahle for analysis of nonlinear anel
chaotic systems. In particular, the program kaos (Guck
enheimer anel Kim, 1990; Guckenheimer, 1991) which runs
on Sun workstations and can be obtained by ftp on ma
comb.tn.comell.edu 128.84.237.12. The programs MTR
CHAOS anel MTRLYAP (Rosenstein, 199:3) can be sueel
for analysing chaotic signals and estimating correlation eli
mension anel largest Lyapunov exponents. These programs
are available under request to MTRla@aol.com.

Some of the concepts anel mathematical tools eliscusseel in
this papel' will be useel in a companion papel' which will ael
elress some aspects ofthe ielentification, analysis anel control
of nonlineal' elynamics anel chaos.
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